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a b s t r a c t

Anew algorithm is proposed for the numerical solution of threshold problems in epidemics
and population dynamics. These problems aremodeled by the delay-differential equations,
where the delay function is unknown and has to be determined from the threshold
conditions. The new algorithm is based on embedded pair of continuous Runge–Kutta
method of order p = 4 and discrete Runge–Kutta method of order q = 3 which is used for
the estimation of local discretization errors, combined with the bisection method for the
resolution of the threshold condition. Error bounds are derived for the algorithm based on
continuous one-step methods for the delay-differential equations and arbitrary iteration
process for the threshold conditions. Numerical examples are presented which illustrate
the effectiveness of this algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Denote by C = C([α, T ], Rm) the space of continuous functions from the interval [α, T ] into Rm with the norm defined
by

|||y|||[α,T ] := sup

e−a(t−t0)

y
[α,t] : α ≤ t ≤ T


,

where a > 0 is a real parameter and ∥y∥[α,t] is the uniform norm on the interval [α, t]. Let

f : [t0, T ] × C

[α, T ], Rm

× Rm
→ Rm

and consider the initial-value problem for a functional-differential equation of the formy′(t) = f

t, y(·), y


t − τ


t, y(·)


, t ∈ [t0, T ],

y(t) = g(t), t ∈ [α, t0],
(1.1)
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α ≤ t0. Problem (1.1) is a generalization of the problem elaborated in [1], where discrete variable methods for its numerical
solution are investigated. The function τ(t, y(·)) appearing in this equation is determined from the so-called threshold
condition

P

t, y(·), τ


t, y(·)


= m, (1.2)

with given thresholdm > 0. Here,

P : [t0, T ] × C

[α, T ], Rm

× R → R

is a given operator. In applications P is usually an integral operator. Observe that (1.2) depends on the unknown function
y. The solution to (1.1)–(1.2) will be denoted by y(t) and τ(t, y(·)). Such equations find applications in modeling various
problems in epidemics and population dynamics. Specific examples of such problems are presented in Section 2. The
existence and uniqueness of the solution to (1.1)–(1.2) are discussed in Section 3.

Since in general, the operator P cannot be computed exactly (P may be an integral operator like in the applications in-
troduced in the next section) we first replace (1.2) by the equation

P̄

t, y(·), τ


t, y(·)


= m, (1.3)

where P̄ is a discrete approximation to P . Next, we describe the numerical approximation to the solution of (1.1), (1.3). De-
note by ȳ(t) and τ̄ (t, ȳ(·)) the solution to (1.1), (1.3). To compute numerical approximation ȳh to ȳwe consider the general
class of continuous one-step methods of the formȳh(tn + θhn) = ȳh(tn) + hnΦh


tn, θ, ȳh(·), ȳh


tn+θ − τ̄h


tn+θ , ȳh(·)


, θ ∈ (0, 1],

ȳh(t) = gh(t), t ∈ [α, t0],
(1.4)

n = 0, 1, . . . ,N . Here, tn+1 = tn + hn, tn+θ = tn + θhn, n = 0, . . . ,N, θ ∈ (0, 1], with step-sizes hn which satisfy

N−1
n=0

hn < T − t0 ≤

N
n=0

hn. (1.5)

Moreover, gh is an approximation to the initial function g , and τ̄h(tn+θ , ȳh(·)) is an approximation to the solution τ̄ (tn+θ ,
ȳh(·)) to the operator equation

P̄

tn+θ , ȳh(·), τ̄


tn+θ , ȳh(·)


= m, (1.6)

obtained from (1.3) by replacing t by tn+θ , y(·) by ȳh(·) and τ(t, y(·)) by τ̄ (tn+θ , ȳh(·)). In this formulation the increment
functionΦh and the operator equation (1.6) depend on ȳh(·) and ȳh(tn+θ − τ̄h(tn+θ , ȳh(·))) although in practical applications
this dependence is usually restricted to a discrete set of values such as, for example, ȳh(tn+ci) and ȳh(tn+ci − τ̄h(tn+ci , ȳh(·))),
i = 1, 2, . . . , s, where ci are given abscissas usually chosen from the interval [0, 1]. This is the case for continuous
Runge–Kutta methods considered in Section 5.

Depending on the formof the increment functionΦh the formulation (1.4) includes both the explicit and implicit formulas
for (1.1), (1.3). Note that, although ȳh(tn+θ ) is computed from (1.4) and the quantity τ̄


tn+θ , ȳh(·)


is computed from (1.6),

these equations are not independent and (1.6) has to be resolved at each time step of numerical integration for the method
(1.4).

We are interested to estimate the global error y− ȳh, where y is the solution to (1.1) with τ(t, y(·)) given by (1.2), and ȳh
is computed from (1.4) with the approximation τ̄h(tn, ȳh(·)) to τ̄ (tn, ȳh(·)) computed by some iterative procedure applied
to Eq. (1.6). This error consists of two parts:

y − ȳh =

y − ȳ


+

ȳ − ȳh


,

and we havey − ȳh


[α,T ]
≤
y − ȳ


[α,T ]

+
ȳ − ȳh


[α,T ]

. (1.7)

Here, for x ∈ C([α, t], Rm) and t ∈ [α, T ] the norm ∥x∥[α,t] is defined byx
[α,t] := sup

x(s) : α ≤ s ≤ t

,

where ∥ · ∥ is any norm on Rm. The first term on the right hand side of the above inequality will be investigated in Section 4
using the theory of integral inequalities. The second term on the right hand side of (1.7) will be investigated in Section 5
using the generalization of the theory of one-stepmethods for functional differential equations. In Section 6we describe the
adaptation of continuous Runge–Kutta methods for ordinary differential equations to the problem (1.1), (1.3). In Section 7
we describe the numerical algorithm for the solution of (1.1), (1.3) based on embedded pair of continuous Runge–Kutta
methods of order p = 4 and discrete method of order q = p − 1 = 3 which is used for error estimation. In this section
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we also describe the resolution of the threshold condition (1.6) for specific form of the operator P̄ . In Section 8 the results
of numerical experiments will be presented using the examples of threshold problems presented in Section 2. Finally, in
Section 9 some concluding remarks are given.

2. Examples of threshold problems

The first problem comes from the theory of epidemics. Assume that in a constant population we have I(t) infectives and
S(t) susceptibles at time t ≥ 0 with a known history of the number of infectives I0(t) prior to the time t = 0. Specifically
it is assumed that the history I0(t) is described by a continuous increasing function on the interval −σ ≤ t < 0 with
I0(−σ) = 0 and I0(0) = I0. Hoppensteadt andWaltman [2] considered the model of spread of infection under the following
assumptions:

1. An individual who becomes infectious at time t fully recovers at time t + σ and infectives I0 added to the population at
time t = 0 are also subject to this rule.

2. The rate of exposure of susceptibles to infectives is proportional to the number of infectives I(t) and susceptibles S(t)
with a known proportionality function r(t) > 0.

3. The individual becomes infectious at time t after the accumulated dosage of infection
 tτ ρ(s)I(s)ds reaches a known

threshold m > 0. Here, ρ(s) > 0 is a known proportionality function andτ = τ(t, I(·)) is an unknown function which
depends on the history of I(s) for s ≤ t .

As explained in [2] these assumptions lead to the following model for the spread of infection
S ′(t) = −r(t)I(t)S(t), t ≥ 0,
S(0) = S0,

(2.1)

I(t) =


I0(t), −σ ≤ t ≤ t0,

I0(t) + S0 − S
τt, I(·), t0 ≤ t ≤ t0 + σ ,

S
τt − σ , I(·)


− S

τt, I(·), t0 + σ ≤ t < ∞.

(2.2)

Here, I0(t) which is already defined on the interval [−σ , 0) is extended on the interval [0, ∞) by the formula

I0(t) =


I0(0) − I0(t − σ), 0 ≤ t ≤ σ ,
0, σ < t < ∞,

and 0 < t0 < σ is a unique time such that t0

0
ρ(s)I0(s)ds = m. (2.3)

It follows from [2] that in this model the function τ(t) := τ(t, I(·)) appearing in (2.2) is determined from the threshold
condition

P

t, I(·), τ (t)


:=

 t

τ(t)
ρ(s)I(s)ds = m. (2.4)

It was proved in [2] that the function τ(t) is continuously differentiable. As a consequence, we can reformulate the threshold
condition (2.4) for t ≥ t0 in the differential form. This can be done as follows. Taking the derivative of (2.4) with respect to
t we obtain

d
dt

 t

τ(t)
ρ(s)I(s)ds = 0.

This is equivalent to

d
dt

 t

a
ρ(s)I(s)ds −

 τ(t)

a
ρ(s)I(s)ds


= 0,

where a is some constant. This leads to

ρ(t)I(t) − τ ′(t)ρ

τ(t)


I

τ(t)


= 0.

Observe also that t0

τ(t0)
ρ(s)I(s)ds =

 t0

τ(t0)
ρ(s)I0(s)ds = m,
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and comparing this with (2.3) it follows that τ(t0) = 0. The above arguments lead to the initial value problem for τ(t) of
the formτ ′(t) =

ρ(t)I(t)

ρ

τ(t)


I

τ(t)

 , t ≥ t0,

τ (t0) = 0.
(2.5)

Here, τ ′(t) is the total derivative of the function τ(t) = τt, I(·) with respect to t . The problem (2.1), (2.2) and (2.5)
is a system of delay differential equations where the delay function τ(t) itself depends on the values of the unknown
solution I(s) for s ≤ t . This system was solved in [2] by imposing some rather restrictive conditions on the parameters
of the model. These assumptions allowed them to reduce (2.1), (2.2), (2.5) to the system of difference–differential equations
with constant delay which could then be solved numerically by the method of steps. A new more general variable stepsize
variable order algorithm which is applicable to this system without any simplifying conditions on the parameters of the
model was proposed recently in [3]. This algorithm is based on the Nordsieck representation of the family of diagonally
implicit multistage integration methods of stage order equal to its order p for 1 ≤ p ≤ 4. These methods were constructed
in [4,5] and their Nordsieck representation developed in [6]. In this paper we propose a new algorithm for the numerical
solution of (2.1)–(2.4) based on continuous Runge–Kutta method of order p = 4 constructed by Owren and Zennaro [7] for
the integration of (2.1)–(2.2) and the resolution of the threshold condition (2.4) by the bisection method. This problem was
also solved by Thompson and Shampine [8], where the threshold timewas determined by using an event function of Matlab
dde23 solver for delay-differential equations [9].

The second example which comes from population dynamics is the predator–prey model with combined result of death
and birth processes linked to the dynamic resources (population of prey). This model was recently proposed by Gourley and
Kuang [10,11] and extends the previous work by Aiello and Freedman [12]. Denote by x(t) the population of prey at time t
and yj(t) and y(t) the population of juvenile and adult predators. The model proposed in [11] takes the form

x′(t) =
r
K
x(t)


1 − x(t)


− y(t)p


x(t)


,

y′(t) = b e−djτ

t,x(·)


y

t − τ


t, x(·)


p

x

t − τ


t, x(·)


− d y(t),

y′

j(t) = b y(t)p

x(t)


− b e−djτ


t,x(·)


y

t − τ


t, x(·)


p

x

t − τ


t, x(·)


− dj yj(t),

x(t) = x0(t), t ∈ [α, 0],
y(t) = y0(t), t ∈ [α, 0],

(2.6)

t ≥ 0, α ≤ 0, where the given initial functions x0(t) and y0(t) are nonnegative and continuous on α ≤ t < 0, and
x(0), y(0), yj(0) > 0. Observe that this model does not require the knowledge of the past history of yj so this function does
not need to be specified on the initial interval [α, 0]. In the above system, r is the specific growth rate of the prey, K is its
caring capacity, and the (given) function p(x) is the adult predators’ functional response. The parameters b and d are the
adult predators’ birth and death rates, respectively. In addition, it is assumed that juveniles suffer a mortality rate of dj (the
through-stage death rate) and take τ(t) = τ(t, x(·)) units of time to mature. This delay function τ(t) = τ(t, x(·)) which
depends on the past history x(s), s ≤ t , of population of prey is determined from the threshold condition

P

t, x(·), τ


t, x(·)


=

 t

t−τ


t,x(·)

 px(s)ds = m, (2.7)

where m > 0 is a given threshold. The function p(x) appearing in (2.6) and (2.7) is assumed to be differentiable, strictly
increasing, and such that p(0) = 0 and p(x)/x is bounded for all x > 0. Examples of such function relevant to this model are
p(x) = px, where p is a constant, p > 0, and p(x) = px/(1 + ax), where a, p > 0. The positivity preservation result for x(t)
and y(t) was proved in [10,11] that if the initial functions x0(t), y0(t) are nonnegative for α ≤ t < 0, x(0), y(0) > 0, and
the function p(x) satisfy the conditions given above then the solutions x(t) and y(t) to (2.6) are positive for all t > 0. The
results of numerical simulations for the problem (2.6) with constant delay τ are presented in [10].

Assuming that the function τ(t) = τ(t, x(·)) is continuously differentiable we can reformulate (2.7) as

τ ′(t) = 1 −
p

x(t)


p

x

t − τ(t)

 , (2.8)

where τ(0) is determined from the condition 0

−τ(0)
p

x(s)


ds = m.

Observe that τ ′(t) is defined and equal to 0 if τ(t) = 0. Then (2.5), (2.8) could be numerically solved using methods for the
system of delay-differential equations [13,14]. However, this may lead to stiff differential equation (2.8) if τ(t) has sharp
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gradients. In this paper we pursue a different approach which avoids this problem, and we will develop an algorithm based
on continuous Runge–Kutta method of order p = 4, where the function τ(t) will be determined directly from the threshold
condition (2.7) by the bisection method. This new approach is applicable even if the function τ(t) is not differentiable.

3. Existence and uniqueness

Denote by L([α, T ], Rm) the space of Lipschitz continuous functions from [α, T ] into Rm with the norm defined by

|||y|||[α,T ] := sup

e−a(t−t0)

y
[α,t] : α ≤ t ≤ T


,

where a > 0 is a real parameter which will be determined later. Assume that the function f in (1.1) is continuous, and
satisfies the Lipschitz condition of the formf t, y1(·), u1


− f


t, y2(·), u2

 ≤ L1
y1 − y2


[α,t]

+ L2
u1 − u2

 (3.1)

with constants L1, L2 ≥ 0 for t ∈ [α, T ], y1, y2 ∈ C([α, T ], Rm), and u1, u2 ∈ Rm. Assume also that there exists a solution
operator S for (1.2)

τ

t, y(·)


= S


t, y(·),m


, (3.2)

which satisfies the Lipschitz conditionSt, y1(·),m− S

t, y2(·),m

 ≤ LS
y1 − y2


[α,t]

, (3.3)

with LS ≥ 0 for t ∈ [α, T ], and y1, y2 ∈ C([α, T ], Rm), and the condition

0 ≤ τ

t, y(·)


≤ t − α, t ∈ [t0, T ]. (3.4)

Observe that the inequality 0 ≤ τ(t, y(·)) in (3.4) implies that f is a Volterra operator, i.e., it depends only on the past
history of the solution y, and the inequality τ(t, y(·)) ≤ t − α in (3.4) implies that (1.1) is well defined with initial function
g specified on the interval [α, t0].

The statement and the proof of the following existence and uniqueness theorem are more or less a direct extension of
the basic existence and uniqueness results for functional differential equations [15–17]. Observe that finding a solution of
Eq. (1.1) with τ(t, y(·)) given by (3.2) is equivalent to solving the integral equationy(t) = y(t0) +

 t

t0
f

s, y(·), y


s − τ


s, y(·)


ds, t ∈ [t0, T ],

y(t) = g(t), t ∈ [α, t0].
(3.5)

To prove the existence of a solution through a point (t0, g) from [t0, t0 +A]×C([α, t0 +A], Rm) for some A > 0, we consider
the set of all functions y on [α, t0 + A] that are continuous and coincide with g on [α, t0]. The values of these functions on
[t0, t0+A] are required to satisfy ∥y(t)−g(t0)∥ ≤ B for some B > 0. The solutionmapping F obtained from the corresponding
integral equation can be defined, and A and B can be chosen so that F maps this class into itself and is completely continuous
(that is, the mapping F is continuous and takes closed bounded sets into compact sets). Thus, Schauder’s fixed point theorem
(which asserts that if K is a convex subset of a Banach space V and F is a continuous mapping of K into itself so that F(K)
is contained in a compact subset of K , then F has a fixed point) implies the existence of a solution. We have the following
theorem.

Theorem 3.1. Assume that the function f is continuous, it satisfies (3.1) and there exists a solution operator S given by (3.2)
satisfying (3.3) and (3.4). Then the problem (1.1) with τ(t, y(·)) given by (3.2) has a unique solution y ∈ L([α, T ], Rm) for any
T ≥ t0.

Proof. We present below a proof for the case of m = 1. The case for m > 1 is the same conceptually with only notational
differences.

We consider first the existence. Let C = C([α, t0 + A], R) and define the set

K =


φ : φ ∈ C, φ(t) = g(t), t ∈ [α, t0], and |φ(t) − g(t0)| ≤ B for t ∈ [t0, t0 + A]


.

Observe that C is a Banach space with the norm defined in Section 1 and K is closed and convex. Based on (3.5), we define a
continuous mapping of K into a set in C as follows

F(φ)(t) =


g(t), t ∈ [α, t0],

g(t0) +

 t

t0
f

s, y(·), y


s − τ


s, y(·)


ds, t ∈ [t0, t0 + A].
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Since f satisfies the Lipschitz condition on C and K is bounded, it follows that the set F(K) is compact. We will show next
that if A is small enough, then F maps K into itself. Let

M = max
f s, φ(·), φ


s − τ


s, φ(·)

 : φ ∈ K

,

and

G = max{|g(t)| : t ∈ [α, t0]}.

Clearly both G and M are finite. Observe thatF(φ)(t) − g(t0)
 =

 t

t0
f

s, y(·), y


s − τ


s, y(·)


ds
 ≤ MA

for t ∈ [t0, t0 + A]. It is easy to see that if we select A so that MA < B, then F(K) is a subset of K . The Lipschitz condition on
f (3.1) implies that

M ≤ (L1 + L2)(G + B) +

f t0, g(·), gs − τ

s, g(·)

.
Let B = G and

D = 2(L1 + L2)B +

f t0, g(·), gs − τ

s, g(·)

.
We see thatMA < B is true if A < G/D. Choosing A = G/(2D) we can see that the initial value problem (1.1) with τ(t, y(·))
given by (3.2) has a solution y ∈ L([α, t0 + A], R). By simple induction argument, the solution exists on [α, t0 + nA] for all
positive integers n. This shows that the solution exists for all t > t0.

We now consider the uniqueness. Assume that the initial value problem (1.1) with τ(t, y(·)) given by (3.2) has two
solutions y1 and y2 in L([α, t0 + A], R). Put

F2 = max

y′

2(t) : t ∈ [t0, t0 + A]

.

Let v = y1 − y2 and

V (t) = ∥v∥[α,t] := sup

∥v∥[α,s] : α ≤ s ≤ T


.

Clearly v(t) = 0 for t ∈ [α, t0]. For t ≥ t0, we have

v(t) =

 t

t0


f

s, y1(·), y1


s − τ


s, y1(·)


− f


s, y2(·), y2


s − τ


s, y2(·)


ds.

The Lipschitz condition on f implies thatf s, y1(·), y1s − τ

s, y1(·)


− f


s, y2(·), y2


s − τ


s, y2(·)


≤ L1

y1(·) − y2(·)
+ L2

y1s − τ

s, y1(·)


− y2


s − τ


s, y2(·)

.
Let s1 = s − τ


s, y1(·)


and s2 = s − τ


s, y2(·)


. We havey1(s1) − y2(s2)

 ≤
y1(s1) − y2(s1)

+ y2(s1) − y2(s2)
.

Similarly, the Lipschitz condition on the delay function τ implies that

|y2(s1) − y2(s2)| ≤ F2|s1 − s2| ≤ F2LSV (s).

Hence for t ∈ [t0, t0 + A], since V (t) is a nondecreasing function we have

v(t)
 ≤

 t

t0


L1 + L2(1 + F2LS)


V (t)ds ≤


L1 + L2(1 + F2LS)


AV (t). (3.6)

Observe that if we select A < 1/(L1 + L2(1 + F2LS)) the inequality (3.6) implies that

V (t0 + A) ≤ [L1 + L2(1 + F2LS)]AV (t0 + A) < V (t0 + A)

if V (t0 + A) > 0. This contradiction implies that V (t0 + A) = 0 and therefore y1(t) = y2(t) for t ∈ [t0, t0 + A]. This local
uniqueness result can be extended to the whole interval [t0, ∞) by a simple contradiction argument. �
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4. A bound on the term ∥y − ȳ∥[α,T ]

Assume that the function f in (1.1) is continuous, satisfies the Lipschitz condition of the formf t, y1(·), u1


− f


t, y2(·), u2

 ≤ L1
y1 − y2


[α,t]

+ L2
u1 − u2

 (4.1)

with constants L1, L2 ≥ 0 for t ∈ [α, T ], y1, y2 ∈ C([α, T ], Rm), and u1, u2 ∈ Rm. Assume also that there exists a solution
operator S for (1.2)

τ

t, y(·)


= S


t, y(·),m


, (4.2)

which satisfies the Lipschitz conditionSt, y1(·),m− S

t, y2(·),m

 ≤ LS
y1 − y2


[α,t]

, (4.3)

with LS ≥ 0 for t ∈ [α, T ], and y1, y2 ∈ C([α, T ], Rm), and the condition

0 ≤ τ

t, y(·)


≤ t − α, t ∈ [t0, T ]. (4.4)

Observe that the inequality 0 ≤ τ(t, y(·)) in (4.4) and the Lipschitz condition (4.1) imply that f is a Volterra operator, i.e.,
it depends only on the past history of the solution y, and the inequality τ(t, y(·)) ≤ t − α in (4.4) implies that (1.1) is well
defined with initial function g specified on the interval [α, t0]. It can be verified that the condition (4.4) is satisfied for the
examples considered in Section 2.

In this section we derive a bound on the quantity ∥y − ȳ∥[α,T ], where y is the solution to (1.1)–(1.2) and ȳ is the solution
to (1.1), (1.3). Let S̄ be the solution operator for (1.3), i.e.,

τ̄

t, ȳ(·)


= S̄


t, ȳ(·),m


.

The exact expressions for the solution operator S defined in Section 3 and S̄ defined above are usually not known and in
applications an approximation to τ̄ (t, ȳ(·)) is usually computed by some iterative procedure applied to (1.3), for example
the bisection method. We have the following theorem.

Theorem 4.1. Assume that the function f is continuous and satisfies the Lipschitz condition (4.1) and that the solution operator
S given by (4.2) satisfies the condition (4.3). Assume also thatSt, ȳ(·),m− S̄


t, ȳ(·),m

 ≤ ε,

for some ε > 0 and t ∈ [α, T ]. Theny − ȳ


[α,t]
≤
ε
L


eL(t−t0) − 1


, t ∈ [α, T ], (4.5)

withε = Dε, where D and L are some nonnegative constants.

Proof. Subtracting the integral equations for y and ȳy(t) = y(t0) +

 t

t0
f

s, y(·), y


s − τ


s, y(·)


ds, t ∈ [t0, T ],

y(t) = g(t), t ∈ [α, t0],

and ȳ(t) = ȳ(t0) +

 t

t0
f

s, ȳ(·), ȳ


s − τ̄


s, ȳ(·)


ds, t ∈ [t0, T ],

ȳ(t) = g(t), t ∈ [α, t0],

then taking norms on both sides of the resulting equation, and using (4.1) and the triangle inequality we obtainy(t) − ȳ(t)
 ≤

 t

t0


L1
y − ȳ


[α,s]

+ L2
ys − τ


s, y(·)


− y


s − τ̄


s, ȳ(·)


+ L2

ys − τ̄

s, ȳ(·)


− ȳ


s − τ̄


s, ȳ(·)

ds, (4.6)

t ∈ [t0, T ]. Since the function y is Lipschitz continuous we getys − τ

s, y(·)


− ȳ


s − τ̄


s, ȳ(·)

 ≤ Ly
τs, y(·)− τ̄


s, ȳ(·)

,
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where Ly is Lipschitz constant of the solution y. We have alsoτs, y(·)− τ̄

s, ȳ(·)

 ≤

Ss, y(·),m− S̄

s, ȳ(·),m


≤

Ss, y(·),m− S

s, ȳ(·),m

+

Ss, ȳ(·),m− S̄

s, ȳ(·),m


≤ LS

y − ȳ


[α,s]
+ ε,

and substituting the above inequalities into (4.6) we obtainy(t) − ȳ(t)
 ≤

 t

t0


L
y − ȳ


[α,s]

+εds,
where

L = L1 + L2

1 + LyLS


, ε = Dε, D = L2Ly.

Since the right hand side of the above inequality is nondecreasing with respect to t we have alsoy − ȳ


[α,t]
≤

 t

t0


L
y − ȳ


[α,s]

+εds. (4.7)

Consider the integral equation

u(t) =

 t

t0


Lu(s) +εds.

Then it follows from the theory of integral inequalities, compare [18,19], thaty − ȳ


[α,t]
≤ u(t) =

ε
L


eL(t−t0) − 1


, t ∈ [α, T ],

which is our claim. �

In applications the parameterϵ will be related to the discretization parameter h,

h = max{hn : n = 0, . . . ,N}.

To be more precise, the following relation will holdϵ = O(hr) as h → 0,

where r is the order of the quadrature formula used to approximate the threshold operator P . This is further discussed in
Section 6.

5. A bound on the term ∥ȳ − ȳh∥[α,T ]

In this sectionwe derive a bound on the quantity ∥ȳ− ȳh∥[α,T ] using the generalization of the theory of one-stepmethods
for functional differential equations which was developed in [14].

It will be always assumed that the increment function Φh appearing in (1.4) satisfies the Lipschitz condition of the formΦh


tn, θ, y(·), u


− Φh


tn, θ, z(·), v

 ≤ M1

y − z


[α,tn+1]
+ M2

u − v

 (5.1)

with M1,M2 ≥ 0, for y, z ∈ C([α, tn+1], Rm) and u, v ∈ Rm. Observe that the norm of the difference y − z in the condition
(5.1) is taken over the interval [α, tn+1]. This allows us to include in our discussion the implicit methods. Taking this norm
over the interval [α, tn] only would correspond to explicit methods.

Define the local discretization error hnξ̄ (tn, θ, h) of the method (1.4) at the point tn + θhn as the residuum obtained by
replacing ȳh by ȳ and τ̄h by τ̄ in (1.4), i.e.,

ȳ(tn + θhn) = ȳ(tn) + hnΦh


tn, θ, ȳ(·), ȳ


tn − τ̄


tn, ȳ(·)


+ hnξ̄ (tn, θ, h), (5.2)

n = 0, 1, . . . ,N − 1, θ ∈ (0, 1], and put

ξ̄ (h) = sup
ξ̄ (tn, θ, h)

 : 0 ≤ n ≤ N, θ ∈ (0, 1]

.
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The method (1.4) is said to be consistent if

lim
h→0

ξ̄ (h) = 0.

Denote also by η̄(tn, θ, h) the error of the approximation τ̄h(tn+θ , ȳh(·)) to τ̄ (tn+θ , ȳh(·)), i.e.,

η̄(tn, θ, h) = τ̄

tn+θ , ȳh(·)


− τ̄h


tn+θ , ȳh(·)


,

n = 0, 1, . . . ,N, θ ∈ (0, 1], and put

η̄(h) = sup
η̄(tn, θ, h)

 : 0 ≤ n ≤ N, θ ∈ (0, 1]

.

Observe that this quantity is the error of the numerical procedure used to resolve the approximation (1.6) to the threshold
condition (1.3).

Assume that the solution ȳ to (1.1) and the solution operator S̄(t, ȳ(·),m) to (1.3) satisfy Lipschitz conditions with
constants Lȳ ≥ 0 and LS̄ ≥ 0, respectively, of the formȳ(t1) − ȳ(t2)

 ≤ Lȳ
t1 − t2

, (5.3)

t1, t2 ∈ [t0, T ], andS̄t, y(·),m− S̄

t, z(·),m

 ≤ LS̄
y − z


[α,t]

, (5.4)

t ∈ [α, T ], y, z ∈ C([α, T ], Rm). Denote the global error of the method (1.4) by ēh = ȳ − ȳh. This method is said to be
convergent if

lim
h→0

ēh[α,T ]
= 0.

For a fixed approximation P̄ to the operator P we have the following convergence theorem.

Theorem 5.1. Assume that the problem (1.1) has a unique solution on the interval [α, T ]. Assume also that the increment
function Φh satisfies the Lipschitz condition (5.1) and the function ȳ and the operator S̄ satisfy the Lipschitz conditions (5.3)
and (5.4), respectively. Assume also that the method (1.4) is consistent, i.e., limh→0 ξ̄ (h) = 0, the starting error g − gh satisfies
limh→0 ∥g − gh∥[α,t0] = 0, and that the error η̄(h) of the approximation τ̄h(tn, ȳh(·)) to τ̄ (tn, ȳh(·)) satisfies limh→0 η̄(h) = 0.
Then the method (1.4) is convergent and we have the following error boundēh[α,T ]

≤

ēh[α,t0]
+ σ(h)


eQ (T−t0), (5.5)

where Q is some nonnegative constant and limh→0 σ(h) = 0. Moreover, if ∥ēh∥[α,t0] = O(hp), ξ̄ (h) = O(hp) and η̄(h) = O(hp)
as h → 0 then the method is convergent with order p, i.e., ∥ēh∥[α,T ] = O(hp) as h → 0.

Proof. Subtracting (1.4) from (5.2), then taking norms on both sides of the resulting equation and using the condition (5.1)
we obtainēh(tn + θhn)

 ≤

ēh(tn)+ hnM1

ēh
[α,tn+1]

+ hnM2

ȳtn+θ − τ̄

tn+θ , ȳ(·)


− ȳh


tn+θ − τ̄h


tn+θ , ȳh(·)

+ hnξ̄ (h),

n = 0, 1, . . . ,N, θ ∈ (0, 1]. This leads toēh(tn + θhn)

 ≤

ēh
[α,tn]

+ hnM1

ēh
[α,tn+1]

+ hnM2

ȳtn+θ − τ̄

tn+θ , ȳ(·)


− ȳ


tn+θ − τ̄h


tn+θ , ȳh(·)


+ hnM2

ȳtn+θ − τ̄h

tn+θ , ȳh(·)


− ȳh


tn+θ − τ̄h


tn+θ , ȳh(·)

+ hnξ̄ (h),

n = 0, 1, . . . ,N, θ ∈ (0, 1]. Using (5.3) and the definition of ēh we getēh(tn + θhn)

 ≤

ēh
[α,tn]

+ hnM1

ēh
[α,tn+1]

+ hnM2Lȳ
τ̄tn+θ , ȳ(·)


− τ̄h


tn+θ , ȳh(·)

+ hnM2

ēh
[α,tn+1]

+ hnξ̄ (h). (5.6)
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It follows from (5.4), the definition of the solution operator S̄, and the definition of η̄(h) thatτ̄tn+θ , ȳ(·)

− τ̄h


tn+θ , ȳh(·)

 ≤

S̄tn+θ , ȳ(·)

− S̄


tn+θ , ȳh(·)


+

τ̄tn+θ , ȳh(·)

− τ̄h


tn+θ , ȳh(·)

 ≤ LS̄
ēh

[α,tn+1]
+ η̄(h).

Substituting the above inequality into (5.6) leads toēh
[tn,tn+1]

≤

ēh
[α,tn]

+ hnM1

ēh
[α,tn+1]

+ hnM2(1 + LȳLS̄)
ēh

[α,tn+1]
+ hn


ξ̄ (h) + M2Lȳη̄(h)


.

Since the sequence ∥ēh∥[α,tn] is nondecreasing with respect to n the last inequality leads toēh
[α,tn+1]

≤

ēh
[α,tn]

+ hnM
ēh

[α,tn+1]
+ hn


ξ̄ (h) + M2Lȳη̄(h)


,

or 
1 − hnM

ēh
[α,tn+1]

≤

ēh
[α,tn]

+ hn

ξ̄ (h) + M2Lȳη̄(h)


,

where the constantM is defined byM = M1 + M2(1 + LȳLS̄). IfM > 0 then

0 <
1

1 − hnM
≤ 1 + hnCM for hn < h∗

:= min
 1
M

,
C − 1
CM


,

where C > 1 is an arbitrary constant. Hence, it follows thatēh
[α,tn+1]

≤


1 + hnQ

ēh
[α,tn]

+ hn

ξ(h) +η(h)

, (5.7)

n = 0, 1, . . . ,N, 0 < hn < h∗, where the constant Q and the quantitiesξ(h) andη(h) are defined by

Q = CM, ξ(h) = (1 + h∗Q )ξ̄ (h), η(h) = M2L(1+h∗Q )ȳη̄(h).

If M = 0 then (5.7) is true with

Q = 0, ξ(h) = ξ̄ (h), η(h) = M2Lȳη̄(h),

and without any restriction imposed on hn. Using the standard induction arguments the inequality (5.7) leads toēh
[α,tn]

≤

ēh
[α,t0]

n−1
j=0


1 + hjQ


+

ξ(h) +η(h)
 n−1

j=0

hj

n−1
i=j+1


1 + hiQ


,

n = 0, 1, . . . ,N . It follows from (1.5) that

n−1
j=0

hj

n−1
i=j+1


1 + hiQ


≤

n−1
j=0

hj

n−1
i=0


1 + hiQ


≤ (T − t0)

n−1
j=0


1 + hjQ


and we obtainēh

[α,tn]
≤

ēh
[α,t0]

+ (T − t0)
ξ(h) +η(h)

 n−1
j=0


1 + hjQ


.

The last inequality and the bound

n−1
j=0


1 + hjQ


< e(h0+···+hn−1)Q ≤ e(h0+···+hN−1)Q < e(T−t0)Q

lead toēh
[α,T ]

<

ēh
[α,t0]

+ (T − t0)
ξ(h) +η(h)


eQ (T−t0)

which is equivalent to (5.5) with σ(h) = (T − t0)(ξ(h) +η(h)). It is also clear that ∥ēh∥[α,t0] = O(hp), ∥ξ̄ (h)∥ = O(hp) and
∥η̄(h)∥ = O(hp) imply the convergence of order p. This completes the proof. �
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6. Continuous Runge–Kutta methods

Continuous Runge–Kutta methods for ordinary differential equations have been investigated by Zennaro [20,21], and
Owren and Zennaro [22,7]. The adaptations of these methods to various forms of functional differential equations is
discussed in the monograph [23]. We formulate this extension for a somewhat less general class of problems than that
discussed in Section 1, namely the class of delay-differential equations of the formy′(t) = f


t, y(t), y


t − τ


t, y(·)


, t ∈ [t0, T ],

y(t) = g(t), t ∈ [α, t0],
(6.1)

α ≤ t0, where f : [t0, T ] × Rm
× Rm

→ Rm is continuous and satisfies the Lipschitz conditionf t, y1, u1

− f


t, y2, u2

 ≤ L1
y1 − y2

+ L2
u1 − u2

 (6.2)

with constants L1, L2 ≥ 0 for t ∈ [α, T ], y1, y2, u1, u2 ∈ Rm, and the function τ(t, y(·)) satisfies (1.2). Observe that
the specific examples discussed in Section 2 are of the form (6.1), (1.2). As in Section 1 we also consider the discrete
approximation (1.3) to the threshold condition (1.2). Following the approach of [23] explicit continuous Runge–Kutta
methods adapted to (6.1), (1.3) take the following form

Ȳi = ȳh(tn) + hn

i−1
j=1

aijF̄j,

F̄i = f

tn + cihn, Ȳi, ȳh


tn + cihn − τ̄h


tn + cihn, ȳh(·)


,

ȳh(tn + θhn) = ȳh(tn) + hn

s
j=1

bj(θ)F̄j,

(6.3)

i = 1, 2, . . . , s, n = 0, 1, . . . ,N−1, θ ∈ (0, 1]. Here, τ̄h(tn+cihn, ȳh(·)) are approximations to the solutions τ̄ (tn+cihn, ȳh(·))
of the discrete threshold conditions

P̄

tn + cihn, ȳh(·), τ̄


tn + cihn, ȳh(·)


= m.

Observe that this equation corresponds to (1.6) with θ = ci, i = 1, 2, . . . , s. The increment function Φh for this method is
given by

Φh(t, θ, y, u) =

s
j=1

bj(θ)F̄j(t + cjhn, yj, uj),

where

y =

y1
...
ys

 ∈ Rms, u =

u1
...
us

 ∈ Rms.

Observe that (6.3) is a nonlinear system for Ȳi or F̄i if the delay is smaller than the stepsize of integration. This is the case for
example (2.1)–(2.4) at the beginning of integration. Such systems will be solved by functional iterations.

The convergence and order of convergence of the method (6.3) can be analyzed using Theorem 5.1 in Section 4 and
Theorem 6.1.2 in [23]. First of all, it follows from (6.2) that the increment function Φh of the method (6.3) satisfies the
inequalityΦh


t, θ, y, u


− Φh


t, θ, ȳ, ū

 ≤

s
j=1

bj(θ)
f (t + cjhn, yj, uj) − f (t + cjhn, ȳj, ūj)

.
This inequality implies that Φh satisfies the Lipschitz condition of the formΦh


t, θ, y, u


− Φh


t, θ, ȳ, ū

 ≤ M1|||y − ȳ||| + M2|||u − ū|||, (6.4)

where M1 = BL1,M2 = BL2, B = sup
s

j=1

bj(θ)
 : θ ∈ (0, 1]


, and for x = [xT1, x

T
2, . . . , x

T
s ]

T
∈ Rms the norm ||| · ||| is

defined by |||x||| = max{∥xi∥ : 1 ≤ i ≤ s}. Since τ̄h(tn + cihn, ȳh(·)) depends only on the discrete number of the values of
the function ȳh it follows from Theorem 6.1.2 in [23] that the method (6.3) preserves the order of the underlying continuous
Runge–Kutta method for ordinary differential equations

y′(t) = f

t, y(t)


, t ∈ [t0, T ],

y(t0) = y0.
(6.5)
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Hence, if the local discretization error of the underlying Runge–Kuttamethod for (6.5) tends to zero as h → 0, h = max{hn :

n = 0, . . . ,N}, then the local discretization error ξ̄ (h) of themethod (6.3) for (6.1), (1.3) has also this property. If we assume,
in addition, that limh→0 ∥g − gh∥[α,t0] = 0 and the error η̄(h) of the approximations τ̄h(tn + cihn, ȳh(·)) to τ̄ (tn + cihn, ȳh(·))
satisfies limh→0 η̄(h) = 0 then it follows from (6.4) and Theorem 5.1 that the method (6.3) is convergent to the solution ȳ of
(6.1), (1.3). Moreover, if the underlying Runge–Kutta method for (6.5) has order p, ∥g − gh∥[α,t0] = O(hp) and η̄(h) = O(hp)
then the method (6.3) is convergent with order p.

Our algorithm for (1.1)–(1.2) which will be described in the next section is based on continuous Runge–Kutta method
of order p and discrete method of order q = p − 1. Such embedded pairs were constructed in [7] using the strategy based
on the minimization of the error constant of continuous Runge–Kutta method. The coefficients of embedded pair of order
p = 4 and q = p − 1 = 3 derived in [7] are given by

0
1
6

1
6

11
37

44
1369

363
1369

11
17

3388
4913 −

8349
4913

8140
4913

13
15 −

36764
408375

767
1125 −

32708
136125

210392
408375

1 1697
18876 0 50653

116160
299693
1626240

3375
11648

ȳh(tn + θhn) b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ)

ŷn+1
101
363 0 −

1369
14520

11849
14520 0 0

, (6.6)

with

b1(θ) = −
866577
824252

θ4
+

1806901
618189

θ3
−

104217
37466

θ2
+ θ,

b2(θ) = 0,

b3(θ) =
12308679
5072320

θ4
−

2178079
380424

θ3
+

861101
230560

θ2,

b4(θ) = −
7816583
10144640

θ4
+

6244423
5325936

θ3
−

63869
293440

θ2,

b5(θ) = −
624375
217984

θ4
+

982125
190736

θ3
−

1522125
762944

θ2,

b6(θ) =
296
131

θ4
−

461
131

θ3
+

165
131

θ2.

(6.7)

In (6.6) ȳh(tn + θhn) corresponds to continuous Runge–Kutta method with continuous weights bi(θ) given in (6.7), andyn+1
corresponds to discrete method which is used for error estimation.

7. Description of the algorithm

To integrate (1.1) we use the continuous Runge–Kutta method with coefficients listed in (6.6) and (6.7). After computing
ȳh(tn+1) andyn+1 we compute the estimate of the local discretization error at the point tn+1 according to the formula

est(tn+1) =
ȳh(tn+1) −yn+1

.
Once this estimate is computed the stepsize hn from tn to tn+1 is accepted if

est(tn+1) ≤ tol,

where tol is a prescribed accuracy tolerance. Anewstepsizehn+1 from tn+1 to tn+2 is then computed according to the standard
formula

hn+1 = δ hn


tol

est(tn+1)

1/5

,

where δ is a safety coefficient chosen as δ = 0.8. If

est(tn+1) > tol

the step is rejected and we restart the integration at the point tn with the new stepsize h̄n = 0.5hn. Following the approach
of [24] the initial stepsize h0 is computed from the formula

h0 = min


0.1|T − t0|,

tol1/5f t0, y(·), yt0 − τ

t0, g(·)




.
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In addition to continuous Runge–Kutta method to resolve (1.1) we also need to implement a solver to compute
approximations τ̄h(t, ȳh(·)) to the solution τ̄ (t, ȳh(·)) to the nonlinear equation

P̄

t, ȳh(·), τ̄


t, ȳh(·)


= m, (7.1)

where P̄ is a discrete approximation to P . For this purpose we will use the bisection method. The implementation of this
algorithm for specific examples discussed in Section 2 requires the computation of approximations to the integral of the
form  t

τ

ρ(s)I(s)ds (7.2)

in the first example described in Section 2 or t

t−τ

p

x(s)


ds (7.3)

in the second example described in Section 2. Here, τ stands for the approximation to τ(t, I(·)) in the first integral and
approximation to τ(t, x(·)) in the second integral. If τ ≤ t0 or t − τ ≤ t0 these integrals can be written in the form t0

τ

ρ(s)I(s)ds +

 t

t0
ρ(s)I(s)ds

or  t0

t−τ

p

x(s)


ds +

 t

t0
p

x(s)


ds.

The approximations to the first integrals in the above two relations are computed using the subroutine quad in Matlab with
the same accuracy tolerance tol used by continuous Runge–Kuttamethod. The approximations to the second integrals in the
above two relations are computed by composite Simpson rule using the grid generated by continuous Runge–Kuttamethod,
with the exception that the approximations on the intervals [tn, tn + cihn] are computed using approximations to I(tn) or
x(tn). If τ > t0 in (7.2) or t − τ > t0 in (7.3) these integrals can be written in the form t

τ

ρ(s)I(s)ds =

 tq

τ

ρ(s)I(s)ds +

 tn

tq
ρ(s)I(s)ds +

 t

tn
ρ(s)I(s)ds

or  t

t−τ

p

x(s)


ds =

 tq

t−τ

p

x(s)


ds +

 tn

tq
p

x(s)


ds +

 t

tn
p

x(s)


ds.

The first integrals on the right hand side of the above two relations are then approximated by the Simpson rule tq

τ

ρ(s)I(s)ds ≈
tq − τ

6


ρ(tq−1 + θ1hq−1)I(tq−1 + θ1hq−1) + 4 ρ(tq−1 + θ2hq−1)I(tq−1 + θ2hq−1) + ρ(tq)I(tq)


or  tq

t−τ

ρ(s)I(s)ds ≈
tq − t + τ

6


p

x(tq−1 + θ1hq−1)


+ 4 p


x(tq−1 + θ2hq−1)


+ p


x(tq)


.

Here, q ≥ 1 is the integer such that τ ∈ (tq−1, tq] or t − τ ∈ (tq−1, tq],

θ1 =
τ − tq−1

tq − tq−1
or θ1 =

tq − t + τ

tq − tq−1
,

and θ2 = (1 + θ1)/2. The approximations to I(tq−1 + θ1hq−1), I(tq−1 + θ2hq−1), x(tq−1 + θ1hq−1) and x(tq−1 + θ2hq−1)
are computed by continuous Runge–Kutta method (6.3). The approximations to the integrals over the interval [tq, tn] are
computed by composite Simpson rules tn

tq
ρ(s)I(s)ds ≈

n−1
s=q

ts+1 − ts
6


ρ(ts)I(ts) + 4 ρ


ts+ 1

2


I

ts+ 1

2


+ ρ(ts+1)I(ts+1)


or  tn

tq
p

x(s)


ds ≈

n−1
s=q

ts+1 − ts
6


p

x(ts)


+ 4 p


x

ts+ 1

2


+ p


x(ts+1)


.
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Fig. 1. Solution S(t) and I(t) versus t to the problem (2.1)–(2.4) computed with tol = 10−6 .

The approximations to the integrals over the interval [tn, t] are computed by t

tn
ρ(s)I(s)ds ≈ (t − tn)ρ(tn)I(tn) or

 t

tn
p

x(s)


ds ≈ (t − tn)p


x(tn)


.

If τ or t − τ is greater than tn then we use the approximations t

τ

ρ(s)I(s)ds ≈ (t − τ)ρ(tn)I(tn) or
 t

t−τ

p

x(s)


ds ≈ τp


x(tn)


.

In the implementation of our algorithm we have to compute approximations

τ̄h(tn + cihn, ȳh(·))

to the solution τ̄ (tn + cihn, ȳh(·)) of (7.1) for n = 0, 1, . . . , i = 2, 3, . . . , s. We use the bisection method on the interval
τ̄h

tn + ci−1hn, ȳh(·)


− 1τ̄ , τ̄h


tn + ci−1hn, ȳh(·)


+ 1τ̄


,

where we have chosen 1τ̄ = tol1/5. Since cs = 1 we also define

τ̄h

tn+1, ȳh(·)


= τ̄h


tn + cshn, ȳh(·)


to start computations on the interval

τ̄h

tn+1 + ci−1hn+1, ȳh(·)


− 1τ̄ , τ̄h


tn+1 + ci−1hn+1, ȳh(·)


+ 1τ̄


,

where hn+1 is a new stepsize. The initial approximation τ̄h(t0, ȳh(·)) to τ̄ (t0, ȳh(·)) is computed by solving Eq. (7.1) for t = t0.
This equation takes the form t0

τ̄ (t0,I0(·))
ρ(s)I0(s)ds = m

for Example 1 and t0

t0−τ̄ (t0,x0(·))
p

x0(s)


ds = m

for Example 2. Here, I0(s) and x0(s) are given initial functions, compare Section 2.

8. Numerical experiments

We have applied the algorithm described in Section 6 to the examples of threshold problems (2.1)–(2.4) and (2.6)–(2.7)
discussed in Section 2. The selection of numerical results for problem (2.1)–(2.4) is presented in Figs. 1–3.

These figures correspond tom = 0.1, σ = 1, S0 = 10, ρ(t) = exp(−t2), r(t) = 0.5(1 + sin(5t)), and I0(t) defined by

I0(t) =

0.4(1 + t), −1 ≤ t ≤ 0,
0.4(1 − t), 0 ≤ t ≤ 1,
0, otherwise.

It can be verified that the condition (2.3) implies t0 = 0.302817. In Fig. 1 we have plotted the approximations to the solution
S(t) and I(t) to the problem (2.1)–(2.2) computedwith the tolerance tol = 10−6. In Fig. 2we have plotted the approximation
to the delay function τ(t) = τ(t, I(·)) for t ≥ t0. The stepsize pattern of our algorithms is presented in Fig. 3, where the
rejected steps aremarked by the symbol ‘×’. Therewere nr = 105 rejected steps out of n = 383 steps for this error tolerance.

The selection of numerical results for problem (2.6)–(2.7) is presented in Figs. 4–6. These figures correspond to the
parameter values r = 1, K = 1, b = 10, d = 0.5, dj = 1,m = 1, the function p(x) = x, and the initial functions
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Fig. 2. The function τ(t) = τ(t, I(·)) versus t for t ≥ t0 for the problem (2.1)–(2.4) computed with tol = 10−6 .

Fig. 3. Stepsize pattern of the algorithm applied to the problem (2.1)–(2.4) with tol = 10−6 .

Fig. 4. Solution x(t), y(t) and yj(t) versus t to the problem (2.6)–(2.7) computed with tol = 10−4 .

Fig. 5. The function τ(t) = τ(t, x(·)) versus t for the problem (2.6)–(2.7) computed with tol = 10−4 .

Fig. 6. Stepsize pattern of the algorithm applied to the problem (2.6)–(2.7) with tol = 10−4 .

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Z. Bartoszewski et al. / Journal of Computational and Applied Mathematics 279 (2015) 40–56 55

Fig. 7. Function τ(t) versus t for p(x) = x and t ∈ [0, 300] obtained with tol = 10−4 by direct resolution of threshold condition.

Fig. 8. Function τ(t) versus t for p(x) = x and t ∈ [0, 300] obtained with tol = 10−4 by differentiating threshold condition.

x0(t) = 0.3 and y0(t) = 1. In Fig. 4 we have plotted the approximations to the solution x(t), y(t) and yj(t) to the problem
(2.6)–(2.7) computed with the tolerance tol = 10−4. In Fig. 5 we have plotted the approximation to the delay function
τ(t) = τ(t, x(·)). The stepsize pattern of our algorithms is presented in Fig. 6, where the rejected steps are marked by the
symbol ‘×’. There were nr = 34 rejected steps out of n = 610 steps for this error tolerance.

We have also implemented the algorithm,which is based on differentiating the threshold condition, and then integrating
the resulting system of delay differential equations by continuous Runge–Kutta method. However, the disadvantage of this
approach, as comparedwith the approach based on the direct resolution of threshold condition, is that now the computation
of τ(t) is subject to propagated errors and is, in general, less accurate for the same tolerances. In contrast, in our approach,
where we resolve directly the threshold condition, we can compute the delay function τ(t) to any accuracy at any point
t . To illustrate this point we have integrated problem (2.6)–(2.7) for t ∈ [0, 300] with the function p(x) = x using the
approach based on the direct resolution of the threshold condition (2.7) with the tolerance tol = 10−4 and this resulted
in the function τ(t) plotted in Fig. 7. This requires n = 1801 steps and there were nr = 108 rejected steps. This is a
correct behavior of the function τ(t). Then we differentiated the threshold condition (2.7) to obtain (2.8) and integrated the
resulting system of delay differential equations by the same continuous Runge–Kutta method of order four with the same
accuracy tolerance tol = 10−4 and this resulted in the function τ(t) plotted in Fig. 8. This requires n = 912 step and there
were nr = 97 rejected steps. So the integration by numerical method for delay differential equations is more efficient but
much less accurate. We can recover the behavior similar to that in Fig. 7 using the continuous Runge–Kutta method with a
much smaller tolerance. For example, using tol = 10−8 leads to the function τ(t) plotted in Fig. 9. But now the integration
requires n = 21761 steps and there were nr = 7649 rejected steps. There are also other problems with the approach based
on differentiating the threshold condition and integrating the resulting system by numerical methods for delay differential
equations. For some tolerances and functions p(x) the numerical method for delay differential systems was not able to
integrate the resulting system until the end of the interval of integration. For example for tol = 10−4 and p(x) = 1.5x
the integration was terminated at tend = 32.4165 and for tol = 10−4 and p(x) = 2x the integration was terminated at
tend = 19.6658. In contrast, using our approach we were still able to integrate the problem on the whole interval [0, 300].
The resulting function τ(t) corresponding to tol = 10−4 and p(x) = 2x is plotted in Fig. 10. This integration requires
n = 1360 steps and there were nr = 144 rejected steps. Observe very sharp gradients which suggest that this function may
be discontinuous. This does not prevent our algorithm from computing it with a high accuracy.

9. Concluding remarks

We described a new variable stepsize algorithm for the numerical solution of threshold problems in epidemics and
population dynamics. This algorithm is based on embedded pair of continuous Runge–Kutta method of order p = 4 and
discrete Runge–Kutta method of order q = p − 1 = 3 which is used for the estimation of local discretization errors
which form a basis for adaptive selection of stepsizes. The integral threshold conditions are approximated by the composite
Simpson rule and resolved using the bisection method. In contrast to previous approaches to the numerical solution of
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Fig. 9. Function τ(t) versus t for p(x) = x and t ∈ [0, 300] obtained with tol = 10−8 by differentiating threshold condition.

Fig. 10. Function τ(t) versus t for p(x) = 2x and t ∈ [0, 300] obtained with tol = 10−4 by direct resolution of threshold condition.

this problem, our algorithm is applicable if the solution τ(t) to the threshold condition has sharp gradients which leads
to stiffness, or even if τ(t) is not differentiable. The results of numerical experiments on examples of threshold problems
from epidemics and population dynamics are presented which illustrate the accuracy, reliability and robustness of the new
algorithm.
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