
APPLICATIONES MATHEMATICAE
40,1 (2013), pp. 91–97

Marek Beśka and Agnieszka Wałachowska (Gdańsk)

NOTE ON THE MULTIDIMENSIONAL
GEBELEIN INEQUALITY

Abstract. We generalize the Gebelein inequality for Gaussian random
vectors in Rd.

1. The Mehler kernel in Rd. Let (Ω,F , P ) be a fixed probability
space and let

V = (X,Y ) = (X1, . . . , Xd, Y1, . . . , Yd)

be a Gaussian vector on (Ω,F , P ) such that

R̂ = cov(V ) =

[
I R

R I

]
,

where I is the identity matrix and R is a square symmetric matrix, both of
order d. ByNd(0, I) we denote the family of all Gaussian vectors on (Ω,F , P )
with mean zero and the identity covariance matrix. It follows that X =
(X1, . . . , Xd), Y = (Y1, . . . , Yd) ∈ Nd(0, I). We denote by µ the normalized
d-dimensional Gaussian measure, i.e.

dµ(x) =
1

(2π)d/2
exp

(
−1

2
‖x‖2

)
dx,

where ‖ · ‖ is the Euclidean norm in Rd. In L2(µ) = L2(Rd, µ) we have the
scalar product

(f, g)µ =
�

Rd

f(x)g(x) dµ(x).

Throughout the paper we shall assume that ‖R‖∞ < 1, where ‖ · ‖∞
is a norm of the operator R : ld∞ → ld∞ (which we denote by the same
letter as its matrix in the standard basis). Hence, for all x 6= 0 we have
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((I − R2)(x), x)d > 0, in particular det(I − R2) > 0, where (·, ·)d is the
standard inner product in Rd.

Let Z ∈ Nd(0, I) be a Gaussian vector such that Z, Y are independent.
Introducing U = RY +

√
I −R2 Z, we see that the Gaussian vectors (X,Y )

and (U, Y ) have the same joint distribution.
We can introduce an Ornstein–Uhlenbeck type linear operator PR : L2(µ)

→ L2(µ) by

(PR)f(y) = E[f(X) |Y = y] = E[f(U) |Y = y]

=
�

Rd

f(Ry +
√
I −R2 z) dµ(z), y ∈ Rd.

It is easily seen that PR can be defined on L1(µ) and from the Jensen in-
equality it follows that PR is a contraction in Lp(µ) for p ≥ 1. Moreover it
turns out that the operator PR has a kernel:

Proposition 1.1. Under the above assumptions, we have

(PRf)(x) =
�

Rd

kR(x, y)f(y) dµ(y), x ∈ Rd, f ∈ L2(µ),

where

kR(x, y) =
1√

det(E)
exp

{
−1

2
[−‖y‖2+(E−1(y−Rx), y−Rx)d]

}
, x, y ∈ Rd,

and E = I −R2.

Proof. It is known that the density fV of the random vector V = (X,Y )
has the form

fV (v) =
1

(2π)d
1√

det(R̂)
exp

{
−1

2
(R̂−1v, v)2d

}
, v ∈ R2d.

Using the formulas for the determinant and the inverse of a block matrix we
obtain det(R̂) = det(I −R2) and

R̂−1 =

[
I R

R I

]−1
=

[
I +RE−1R −RE−1

−E−1R E−1

]
,

where E = I −R2. Hence for v = (x, y), x, y ∈ Rd we have

fV (v) = f(X,Y )(x, y) =
1

(2π)d
1√

det(E)

×exp
{
−1

2
[‖x‖2+(E−1Rx,Rx)d−(E−1y,Rx)d−(E−1Rx, y)d+(E−1y, y)d]

}
.
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By the definition of the operator PR we have

kR(x, y) =
f(X,Y )(x, y)

fX(x)fY (y)
,

where fY (x) = fX(x) = (2π)−d/2 exp
(
−1

2‖x‖
2
)
. Hence the conclusion fol-

lows.

2. The Gebelein inequality. For x = (x1, . . . , xd) ∈ Rd and k =
(k1, . . . , kd) ∈ Nd0 = (N ∪ {0})d, we denote as usual

|x| =
d∑
i=1

xi, xk =
d∏
i=1

xkii , |k| =
d∑
i=1

ki, k! =
d∏
i=1

ki!.

The set of all d × d matrices with elements from R (or N0) is denoted by
Md(R) (resp. Md(N0)). If R ∈ Md(R), the jth column and ith row of R
are denoted by Rj and Ri respectively. From time to time we shall use the
shorthand notation R = [Rij ]. As usual we identify rows and columns of R
with vectors from Rd. If R ∈Md(R) and K ∈Md(N0), we denote

|K| = (|K1|, . . . , |Kd|), |R| = (|R1|, . . . , |Rd|),

K! = K1! · · ·Kd! =
d∏

i,j=1

Ki
j !, RK = R1K

1

· · ·RdK
d

=
d∏

i,j=1

Rij
Ki

j ,

with the convention 00=1. Given R ∈Md(R), a multiindex n=(n1, . . . , nd)
∈ Nd0 and a vector t = (t1, . . . , td) ∈ Rd, it is easy to check that

(1.1) (Rt)n =
∑

K∈Md(N0)
|K|=n

n!

K!
RKt|K

T |

(here T stands for transposition) . Putting t = (1, . . . , 1) ∈ Rd in the above
formula we obtain

(1.2) |R|n =
∑

K∈Md(N0)
|K|=n

n!

K!
RK .

Let Hn, n ≥ 0, be the Hermite polynomial on R of degree n, i.e.

Hn(x) = (−1)nex2/2 d
n

dxn
(e−x

2/2), x ∈ R.

Hermite polynomials on Rd are defined as tensor products of Hermite poly-
nomials on R, namely for n=(n1, . . . , nd)∈Nd0 and x=(x1, . . . , xd)∈Rd we
put

Hn(x) =
d∏
i=1

Hni(xi) and hn(x) =
d∏
i=1

hni(xi),
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where hni(xi) =
1√
ni!
Hni(xi). It is known that the collection {hn}n∈Nd

0
forms

an orthonormal basis in L2(µ). The polynomials Hn divided by n! are the
coefficients of the expansion in powers of t = (t1, . . . , td) ∈ Rd of the function
wt(x) = exp(−‖t‖2/2 + (t, x)d). In fact, we have

wt(x) =
∑
n∈Nd

0

tn

n!
Hn(x), t, x ∈ Rd.

Proposition 1.2. Let R ∈ Md(R) be a symmetric matrix such that
‖R‖∞ < 1. Then

(1.3) (PRHn)(x) =
∑

K∈Md(N0)

|KT |=n

|KT |!
K!

RKH|K|(x), x ∈ Rd.

Proof. By the definition of the operator PR and of the generating function
wt of Hermite polynomials we have

(PRwt)(x) =
�

Rd

exp

[
−‖t‖

2

2
+ (t, Rx+

√
I −R2 y)d

]
dµ(y)

= exp

[
−‖t‖

2

2
+ (t, Rx)d

] �

Rd

exp[(
√
I −R2 t, y)d] dµ(y)

= exp

[
−‖t‖

2

2
+ (t, Rx)d

]
exp

[
1

2
((I −R2)t, t)d

]
= exp

[
(Rt, x)d −

1

2
‖Rt‖2

]
=
∑
n∈Nd

0

(Rt)n

n!
Hn(x).

Hence and from (1.1) we conclude that

(PRwt)(x) =
∑
n∈Nd

0

∑
K∈Md(N0)
|K|=n

RK

K!
t|K

T |H|K|(x)

=
∑
n∈Nd

0

∑
K∈Md(N0)

|KT |=n

RK

K!
t|K

T |H|K|(x) =
∑
n∈Nd

0

∑
K∈Md(N0)

|KT |=n

RK

K!
tnH|K|(x)

=
∑
n∈Nd

0

tn

n!

∑
K∈Md(N0)

|KT |=n

|KT |!
K!

RKH|K|(x).
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On the other hand we have

(PRwt)(x) =
∑
n∈Nd

0

tn

n!
(PRHn)(x),

and finally

(PRHn)(x) =
∑

K∈Md(N0)

|KT |=n

|KT |!
K!

RKH|K|(x).

We observe that for normalized (in L2(µ)) Hermite polynomials hn the
formula (1.3) has the form

(1.4) (PRhn)(x) =
∑

K∈Md(N0)

|KT |=n

√
|KT |!

√
|K|!

K!
RKh|K|(x), x ∈ Rd.

We can now formulate the following generalization of the classical Gebelein
inequality (see [BC], [DK], [G])

Theorem 1.1. Let R ∈ Md(R) be a symmetric matrix such that ‖R‖∞
< 1. Then for f ∈ L2(µ) such that

	
Rd f dµ = 0 we have

‖PRf‖L2(µ) ≤ ‖R‖∞‖f‖L2(µ).

Proof. Fix f ∈ L2(µ) with
	
Rd f dµ = 0. Expanding f with respect to

the orthonormalized Hermite system {hn}n∈Nd
0
and using (1.4) we obtain

‖PRf‖2L2(µ) =
�

Rd

∣∣∣∑
n∈Nd

0

(f, hn)µ(PRhn)
∣∣∣2 dµ

=
�

Rd

∣∣∣∣∑
n∈Nd

0

(f, hn)µ
∑

K∈Md(N0)

|KT |=n

√
|KT |!

√
|K|!

K!
RKh|K|

∣∣∣∣2dµ
=

�

Rd

∣∣∣∣∑
n∈Nd

0

∑
K∈Md(N0)
|K|=n

√
|KT |!

√
|K|!

K!
RK(f, h|KT |)µhn

∣∣∣∣2 dµ
=
∑
n∈Nd

0

( ∑
K∈Md(N0)
|K|=n

√
|KT |!

√
|K|!

K!
RK(f, h|KT |)µ

)2

≤
∑
n∈Nd

0

( ∑
K∈Md(N0)
|K|=n

√
|KT |!

√
|K|!

K!
R
K |(f, h|KT |)µ|

)2

,
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where R = [|Rij |]. Hence and by the Schwarz inequality, the observation that
RK = RK

T , K! = KT !, and (1.2), we conclude that

‖PRf‖2L2(µ) ≤
∑
n∈Nd

0

( ∑
K∈Md(N0)
|K|=n

n!

K!
R
K
)( ∑

K∈Md(N0)
|K|=n

|KT |!
KT !

R
KT

(f, h|KT |)
2
µ

)

≤
∑
n∈Nd

0

|R|n
∑

K∈Md(N0)
|K|=n

R
KT

(f, h|KT |)
2
µ

≤ ‖R‖∞
∑
n∈Nd

0

∑
K∈Md(N0)

|KT |=n

n!

KT !
R
KT

(f, hn)
2
µ

= ‖R‖∞
∑
n∈Nd

0

|R|n(f, hn)2µ ≤ ‖R‖2∞‖f‖2L2(µ).

3. Applications of Gebelein’s inequality. Suppose the normalized
Gaussian sequence X = (Xi, i = 1, 2, . . .) of random vectors in Rd is given.
In particular Xi ∈ N(0, I) for each i ≥ 1. It is assumed that the matrices
Ri,j = E(XiXj) are symmetric for i, j = 1, 2, . . . and satisfy the following
hypothesis:

(1.5) ‖Ri,j‖∞ < 1, i, j = 1, 2, . . . , C = sup
i≥1

∑
j≥1
‖Ri,j‖∞ <∞.

By the Frobenius Theorem (see [HLP]) and Theorem 1.1 we get the estimate

Var
( n∑
i=1

fi(Xi)
)
≤ C

n∑
i=1

Var(fi(Xi)), n = 1, 2, . . . ,

where fi ∈ L2(µ), i = 1, 2, . . . (see [B], [BC], [V]). Using this inequality
and adopting the methods from [B] and [BC] we obtain the following two
statements:

Lemma 1.1 (Borel–Cantelli Lemma). Let X = (Xn, n = 1, 2, . . .) be a
Gaussian sequence with Xi ∈ N(0, I) for i ≥ 1 and suppose that X satisfies
(1.5). Then for every sequence of Borel sets (An, , n = 1, 2, . . .) in Rd such
that

∞∑
n=1

P{Xn ∈ An} =∞

we have P{Xn ∈ An i.o.} = 1.

Theorem 1.2 (Strong Law of Large Numbers). Let X=(Xi, i=1, 2, . . .)
be a Gaussian sequence with Xi ∈ N(0, I) for i ≥ 1 and suppose that X
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satisfies (1.5). Then for f ∈ L1(µ) we have

1

n

n∑
i=1

f(Xi) −−−→
n→∞

Ef(X1) a.s.
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