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Abstract
The article presents a proposal of a method for computer-aided design and analysis of breeding
reservoirs in zoos and aquariums. The method applied involves the use of computer simula-
tions of water circulation in breeding pools. A mathematical model of a pool was developed,
and a tracer study was carried out. A simplified model of two-dimensional flow in the form
of a biharmonic equation for the stream function (converted into components of the velocity
vector) was adopted to describe the flow field. This equation, supplemented by appropriate
boundary conditions, was solved numerically by the finite difference method. Next, a tracer
migration equation was solved, which was a two-dimensional advection-dispersion equation
describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper
solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of
these measurements were compared with numerical solutions obtained. The results of numer-
ical simulations made it possible to reconstruct water circulation in the breading pool and to
identify still water zones, where water circulation was impeded.

Key words: breeding reservoir hydraulics, water circulation, tracer study, mathematical mod-
eling, kinematical models

1. Introduction

An important factor in the breeding of warm-blooded aquatic animals are well-
-designed reservoirs. This applies to reservoirs used in zoos, dolphinariums, and seal
facilities. Animals living, feeding, and excreting waste products in a limited space,
influence water parameters. Practically all the warm-blooded animals have natural
bacterial flora in their digestive systems, where, in addition to symbiotic bacteria,
also fecal strains occur. Pools must be provided with water exchange to limit microbial
growth that may adversely affect the health of their animal inhabitants. Particularly
exposed to microbial growth are zones of low flow velocity, where sedimentation
of the suspension process occurs, and temperature increases as a result of sunlight.
These are conditions that cause an intense growth of microorganisms and algae, which
may affect microbiological water parameters. These problems are associated with the
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inappropriate construction assumptions (at the design stage) concerning conditions
for the circulation of water in reservoirs. They can be countered by increasing the
zone of active water exchange and by creating appropriate hydraulic conditions to
eliminate still water zones (“dead zones”), where water circulation is impeded. One
of the methods that make it possible to identify these types of problems and improve
circulation in pools is the mathematical modeling of the flow field through numerical
simulations. Additionally, a tracer study may be carried out. In the case of breeding
tanks, it is very important to select a tracer (marker) that does not affect the animals
living there. Such a substance is rhodamine WT, commonly used in the natural en-
vironment (Parker 1973, Smart and Laidlaw 1977, Wilson et al 1986, Kilpatrick and
Wilson 1989, Zima 2012). In a tracer study, dye molecules move along with water
molecules and undergo a process of diffusion. The concentration of the tracer dye
in space and time can serve as the basis for the testing of theoretical models (Zima
2012).

2. Mathematical Model Development

To construct a comprehensive model describing, in combination with tracer studies,
the process of water circulation in breeding pools, it is necessary to solve two fun-
damental problems: to determine the hydrodynamic behavior of a mixture and to de-
scribe the unsteady transport of dissolved matter. The former concerns the description
of the flow of a water-solute mixture through the reservoir. This problem can be dealt
with by one of kinematical models (Sawicki 1998, 2009, Zima 2012) described by
the biharmonic equation:

∆Ω = ∆∆ψ =
∂4ψ

∂x4 + 2
∂4ψ

∂x2∂y2 +
∂4ψ

∂y4 = 0, (1)

where:

Ω(x, y) – harmonic function of vorticity distribution,
ψ(x, y) – stream function, defined as follows (Potter 1982),

ux =
∂ψ

∂y
, uy = −

∂ψ

∂x
, (2)

ux, uy – coordinates of a two-dimensional velocity vector.

u = [ux, uy]. (3)

The application of model (1) is known in the literature as the solution of the
two-dimensional Stokes problem (Glowinski and Pironneau 1977). The omission of
the impact of inertia forces in a general description of fluid motion is obviously passed
on to the scope of such a model in practical applications. If we assume that the op-
erator Ω refers to a two-dimensional area bounded by the edge Γ and with the three
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functions f , g1 and g2, in the general case, we consider the Dirichlet problem for the
biharmonic operator:

∆Ω =


∆2ψ = f
ψ|Γ = g1

∂ψ

∂n
= g2

 . (4)

The solution of problem (4) in two-dimensional space (x, y) is a stream function
ψ(x, y). In this case, the function f = 0. Next, the components of the velocity vector
u (3) can be calculated in the whole domain with the use of relation (2).

The transport of the solute component i in the two-dimensional approach in which
the velocity field is described by vector (3), for a non-active, permanent substance
(tracer), can be described by the following equation (Crank 1975, Rutherford 1994,
Sawicki 2003):

∂ci

∂t
+
∂ (uxci)
∂x

+
∂ (uyci)
∂y

=
∂

∂x

(
Dxx

∂ci

∂x
+ Dxy

∂ci

∂y

)
+
∂

∂y

(
Dyx

∂ci

∂x
+ Dyy

∂ci

∂y

)
, (5)

where:

ci – concentration of the i component (substance),

Dxx = DLn2
x + DHn2

y, Dxy = Dyx = (DL − DH) nxny, Dyy = DLn2
y + DHn2

x, (6)

DL,DH – longitudinal and horizontal coordinates of the dispersion tensor
are described by Elder formulas (Elder 1959):

DL = 5.93 · Hv∗, DH = 0.23 · Hv∗, (7)

n – directional velocity vector,

nx =
ux

|u|
, ny =

uy
|u|
, (8)

v∗ – dynamic velocity (Taylor 1954).

Relations (1) and (5) are partial differential equations, which in the general case
can be solved only by numerical methods, such as the finite difference method (FDM),
finite element method (FEM), or finite volume method (FVM) (Abbott 1979, Fletcher
1991, LeVeque 2002, Szymkiewicz 2000). In this study, the FDM was used to solve the
biharmonic equation (Kosma 2009), and the FVM was applied to unsteady transport
equations (LeVeque 2002). In order to apply these methods, the domain was divided
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Fig. 1. A thirteen-point scheme used for the approximation of the biharmonic equation

into square elements (cells) where ∆x = ∆y = h (Fig. 1), with n nodes in direction x
and m nodes in direction y.

In the case of the biharmonic equation, as a result of the approximation of the dif-
ference quotients, the equation is obtained in each computational node. Fig. 1 shows
the values of the coefficients in each node (i, j) resulting from the adopted approxi-
mation of equation (1) patterns of the central differential schemes (the thirteen-point
scheme). In the case of boundary nodes, the above scheme was changed according to
the specified boundary condition, in accordance with (4). These equations are linear
and form a system that can be solved by one of the known iterative methods. In this
paper, the relaxation method (the Gauss-Seidel method, also known as the Liebmann
method or the method of successive displacement) was adopted (Kosma 2009):

ψ(k+1)
i, j = ψ(k)

i, j + r(k+1,k)
i, j , (9)

where k is the number of iteration, ri, j is a residual of the approximation of the bi-
harmonic equation in a given node (some nods in the thirteen-point scheme follow
after iteration k and some after iteration k + 1). The final step is the calculation of
velocity vector components in the whole domain in accordance with relation (2). The
partial derivatives in equations (2) were approximated by the corresponding central
differential schemes (Potter 1982):

ux =
ψi+1, j − ψi−1, j

2h
, uy = −

ψi, j+1 − ψi, j−1

2h
. (10)

The FVM, applied to solve the unsteady transport equation, refers to the physical
conservation laws at the control volume level. This can be described by the homoge-
neous hyperbolic equation as (LeVeque 2002):

∂c
∂t

+ ∇ · F = 0. (11)
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Equation (5) can be written in vector form (11). If during the flow of solute we con-
sider advection and dispersion fluxes, described by an analog to Fick’s law (Sawicki
2003), the flux F can be defined as follows (LeVeque 2002):

F = u · c − D · ∇c. (12)

As a result of integrating equation (11) in each finite volume and applying the
Gauss-Ostrogradsky theorem, we obtain the following equation (LeVeque 2002):

∂ci

∂t
∆Ai +

∮
Li

(F · n) dL = 0, (13)

where ∆Ai and Li are, respectively, the surface and edge of the cell, and the flux F is
defined by equation (12). This integral represents the advection-dispersion mass flux
of substances carried by the edge of the cell. When using square elements, each of the
integrals occurring in equation (13) can be replaced by the sum of four components,
which makes it possible to write equation (13) in the form:

∂ci

∂t
∆Ai +

4∑
r=1

(Fr · nr) ∆Lr = 0, (14)

where Fr is a vector of streams by the edge r, and ∆Lr is the length of the edge of
the cell. In this paper, a regular square grid was used, compatible with the directions
of the Cartesian coordinate system axes (Fig. 2). This grid referred to the differential
grid used to solve the biharmonic equation (Fig. 1).

Fig. 2. The division of the domain into two-dimensional cells and the adopted parameters of
the model used in the solution of the unsteady solute transport equation
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Therefore, streams by the edge in equation (14) will also be in line with the direc-
tions of the coordinate system (x and y). The form of flux vector components by the
edges x and y will be as follows:

Fx = FAx + FDx = ux · c − Dxx ·
∂c
∂x
− Dxy ·

∂c
∂y
, (15)

Fy = FAy + FDy = uy · c − Dyy ·
∂c
∂y
− Dxy ·

∂c
∂x
. (16)

To solve equation (5), the splitting technique was used (LeVeque 2002). The trans-
port of dissolved matter was split into autonomous processes: advection and disper-
sion. To determine numerical fluxes by the cell edge in the advection equation, the
Lax-Wendroff scheme was used (LeVeque 2002). In the case of the dispersion equa-
tion, central differential schemes were used. In the method of integrating equations
(15) and (16), the control area was assumed to be equivalent to a grid cell. As a result
of this approach, the values of the velocity vector u (3) are given at grid points, and
the unknown are the functions located at the central points of cells (Fig. 2). Inter-
mediate values that lie between grid nodes (which are needed to determine the value
of fluxes by individual cell edges) were calculated by averaging neighboring values.
This approach was applied to the function of concentration and the components of
the velocity vector.

3. Tracer Study

Studies on solute transport in an aquatic environment often require the adopted math-
ematical models to be verified and validated (Tucker 1995). Water tracing by dye
fluorometry is the most common method by which data are collected for these pur-
poses, and such studies are aimed at determining the characteristics of water move-
ment (Zima 2012).

An extensive use of fluorescent dyes as water tracers dates back to the early 1960s
(Pritchard and Carpenter 1960). Over the last several decades, only two dyes (varia-
tions of the same molecular structure called xanthene), have been used as fluorescent
substances in such studies: intracid rhodamine B and rhodamine WT. Rhodamine WT
is preferred for most fluorometry studies because of its ease of use, relatively low cost,
low adsorption tendency, strong fluorescent properties, high diffusivity, chemical sta-
bility, and limited impact on the aquatic environment (Parker 1973, Smart and Laidlaw
1977, Wilson et al 1986, Kilpatrick and Wilson 1988). In addition, the spectral char-
acteristics of rhodamine WT are quite different from those of most other substances
in the surrounding aqueous environment, making it ideal for use as a marker in tracer
studies of water and wastewater (Wilson et al 1986, Zima 2012).

This article presents the results of a tracer study carried out in situ in a facility with
breeding pools. The dimensions and shape of the reservoir, as well as the location
of the water inlet and outlet, are presented in Fig. 3. A twenty-percent solution of
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Fig. 3. Dimensions and shape of the reservoir and the location of the water inlet and outlet in
the tested object

rhodamine WT was used as a tracer. The tracer was injected into the pool at a point
very close to the water inlet, and concentration measurements were made near the
water outlet (Fig. 4). The concentration of the tracer was measured with a submersible
probe Cyclops-7 (Turner Designs) for continuous measurement of rhodamine WT
concentration (Fig. 4).

Fig. 4. The injection of tracer close to the inlet (a) and the making of measurements near the
outlet (b) of the reservoir

The results of measurement (rhodamine WT concentration in percent in relation
to the maximum measuring range of the probe) after 21 minutes from injection are
presented in Fig. 5. It shows that the time of arrival of the first doses of the tracer at
the outlet was approx. 7 minutes. It was one of the basic parameters compared with
the results obtained during the numerical simulation.
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Fig. 5. The results of tracer concentration measurement after 21 minutes

4. Numerical Calculations and Discussion of Results

On the basis of the in-situ measurements, numerical simulations were made. Math-
ematical models (described in section 2 of this paper) were used to simulate flow in
a model body of water. The example refers to a real-life reservoir (a breeding pool for
warm-blooded animals). The reservoir has an approximately constant depth (H = 2.9
m). At its extreme ends, the inlet and outlet of water are installed in order to ensure
the necessary exchange of water (design intent). The shape of the tank contour and
the location of the inlet and outlet are shown in Fig. 3. In order to obtain the velocity
vector u (3) distribution for steady flow, the domain limited by the black contour was
covered with a square grid of side h = 0.1 m, and then the biharmonic equation was
solved by the formula of the relaxation method (9). Equation (1) is a fourth-order
elliptic differential equation, which requires two boundary conditions (Meerschaert
2007):

– Dirichlet condition – known value of the stream function, where ψ = const at an
impervious boundary and ψ = varians at a pervious boundary;

– Neumann condition at an impervious boundary:

∂ψ

∂n
= 0. (17)

The inflow and outflow of water were appropriately included in the mathematical
model as boundary conditions (linear change of the stream function at those loca-
tions). The results of computer simulations (distribution of stream lines) are shown
in Fig. 6. The stream function values are scaled there: 100% means the maximum
value of the stream function (33.8/2.9 m3/h/m). Velocity vectors were determined by
formula (2) and scaled relative to the maximum speed 0.25 m/s. When analyzing the
distribution of the stream function within the outline of the domain (reservoir), one
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finds zones in which lines form closed areas. They represent areas in which the ex-
change of water is difficult, and its velocity declines rapidly. Especially in the corners
(even open ones), still water zones can be seen, where water circulation is impeded.
In these zones the accumulation of pollutants and the proliferation of pathogenic mi-
croorganisms may occur. This may affect the health of animals living in the pool. This
effect was also observed during the tracer study, in which a discoloration of water,
associated with increased accumulation of the tracer, was visible at those places.

Fig. 6. Distribution of stream lines and velocity vector components in the reservoir

As the next step, in order to reconstruct the tracer flow and confirm the effects
observed during the tracer study, the unsteady transport of the non-active, permanent
solute component in the two-dimensional approach was simulated in a steady velocity
field. The advection-dispersion equation (5) was solved by the FVM (LeVeque 2002).
This is a partial differential equation of the second order, which requires the following
additional conditions (Meerschaert 2007):

– initial condition – the tracer concentration c(x, y) at the initial of time computing
(in this case c = 0.0 was assumed);

– boundary condition at the impermeable edge of the domain (Neumann condition)
in the form:

∂c
∂n

= 0, (18)

– boundary condition at the permeable edge of the domain (Dirichlet condition) in
the form:

c = const. (19)
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Fig. 7. Numerical simulation of tracer propagation in time and reservoir space
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In the mathematical model, at the point of the tracer input, the tracer concentration
was constant and equal to the concentration of the dose injected at the inlet. This
condition was enforced in the mathematical model by the Dirichlet-type condition
(19) at the point of tracer injection. The results (at selected time steps) are shown in
Fig. 7, which presents the distribution of the tracer in the reservoir after a specified
time, from the start of the simulation until first tracer doses reached the outlet. Thus it
is possible to analyze the spreading of the tracer in the entire volume of the tank and
its accumulation in still water zones.

The measurment of the time of arrival of the tracer at the outlet made it possible to
analyse concentration changes in time and at the measurement location. Fig. 8 presents
the measurement results recorded during the tracer study (solid line), carried out as
described in section 3 of this paper (Fig. 5), and the results of numerical simulation
(dashed line) exactly at the point of measurement. These results may confirm the
correlation between observations and the results of computer simulations, and provide
a validation of the adopted mathematical model.

Fig. 8. Numerical simulation of tracer propagation in time at the reservoir outflow (solid line
– measurements, dashed line – calculations)

5. Conclusions

The studies conducted for this paper were aimed at the identification of the hydraulic
conditions of water circulation in breeding reservoirs, such as pools. The tests were
performed by means of a tracer study in situ and by mathematical modeling. Com-
puter simulations of the stream function and velocity field distribution under steady
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flow conditions were performed. A kinematic model in the form of the biharmonic
equation was used for calculations. In addition, a tracer study was conducted, in
which rhodamine WT was used as the tracer. In order to reconstruct the tracer flow
and confirm the effects observed during the tracer study, the unsteady transport of
a non-active, permanent solute component in the two-dimensional approach was sim-
ulated in a steady velocity field. The results obtained suggest that the models applied
in the study well describe the main features of the flow related to the distribution of
velocity, reconstruction of water circulation in pools, and identification of still water
zones, where water circulation is impeded. Therefore, it may be advisable to apply the
proposed approach in developing design guidelines for this type of breeding facilities
and to use the results of this study in the modernization of such facilities for aquatic
animals, e.g. in zoos, seal facilities, or fish ponds.
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