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Abstract 

The popularity of the studies is getting further on the flexomagnetic (FM) response of nano-

electro-magneto machines. In spite of this, there are a few incompatibilities with the 

available FM model. This study indicates that the accessible FM model is 

inappropriate when considering the converse magnetization effect that demonstrates the 

necessity and importance of deriving a new FM relation. Additionally, the literature has 

neglected the converse FM coefficient in the Lifshitz invariant inside the free energy 

constitutive relation. 

This fact inspires us to endeavor and conduct a new characteristic formulation for static 

analysis of axially compressed piezomagnetic nanobeams comprising the FM effect. This 

novel FM model is competent and suitable for various boundary conditions, 

encompassing analytical, semi-analytical, and numerical solving strategies. However, based 

on the previous FM equation established with respect to Euler-Bernoulli and 

Timoshenko beams, the 
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governing equations are ill-posed due to the corresponding energy density. Despite that, this 

error will not remain in the finalized equations in the present model by conjecturing a gradient 

of the magnetic field and a different formulation. Moreover, the inverse FM parameter will 

appear in the magnetic field relation. 

As the literature reported, non-uniform deformed piezomagnetic structures are capable of 

presenting more outstanding flexomagneticity. In actuality, a non-uniform elastic strain 

appears as a response to the magnetic field gradient (converse effect) that causes this study to 

deduce the nanobeam with higher-order shear deformations. Furthermore, the local governing 

equations will be transferred into the nonlocal phase according to the nonlocal differential, 

particularly nonlocal integral elasticity which itself is a strong nonlocality. Through this 

theory, and in regard to the converse FM impact, an analytical expression is applied for 

computing critical buckling loads within several ends conditions of the nanobeam. Our present 

results and achievements will hopefully be an effective contribution to theoretical studies on 

the mechanics of intelligent nanostructures. 

Keywords: New flexomagnetic model; Higher-order beam; Nonlocal integral theory; 

Buckling; Analytical solution 

1    Introduction 

Flexoeffect has been described as a property resulting from electro-magneto-elastic coupling in 

micro/nano-electro-mechanical systems (MEMS/NEMS) [1, 2]. The appearance of 

magnetization in relation to the inhomogeneous elastic effect is the most prevalent 

interpretation of the direct flexoeffect. On the other hand, the effect refers to the emergence of 

elastic strain in respect to the order parameter gradient. The non-uniform strain or magnetization 

gradient locally breaks the inversion symmetry of atomic crystalline in spite of centrosymmetry. 

It is worth noting that flexo-coupling has an impact on both the system's responsiveness to 
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external stimuli and the inherent gradient of order parameters. The flexomagnetic (FM) effect, 

which results from the link of the magnetic field with elastic strain gradient (direct effect) and 

magnetic field gradient with elastic strain (converse effect), is an excellent example in this 

respect. Materials with non-centrosymmetric crystals have the capability of inducing magnetic 

potential, and this happens in piezomagnetic materials. Non-uniform shape materials can be 

constructed by exploiting flexomagneticity, indeed. Regardless of the non-existence of 

piezomagneticity, such non-uniformity builds large strain gradients and produces magnetism. 

Notwithstanding, less attention has been merged to the flexomagnetic effect bearing in mind 

that macroscale is unable to create substantial strain gradients [3-8].  

More excitingly, flexomagneticity is an inherently scale-dependent occurrence that can 

appear extraordinarily in nanoscale in light of the fact that strain gradients are measurably and 

noticeably manifested in minute sizes. The literature has shown and proven that the manner of 

deformation has a substantial impact on the behavior of materials due to the scales. First, the 

rearrangement of the exchange of momentum between bulk boundary space and the free 

nanoparticles is a prominent process of deformation at the nanoscale. Dislocation motion is a 

frequent process of deformation at the microscale. Finally, deformation patterning occurs at the 

macroscale when strain is transferred from one part of the deforming structure to another. On 

this point, it is necessary to include the size-dependent influences in equilibrium equations of 

the first two cases causing different material behaviors.  

Another kind of generalized continuum theory is nonlocal elasticity. The nonlocal theory 

integrates points' long-range interactions in a continuum media in terms of physical 

interpretation. For example, charged molecules or atoms in a solid have this many long-range 

interactions. Some studies have unveiled that the flexomagnetic response of a nanostructure is 

influenced by nonlocal effects, and this efficacy is to more distinguished FM effect. On this 

account, the FM effect can support sensors and actuators in small size very well, resulting in 
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highly efficient intelligent tools. Eventually, we take care of nonlocal and strain gradient effects 

in this study for investigating mechanical characteristics of the nanostructure. 

There are no vast studies focused on the mechanics of smart structures, including 

flexomagneticity. Eliseev et al. [7] estimated spontaneously flexoelectric and flexomagnetic as 

two already known flexoeffect phenomena in nanomaterials. Lukashev and Sabirianov [8] 

studied the direct flexomagnetic effect using strain gradient tensor by adding additional terms 

in the free energy expression. In the practical works with physical examples, Sidhardh and Ray 

[9] investigated the flexomagnetic effect in both inverse and direct flexoeffects for a clamped-

free supported (C-F) Euler-Bernoulli beam (thin cantilever beam) based on an exact solution. 

However, the free energy density function employed in their work neglected magnetic field 

gradient and a converse FM parameter and simply comprised a non-zero strain gradient only. 

In order to study converse flexoeffect, we seriously need to include a gradient of the magnetic 

field beside an inverse FM parameter. Their model is well-consistent for a direct flexomagnetic 

effect. Even though they attempted to make conflict direct and reverse FM effects utilizing 

dissimilar magnetic boundary conditions over the beam surfaces, their model does not include 

a converse FM parameter in it. The deflection equation for the cantilever beam in direct and 

converse modes only contains a direct FM parameter. Zhang et al. [10] followed the model 

conducted by Sidhardh and Ray and developed it for several exact boundary conditions. Their 

study clearly shows that while the converse flexomagnetic effect is analyzed, the FM parameter 

will vanish in the deflection equation of beams with simply supported-simply supported (S-S), 

and clamped-clamped (C-C) boundary conditions, and lack of any FM coefficients (direct or 

converse) is quite apparent. The deflection relation consisted of a direct FM parameter when 

using cantilever conditions. It means there is another problem with such the converse FM 

model. Their direct FM model is totally well-conditioned due to including a direct FM 

parameter in all boundary conditions. Sladek et al. [11] revised the free energy density for the 
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direct FM effect by introducing two independent FM parameters. The C-F nanobeam has been 

investigated by taking into account the Timoshenko assumptions. The prescribed model has 

been solved by the supposition of exact boundary conditions. Their direct FM model is entirely 

well-stated, from our knowledge. 

Furthermore, in a series of works and a mathematical formalization similar to the two 

earlier works, Malikan, Eremeyev, and their co-authors studied piezomagnetic-flexomagnetic 

micro/nanostructures in abundant internal and environmental conditions for various beam and 

plate-like geometrical shapes [12-23]. All their studies have been performed by means of 

mathematical modelling, and the models have been solved using analytical, numerical, and 

semi-analytical solutions. The basic energy relation utilized by them has also been taken from 

Sidhardh and Ray's work. However, all their published works have solely been done for the 

converse FM effect. Except for the many valuable findings they obtained, their models had also 

eliminated any FM parameter in the final governing equations as same as Zhang et al. even 

when they solved numerically and semi-analytically, the C-C, C-S, C-F, and S-S end conditions. 

However, in some works, the FM parameter existed in the equilibrium equations [20, 21]. This 

may reveal that analytical and numerical solving methods can be inconsistent for the reverse 

flexomagnetic model derived by Sidhardh and Ray. What can be concluded from the above-

explained literature is that the available FM model is proper for a direct FM effect while the 

exact solution is applied.  

This work will conquer the two mentioned discussable issues found in the literature. First, 

we will derive a new energy density function in which the gradient of the magnetic field will 

appear and exist. By doing this, a converse FM parameter becomes visible in the constitutive 

equations. Moreover, from the authors of this paper's point of view, the second issue might not 

relate to boundary conditions’ type or solution technique. This problem is hidden in the 

deformation and displacement fields. Actually, we have tested many conditions to realize when 
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the FM parameter can remain in the final governing equations. We noticed that if the axial strain 

is inhomogeneous and non-uniform, both direct and converse FM parameters can stay in the 

final equations no matter which type of solution has been accomplished. Such a non-uniform 

strain can be generated on the basis of geometrical or material compositions. The first case can 

employ a higher-order shear deformation effect in the beam model. On the other side, the second 

case can be, for example, assuming inhomogeneous composite such as functionally graded 

structures [20, 21]. 

The paper's layout follows the next framework. It starts via the second section; we will 

derive the mathematical models. Section 2.1 is dedicated to showing the previous FM model 

and its error. Section 2.2 presents the new thermodynamic potential for the general 

flexomagneticity. In addition, section 2.3 will transfer the model into a nonlocal phase based 

on the integral (section 2.3.1) and differential (2.3.2) types of nonlocal elasticity. The third 

section demonstrates an analytical solution process counting several boundary conditions. 

Further, section 4 validates the solution process. By section 5, the computable results are going 

to be attained in a comprehensive consideration. The sixth and last section will gather the 

achievements of this study point by point. 

2    Mathematical modelling 

Consider a cubic-like composite beam at the x-z coordinate system that occupies a volume of 

[0, Lx]×[-0.5h, 0.5h] (Figure 1). The represented beam is settled in a transverse magnetic field 

which varies linearly through the thickness dimension. 
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Figure 1 A rectangular continuum meta beam deployed in a magnetic field 

2.1    Previous FM model 

Running after [9, 10], let summarily review the available mathematical modelling for FM 

structures. The model is restricted by an initial isothermal condition and minute deformations. 

The first-order magnetic field tensor (H) and displacement (u) variables are depicted by vector 

values forms. 

( ) ( ),u u x  H=H x=
                                                                                                                      (1) 

in which we defined x  as a position vector.  
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In the next, the free energy density of the FM model is expressed as [9], 

( )1 1

1 1 1
, , : : :

2 2 2

:

H H a H C g r

H q H f

       

 

 = = −   + + +

−  − 

                                                  (2) 

and the variables demonstrated in Eq. (2) are developed as, 

Elastic strain: ( )1

2
 =  + Tu u                                                                                                                        (3a) 

Strain gradient:  =                                                                                                                          (3b) 

In addition to these, the fourth-order elasticity tensor (C), third-order piezomagnetic tensor (q), 

the sixth-order strain gradient tensor (g), the fourth-order direct flexomagnetic tensor (f), the 

second-order magnetic permeability tensor (a), and the fifth-order strain-strain gradient 

coupling tensor (r) are shown. Moreover, “∙”, “:”, and “⋮” stand for scalar (inner) products in 

spaces of vectors, second-order and third-order tensors, respectively. Finally, let us note that   

denotes the 3D nabla operator.  

It is worthy to remind that no one can find the gradient of the magnetic field in Eq. (2). 

The magnetic potential ( ) can be formulated with the magnetic field as,  

H = −                                                                                                                                      (4) 

The characteristic equation for the flexomagnetic structures in the static conditions can be 

derived based on the variational principle as, 

 =V UdV W                                                                                                                                        (5) 
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in which W means the work of external forces, and V defines the domain's volume. Moreover, 

the first variation of free energy (here, strain energy (U)) over the volume V has been written 

for free energy density. 

It is now supposed that, 

  



=  +  
V V

W F u t uds                                                                                                                                  (6) 

in which the surface traction and external mass loads are revealed by t and F, respectively.  

Let us apply the calculus of variational technique to obtain the max and min of Eq. (5) as 

( ) 0F   −  + =
                                                                                                                              (7a) 

0B =                                                                                                                                     (7b) 

where the first-order magnetic flux tensor has been associated with B. 

Let now introduce the constitutive relations in the following, 

1 :C r H q  



= = + − 


                                                                                                                  (8a) 

1 : :g r H f  



= = + − 


                                                                                                      (8b) 

1 :B a H q f
H

 


= − =  + +


                                                                                                             (8c) 

We expand the above relations by considering relatively thick beams respecting non-

uniform shear deformation assumptions generating the non-uniform axial strain. For this 

purpose, the following displacement field is investigated [24] 
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( ) ( ) ( )1 ,
dw

z f z x
d

x  z
x

u = − +                                                                                                                          (9a) 

( ) ( )3 , =u x z w x                                                                                                                              (9b) 

where using the Reddy function ( ) ( )2 21 4 3f z z z h= −  leads to a higher-order shear 

deformation beam. 

Having found the elastic strains using linear Lagrangian strain, we proceed to find hyper 

strain as well [25-27], 

1

2

ji
ij

j i

uu

x x


 
= +    

                                                                                                                          (10) 

Then, 

( )
2

2xx

d w d
z f z

dx dx


 = − +                                                                                                                          (11a) 

( )xz f z =                                                                                                                            (11b) 

( )
2

2

xx
xxz

d d w d
f z

dz dx dx

 
 = = − +                                                                                             (11c) 

where the prime ( )  means the first derivative with respect to z. 

Letting alone the three-dimensional flexomagnetic characteristics equations, the one-

dimensional FM relations can be displayed below, 

11 31xx xx zC q H = −                                                                                                                          (12a) 

xz xzG =                                                                                                                              (12b) 
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31 31xxz xxz zg f H = −                                                                                                                           (12c) 

33 31 31z z xx xxzB a H q f = + +                                                                                                 (12d) 

It is now expected to find equilibrium equations and non-classical boundary conditions by 

doing Eq. (13), 

( ) 0 + =U W                                                                                                                                   (13) 

where  

( )xx xx xz xz xxz xxz z z

V

U B H dV       = + + −                                                                               (14) 

Having applied the variational technique gives us the governing equations and connected 

boundary conditions parts by parts as, 

1 21 2
Mag MagMech MechU U U U U    = + + +                                                                                                   (15) 

where 

2 2

1 2 2
0

xL
Mech x xxz x x

x

d M d T dV dR
U w Q dx

dx dxdx dx
  

    
= + + − −       

     
                                                     (16a) 

( )( ) ( )2
0

xL
Mech

x xxz x x

d
U M T w V R

dx
  

 
= − + + + 
 

                                                                   (16b) 

2

1

0 2

xL h
Mag z

h

dB
U dzdx

dz
 

−

= −                                                                                                      (16c) 
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( )

/2

2

0 /2

x

h
L

Mag
z

h

U B dx 

−

=                                                                                                            (16d) 

The parameters involved in Eq. (16) are stress resultants embracing the bending moment 

and hyper stress as follows, 

/2

/2

h

x xx

h

M z dz
−

=                                                                                                                               (17a) 

( )
/2

/2

h

x xx

h

V f z dz
−

=                                                                                                                               (17b) 

( )
/2

/2

h

x xz

h

Q f z dz
−

=                                                                                                                               (17c) 

/2

/2

h

xxz xxz

h

T dz
−

=                                                                                                                                    (17d) 

( )
/2

/2

h

x xxz

h

R f z dz
−

=                                                                                                                               (17e) 

Let remind the equation defining connectivity between magnetic field component and 

magnetic potential as follows, 

0z

d
H

dz


+ =                                                                                                                                  (18) 

The magnetic force transferred from lateral magnetic field appeared on both ends, and this 

force produces thermodynamic work on the system as, 

0

0

xL

x

d w dw
W N dx

dx dx




 
=  

 
                                                                                                            (19) 
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The discussion continues by determining the magnetic potential values on the external top 

and bottom surfaces of the beam [9], 

2


 
 + = 
 

h
                                                                                                                             (20a) 

0
2

 
 − = 
 

h
                                                                                                                               (20b) 

Roughly speaking, let us assume that the magnetic potential changes linearly according to 

the following hypothesis in the lateral dimension and varies through the length. By these 

assumptions, a closed-circuit condition can also be deemed. Besides, the spatial magnetic 

potential, which relates to the variation of the magnetic potential in line with the length, is here 

a variable of deflection. We are now able to devote the expression for magnetic potential 

through thickness and length of the beam by means of Eqs. (12d), (16c), (18), and (20), 

2 2 2 2 4 2 3
31 31

2 2 2
33 33

5 4

2 8 2 48 3 23

q fz h d w z z h d z d h
z z

a dx a dx hdx h h

          
 = − − − − − + − + +                      

       (21) 

As easily seen, Eq. (21) can be satisfied by suppositions made in Eq. (20), but it excludes 

the converse FM effect, which, in turn, cannot be a well-posedness model. Indeed, Eq. (20) is 

the magnetic conditions for the inverse magnetic effect; however, as Eq. (2) did not contain any 

reverse FM impact, so then Eq. (21) is derived in an unwell state.  

Eq. (21) can be derived based on the ( )2h   =  consistent for a direct FM model. 

Later, Eq. (22) stems from Eqs. (18) and (21), 

( ) ( )( )
2

31 31 31
2

33 33 33

3 2
3

z

q q fd w d
H z f z f z

a a a dx hdx

  
= − + − − 

 
                                                    (22) 

Thereafter, Eq. (12) becomes extracted by accessing Eq. (11), and (22), 
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( ) ( )( )

( )

2 22
31 31 31 31

2
33 33 33

2
31

11 2

3 2
3

xx

q q q fd w d
z f z f z

a a a dxdx

qd d w
C f z z

dx hdx






  
= − − + −   

   

 
+ − +  

 

                                                 (23a) 

( )xz Gf z =                                                                                                                             (23b) 

( ) ( ) ( )( )
22

31 31 31
31 2

33 33

2
31 31 31

2
33

3 2
3

xxz

f q fd d w d
g f z f z f z

dx a a dxdx

f q fd w
z

a hdx

 




  
 = − + + −    

    

− +

                              (23c) 

( ) ( )( ) ( )

( )

2 2
31

31 31 312 2

2
33

31 2

3 2
3

z

fd w d d d w
B zq q f z f z q f z z

dx dxdx dx

ad d w
f f z

dx hdx

 



  
= − + − + −       

 
+ − −  

 

                     (23d) 

And then, Eq. (17) can also be pulled out as, 

( ) ( )
2

11 12 13 14 152x

d w d
M I I I I I

dx dx


= − + + + +                                                                                                   (24a) 

16xQ I =                                                                                                                                (24b) 

( )
2

17 18 19 110 1112xxz

d w d
T I I I I I

dx dx


= − + + + +                                                                                        (24c) 

( ) ( )
2

13 14 112 113 114 1152x

d w d
V I I I I I I

dx dx


= − + + + + +                                                                     (24d) 

( ) ( )
2

15 18 116 117 118 1192x

d w d
R I I I I I I

dx dx


= − + + + + +                                                                                      (24e) 
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where letters in Eq. (24) can be rescripted by Appendix A, 

The strain gradient part ( 31g ) is also an unknown variable; however, one can have the 

benefit of the availability of the given generalized first strain theory of elasticity [28]. 

Subsequently, by introducing an internal length parameter for the material, the strain gradient 

elasticity tensor will be simplified, 

( ) ( )

( ) ( )

( ) ( ) ( )

1

2 3

4 5

jklmni ij kl ik jl mn im ln in lm jk

ij km ln kn lm ik jm ln jn lm il jk mn

il jm kn jn km im jn kl jl kn in jm kl jl km

g g

g g

g g

         

            

              

 = + + +
 

 + + + + +
 

 + + + + + +
 

                                        (25) 

where klmn
c  means elasticity modulus, li

  denotes Kronecker delta, and l  is being a material 

length scale parameter (SGLS). The ig  would be, 

( ) ( )

( ) ( ) ( )

2 2 2

1 2 5 2 0 1 2

2 2 2 2

3 2 5 4 1 2 5 1 2

2
,  27 4 15

3 30

1
8 2 ,  6 ,  3 .

3 3 3

G
g g g g l l l

G G
g g g g l l g l l

= − + = − −

= + = + = −

                                                             (26) 

We assume that 0 1 2l l l l= = = . Moreover, the heretofore used strain gradient hypothesis 

lacks the required literature in order to evaluate the shear modulus ( ) 11 2 1G C = +  , which 

is a scalar. 

It is already known that, 

1

0


=
= 


ij

,   if  i j,

,   if  i j.
                                                                                                                        (27) 

Therefore, 311311 31jklmnig g g= = . Then,  
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31 3 42g g g= +                                                                                                                                 (28) 

The variational formulation has so far been performed on the system's energy. Afterward, 

imposing Eq. (16) brings about the following relations, which are associated with axially 

buckling of a piezomagnetic-flexomagnetic (PFM) beam, 

2 2 2
0

2 2 2
0; 0x xxz

x

d M d T d w
w  N

dx dx dx
 = + + =                                                                                                 (29a) 

( )0; 0x x x

d
 Q V R

dx
 = − + =                                                                                                             (29b) 

Then, using Eq. (24), one obtains 

( ) ( )
4 3 2

0
11 12 17 13 14 15 18 19 1104 3 2

0x

d w d d w
I I I I I I I I I N

dx dx dx


− + + + + + + + + + =                           (30a) 

( ) ( )
3 2

13 14 15 18 112 113 114 116 117 118 163 2
0

d w d
I I I I I I I I I I I

dx dx


+ + + − + + + + + + =                  (30b) 

Irrespective of the solution process, as observed, the converse FM parameter did not appear 

inside the final equation. Although the model works, it elucidates that the gradient of the 

magnetic field has been excluded during operating with mathematical modeling. It seems that 

this model covers a direct FM effect incorporating strain gradient and direct FM tensors, even 

though the magnetic boundary conditions have been carried out for a converse FM impact. 

Overall, it can be expressed that this model is in an ill-conditioning posture.  

Not to mention that, if ( )f z  has been eliminated, Eq. (30) diminishes to 

( ) ( )4 4 0 2 2
11 12 17 0xI I I d w dx N d w dx + + − =

 
 in which the FM parameter will not exist due 

to strain uniformity. 
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2.2    New fundamental FM model 

In most recently published scientific articles, the expression for the thermodynamic potential 

of a PFM system has been expressed similar to Eq. (2). However, this hypothesis can result in 

the absence of reverse flexomagnetic tensor in the final coupled equations while considering 

the converse FM effect. Thus, this can be the reasoning for the ill-posedness of the FM model 

conducted by [9, 10]. In fact, Eq. (2) enables us to consider a direct FM effect only due to 

having a strain gradient. The magnetic field gradient shall be included in the free energy relation 

to consider a converse FM effect. Here, we are supposed to add a gradient of the magnetic field 

in the fundamental free energy density function based on the general form of Lifshitz invariant 

and modify it as (Note that here we simply use ij , kH  and their gradients to develop the free 

energy relation), 

2

1 1 1

2 2 2

1

2

1 1

2 2

ij lm
ijkl ij kl kl k l ijk ij k ijklmn

k n

j ijkl i k l
ijklm ij ijkl ijk i ijklm

m j l k k m

ij k
ijkl l ijkl ij

k l

C a H H q H g
x x

HH H H
r b s H

x x x x x x

H
f H h

x x

 
  


 




 
 = − − +

 

    
+ − − −

     

 
− −

 

                                                (31) 

where the employed tensors are defined as, 

ijklf : 4th order direct flexomagnetic tensor 

ijklh : 4th order converse flexomagnetic tensor 

ijklmr : 5th order strain-strain gradient coupling tensor 

ijks : 3rd order magnetic field-magnetic field gradient coupling tensor 

ijklm : 5th order strain gradient-magnetic field gradient coupling tensor 

ijklmng : 6th order strain gradient tensor 
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ijklb : 4th order magnetic field gradients coupling tensor 

ijkq : 3rd order piezomagnetic tensor 

kla : 2nd order magnetic permeability tensor 

ijklC : 4th order pure elasticity tensor 

This novel equation stands for the general PFM model and has not been already existed in 

the literature. For example, for centrosymmetric materials, ijkq  and ijklm  are taken to be zero. 

However, for such materials, ijklf  and ijklh  still exist. 

This equation incorporates a magnetic field gradient essential to examining a reverse FM 

effect. When an external magnetic potential actuates a non-centrosymmetric smart structure, its 

crystals produce mechanical deformations due to both the magnetic field and its gradient. These 

phenomena are called converse piezomagnetic (PM) and flexomagnetic (FM) effects. However, 

when the intelligent structure is mechanically deformed, its crystals will be magnetized and 

induce an internal short magnetic field. The mechanical strain and its gradient create magnetic 

potential, called direct PM and FM effects. What is more, according to the literature [9], the 

difference between direct and converse effects are in magnetic boundary conditions only, which 

cannot be correct. It means we severely need to involve the magnetic field gradient in the energy 

density function.  

The following new constitutive equations are derived from Eq. (31),   

2 kl k
ij ijkl kl ijk k ijklm ijkl

ij m l

H
C q H r h

x x


 



 
= = − + −
  

                                                                          (32a) 

2 lm l
ijk ijklmn ijklm ij ijklm ijkl l

ij n m

k

H
g r f H

x x

x


  



 
= = + − −

   
  

 

                                                     (32b) 
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2 ijk
ij ijkl ijk i ijklm ijkl ij

l ki

j

H
T b s H h

x xH

x


 


= = − − − −

  
  
  

                                                               (32c) 

2 j ij
i kl k ijkl ij ijk ijkl

i k k

H
B a H q s f

H x x




 
= − = + + +

  
                                                                           (32d) 

There is no available literature presenting a value for ijklmr , ijks , ijklm , and ijklb  tensors 

for piezomagnetic materials. Henceforward, we have to ignore them for the following 

formulation. Furthermore, as we are going to study the reverse FM influence only, then we 

eliminate the direct FM parameter at the end. Let us now simplify Eq. (32) for a one-

dimensional beam as 

11 31 31
z

xx xx z

dH
C q H h

dz
 = − −                                                                                                (33a) 

xz xzG =                                                                                                                              (33b) 

31 31xxz xxz zg f H = −                                                                                                                        (33c) 

31zz xxT h = −                                                                                                                              (33d) 

33 31 31z z xx xxzB a H q f = + +                                                                                                    (33e) 

As a consequence, the variation of strain energy density would be 

z
xx xx xz xz xxz xxz z z z

V

dH
U T B H dV

dz
        

 
= + + − − 

 
                                                  (34) 

where 
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2 2

1 2
0 2

xL h
Mag z zz

h

dB d T
U dzdx

dz dz
 

−

 
= − +   

 
                                                                                                      (35a) 

/2

2
/20

xL h
Mag zz

z
h

dT
U B dx

dz
 

−

 
= +  

 
                                                                                                           (35b) 

Doing precisely the equivalent mathematical efforts required to obtain Eq. (21) but here 

by means of Eqs. (18), (20), (33e), and (35a), provides, 

2 2 2 2 4 2 3
31 31 31

2 2 2
33 33

5 1 4

2 8 2 48 33

2

q f hz h d w z z h d z d
z

a dx a dxdx h h

h
z

h

 



       −
 = − − − − − + −            

         

 
+ + 

 

              (36) 

where Eq. (36) includes the inverse FM effect. Moreover, it is obvious that Eq. (36) will not 

violate the Maxwell general electrostatic equation (

y yx xz z
H HH HH H

H i j k
y z z x x y

       
 = − + − + −    

         

), and thus it can represent a 

static magnetic field. 

Then, based on Eq. (36), the axial and transverse components of the magnetic field are 

obtainable as, 

( ) ( )( )
2

31 31 31 31

2
33 33 33

1
3 2

3
z

q q f hd w d
H z f z f z

a a a dx hdx

   −
= − + − −  

   
                                                         (37) 

In contrast to the previous FM model, which included a magnetic part in the coupled 

governing equation [9], the present model contains two dependent equations. By means of Eqs. 

(11), (33), and (37), local stress and higher-order stresses are expanded as, 
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( ) ( )( )

( )

( ) ( )

2 22
31 31 31 31 31

2
33 33 33

2 2
31 31

11 312 2
33

31 31 31
31

33 33

3 2
3

xx

q q q f hd w d
z f z f z

a a a dxdx

q qd d w d w
C f z z h

dx h adx dx

q f h d
h f z f z

a a dx








   −
= − − + −    

    

 
+ − + −  

 

  −
 + +  

  

                                   (38a) 

( ) ( ) ( )( )
2

31 31 31 31
31 312

33 33

2
31 31 31

2
33

1
3 2

3
xxz

f q f hd d w d
g f z f z f f z

dx a a dxdx

f q fd w
z

a hdx

 




    −
 = − + + −     

    

− +

            (38b) 

( )
2

31 2zz

d d w
T h f z z

dx dx

 
= − −  

 
                                                                                                               (38c) 

At this stage, filling in Eq. (17) with Eq. (38) leads to, 

( ) ( )
2

21 22 23 24 25 2110 21112x

d w d
M I I I I I I I

dx dx


= − + + + + + +                                                          (39a) 

( ) ( )
2

23 24 2112 212 213 214 2113 2114 2152x

d w d
V I I I I I I I I I

dx dx


= − + + + + + + + +                                      (39b) 

26xQ I =                                                                                                                                (39c) 

( )
2

27 28 29 210 2112xxz

d w d
T I I I I I

dx dx


= − + + + +                                                                            (39d) 

( ) ( )
2

28 2115 216 217 218 2192x

d w d
R I I I I I I

dx dx


= − + + + + +                                                                 (39e) 

where the numerical parameters can be found in Appendix B. 
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It has become quite obvious that substituting the above-mentioned stress resultants into the 

governing equations (Eq. (29)) will cause the advent of the converse FM parameter inside it. 

( )

( )

3

23 24 25 28 29 210 2110 2111 3

4 2
0

21 22 27 4 2
0x

d
I I I I I I I I

dx

d w d w
I I I N

dx dx


+ + + + + + +

− + + + =

                                                                          (40a) 

( )

( )

2

212 213 214 216 217 218 2113 2114 2

3

23 24 28 2112 2115 263
0

d
I I I I I I I I

dx

d w
I I I I I I

dx





− + + + + + + +

+ + + + + + =

                                                 (40b) 

As flexomagneticity is dominant in nanoscale, it is supposed to develop Eq. (40) on a 

nanodomain. Then, it is now time to involve the nonlocal effect into the model. Here, the strong 

form of nonlocality, which means the nonlocal integral elasticity approach of Eringen, will be 

utilized. To begin with, the constitutive equation of the two phases local/nonlocal integral 

model can be expressed in the next section.  

2.3    Nonlocal phase 

Hitherto, all the formulations have been done in local media. Thereafter, the mathematical 

model will enter the nonlocal phase with respect to Eringen's nonlocal elasticity theory for the 

homogeneous deformable solid [29]. It is one of the non-classical continuum theories whose 

characteristic equation is in an integral form. This fundamental equation is assumed to consider 

the nonlocal effect, the philosophy of discontinuity of the material environment, and 

consequently, the discontinuity of the mechanical field (stress and strain tensors). In fact, this 

theory introduces the forces between atoms in a continuous body as an effective parameter to 

overcome the problems.  
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In the classical method, when the beams and plates have been examined on a large scale, 

it is deemed that the distance between the atoms is minimal compared to the object's length, so 

the effect of the characteristic length on the relations is not considered. However, in the case of 

nanobeams, due to the small length of the beam, the effect of characteristic length cannot be 

ignored, and this element enters the mechanical analyses as an influential factor. 

The given nonlocal constitutive relation is re-shown as, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11 31 31

0

,  
 

    = − − − 
 


xL

z
xx xx z

dH
x k x x C z x q z H x h z x dx

dz
                          (41) 

When the nonlocal parameter value reaches zero, the kernel function, which is symmetric 

regarding x, has converged to the Dirac delta. Nonlocal modulus usually meets small values, 

and the essence of nonlocal theory enables us to draw the atomic lattice dynamics 

approximately as [30], 

( )1 1
, e

2

x x

Dk x x 


−
−

 − =                                                                                                               (42) 

in which   depicts the nonlocal parameter pertaining to both material constant ( 0e ), and an 

internal length scale ( a ), in the frame 0 = e a . 

Therefore, Eq. (42) can be obtained by merging both local and nonlocal phases, which will 

be exhibited later. 

2.3.1 Nonlocal integral model 

In Eringen's theory of nonlocal elasticity, on the material medium, the stress tensor at a point 

depends on a strain tensor on the whole domain by an integral equation. In other words, the 

main structural equation of the theory of nonlocal elasticity is expressed integrally [30-41]. 
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The literature underscored some discordances between Eringen's nonlocal differential and 

integral-types for the case of cantilever beams [35]. Accordingly, it is rigorously proposed to 

take advantage of the integral model. Hence, the integral elasticity model is here re-structured 

in local/nonlocal phases by exploiting Eq. (42) as the second kind of Fredholm integral-type 

theory, 

( ) ( ) ( )2
1

0
2

xL x s

xxt x x e s ds


  


−
−

= +                                                                                              (43) 

where 1  and 2  are weight factors and comply with two material's phases. Their values should 

satisfy 1 2 1 + =  when 1 0   and 2 0  . In some references, 1  has been ignored. Obviously, 

the pure nonlocal phase is attained by 1 20,  1 = = , and 1 21,  0 = =  recovers the local part 

participation. A hybrid part can also be obtained by 2 1 11  ; 0 1  = −   . Each of these items 

will be probed in the results section. 

Eq. (43) can be expanded by replacing Eq. (38a), 

( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( )

2 22

31 31 2
11 31 1 2 2

33 33 0

2

31 31 31 31 31 31 31 31
11 31

33 33 33 33

2
1

0

2

3 2
3

2

x

x

L x s

xx

L x s

d w x d w sq q
t x z C z h e ds

a a dx ds

q q f h h q f h
C f z f z f z f z h f z

a a a a

d x d s
e ds

dx ds










 




−
−

−
−

  
= − + + +    

  

    − −
  + + − + +     

    

 
 +

 




31 2

1

0
2

xL x s
q

e ds
h


 




−
− 

+ +  
  

 


         (44) 

The nonlocal resultants can be defined below, 

x xx
s

M zt ds=                                                                                                                                  (45a) 

( )x xx
s

V f z t ds=                                                                                                                                  (45b) 
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And putting Eq. (44) into Eq. (45) gives, 

( )
( ) ( )

( )
( ) ( )

2 2

2
21 22 1 2 2

0

2
23 24 25 2110 2111 1

0

2

2

x

x

L x s

x

L x s

d w x d w s
M I I e ds

dx ds

d x d s
I I I I I e ds

dx ds










 




−
−

−
−

 
= − + + 

 
 

 
+ + + + + + 

 
 





                                              (46a) 

( )
( ) ( )

( )
( ) ( )

2 2

2
23 24 2112 1 2 2

0

2
212 213 214 2113 2114 1 215

0

2

2

x

x

L x s

x

L x s

d w x d w s
V I I I e ds

dx ds

d x d s
I I I I I e ds I

dx ds










 




−
−

−
−

 
= − + + + 

 
 

 
+ + + + + + + 

 
 





                                     (46b) 

Consequently, the consistent and well-conditioning piezomagnetic nano model consisting 

of inverse flexomagneticity can be presented as follows, 

( )
( ) ( )

( )
( ) ( )

( )

4 22
2

21 22 1 4 2 2
0

3 2
2

23 24 25 2110 2111 1 3 2
0

3 4 2
0

28 29 210 273 4 2

2

2

0

x

x

x sL

x sL

x

d w x d w sd
I I e ds

dx dx ds

d x d sd
I I I I I e ds

dsdx dx

d d w d w
I I I I N

dx dx dx










 






−
−

−
−

  
  − + + +
  

  

  
  + + + + +
  

  

+ + + − + =



                          (47a) 

( )
( ) ( )

( )
( ) ( )

( ) ( )

3 2
2

23 24 2112 1 3 2
0

2
2

212 213 214 2113 2114 1 2
0

2 3

216 217 218 28 2115 262 3

2

2

0

x

x

x sL

x sL

d w x d w sd
I I I e ds

dxdx ds

d x d sd
I I I I I e ds

dx dsdx

d d w
I I I I I I

dx dx










 







−
−

−
−

  
  + + +
  

  

  
  − + + + + +
  

  

− + + + + + =



                     (47b) 

where 
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2

0 0

31

2

h

x

h

N q dz N
h



−

= −                                                                                                                            (48) 

where we refused any supposition regarding nonlocal effects on the axial force. However, some 

researchers supposed it in the nonlocal form [30].  

As seen, this new model contains reverse flexomagnetic parameter ( 31h ), together with the 

piezomagnetic influence. Thus, regardless of the solution process which is going to be applied, 

this modified FM model can deserve to present the converse flexomagneticity well. 

It normally requires an arduous mathematical process to compute eigenvalues for an 

integral operator; then, the equivalent differential theory has been used instead. The entity of 

the square integrable solution (  2 ,L a b ) invokes the first kind Fredholm integral equation, 

which has been transferred into the first kind of Volterra integral equations here through 

calibrating the integral limit. This issue basement divides the nonlocal integral into two parts 

as [31],  

( ) ( ) ( )      
−

− − −

= +  
x sb x bx s x s

a a x

e s ds e e s ds e e s ds                                                                            (49) 

Then, implying the above-mentioned relation on the Eq. (47) provides a desirable solution. 

2.3.2 Nonlocal differential model 

In this subsection, the integral-type of the nonlocal model will be shifted to its nonlocal 

differential equivalent. Broad attention has been received from researchers for the nonlocal 

differential model to study the mechanics of nanoparticles [42-66]. This model has extended 

the main concept of classical mechanics, and it makes a possibility to predict the mechanical 

response of nanostructures more or less. Hence, this model has been further popular for the sake 
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of straightforwardly and facility. However, it is merely an approximate for the integral-type and 

incorporates a weak nonlocality. In the following, the nonlocal stress-strain elasticity relation 

is expressed, 

2
2

112
1 xx xx

d
C

dx
  

 
− = 

 
                                                                                                              (50) 

Next, let re-establish the stress and higher-order stress resultants as, 

/2

/2


−

= 
h

x xx

h

M zdz                                                                                                                              (51) 

( )
/2

/2

h

x xx

h

V f z dz
−

=                                                                                                                               (52) 

Following the procedure, one allows extending the resultants mentioned above as follows, 

( ) ( )
2 2

2
21 22 23 24 25 2110 21112 2

x
xx

d M d w d
M I I I I I I I

dxdx dx


= − + + + + + +                                      (53a) 

( ) ( )
2 2

2

23 24 2112 212 213 214 2113 2114 2152 2

x
x

d V d w d
V I I I I I I I I I

dx dx dx


= − + + + + + + + +                           (53b) 

Let us re-write Eq. (29) and re-organize them on the basis of Eq. (53), 

2 2 2
0

2 2 2

x xxz
x

d M d T d w
N

dx dx dx
= − −                                                                                                                     (54a) 

2 2

2 2

x x xd V dQ d R

dx dx dx
= −                                                                                                                      (54b) 

Then, Eq. (54) enables to simplify Eq. (53) as, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


( ) ( )

( )

4 3 2 2
2 0

27 28 29 210 21 224 3 2 2

23 24 25 2110 2111

x x

d w d d w d w
M I I I I N I I

dx dx dx dx

d
I I I I I

dx






 
= − − + + + + − + 

 

+ + + + +

                                  (55a) 

( ) ( )

( ) ( )

4 3
2

26 28 2115 216 217 2184 3

2

23 24 2112 212 213 214 2113 2114 2152

x

d d w d
V I I I I I I

dx dx dx

d w d
I I I I I I I I I

dx dx

 




 
= + + − + + 

 

− + + + + + + + +

                                         (55b) 

It is now possible to supply differential-type nonlocal stability equation for the PFM nano 

scaled beam as, 

( ) ( )

( )

6 4 2 5
2 2 0 0 2

27 21 22 27 28 29 2106 4 2 5

3

23 24 25 28 29 210 2110 2111 3
0

x x

d w d w d w d
I N I I I N I I I

dx dx dx dx

d
I I I I I I I I

dx


  



− + + + + − + +

+ + + + + + + + =

                              (56a) 

( ) ( )

( )

( )

5 3
2

28 2115 23 24 28 2112 21155 3

2
2

26 212 213 214 216 217 218 2113 2114 2

4
2

216 217 218 264
0

d w d w
I I I I I I I

dx dx

d
I I I I I I I I I

dx

d
I I I I

dx







 

− + + + + + +

− + + + + + + + +

+ + + + =

                                         (56b) 

The presence of reverse FM is obviously indicated by way of 31h  in the above equations. 

3    Solution strategy 

The way to look for numerical examples for integral model (Eq. (47)) and differential one (Eq. 

(56)) is here undertaken with an analytical method. According to the results conducted by [31], 

the boundary condition is a potent element to illustrate disagreements between differential and 

integral models of nonlocality. Thus, we establish numerical results for simply-supported (S) 

and Clamped (C) end constraints pursuing the conditions coming along below, 
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• Simply-supported (S): 0 at =0, x xw M x L= = =  

• Clamped (C): 0 at =0, xw x L= =  

Having satisfied with the corresponding permissible expression well-used earlier [67, 68], 

( ) ( )
1



=

= m m

m

w x W X x                                                                                                                  (57a) 

( ) ( )
1

m m

m

x X x


=

=                                                                                                                   (57b) 

in which the differentiation with reference to x is denoted with (  )´. And, 

( ) ( ) ( ) ( ) ( )( )1 2 3 4sin sinh cos coshm m m m m mX x K x K x K x K x   = + − +                                (58) 

Also, mW  and m  describe unknown Fourier coefficients mathematically. Coefficients iK  are 

apparently shown in detail by assisting Table 1.   

Table 1 

Definition of variables appeared in Eq. (58) concerning various boundary conditions (BCs). 

BCs iK  m  m  

S-S 
1 2

3 4

1,  0,  

0,  0 

K K

K K

= =

= =
 

xm L  1 

C-S 
1 2

3 4

1,  1,  

1,  1

K K

K K

= = −

= = −
 tan tanhm m =  

( ) ( )

( ) ( )

sin sinh

cos cosh

m x m x

m x m x

L L

L L

 

 

+

+
 

C-C 
1 2

3 4

1,  1,  

1,  1

K K

K K

= = −

= = −
 cos cosh 1m m  = −  

( ) ( )

( ) ( )

sin sinh

cos cosh

m x m x

m x m x

L L

L L

 

 

−

−
 

Inserting Eq. (57) into Eq. (56) leads to 
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( ) ( )

( )

2 2 0 0 2

27 6 27 21 22 4 2 28 29 210 5

23 24 25 28 29 210 2110 2111 3 0

m x m x m m

m

I W N I I I W N W I I I

I I I I I I I I

      



− + + + + − + + 

+ + + + + + + +  =
                         (59a) 

( ) ( )

( )

( )

2
28 2115 5 23 24 28 2112 2115 3

2
26 212 213 214 216 217 218 2113 2114 2

2
216 217 218 4 26 1 0

m m

m

m m

I I W I I I I I W

I I I I I I I I I

I I I I

  

 

  

− + + + + + +

− + + + + + + + + 

+ + +  +  =

                                         (59b) 

where the variables i  and i  can be seen in Appendix C. Then, 

( )

23 24 25

2 0
28 29 210 327

4

2110 211121 22

0 2

2 27 6 28 292

5

210

23 24

28 3

2112 2115

2

28 2115 5

x

x

I I I

I I IN I

I II I

N I I I

I

I I

I

I I

I I




  
 



 

  + +
  
+ + +    +  

−       + ++ +     
   
+ +  +   −    +  

 +
 
+ 

 
+ + 


− +

( )2

216 217 218 4

2

26 212 213

26 1 214 216 217 2

218 2113 2114

0
m

m

W

I I I

I I I

I I I I

I I I

 



 

 
 
 
 
 
 
 

  
=       + +

   
    + +
    
 + − + + +   
    

+ + +       

                                         (60) 

where determinant of coefficients computes bifurcation buckling loads. 

4    Results comparison 

Let us compare our beam model solution technique with some reliable references. To function 

with this, the results of [43, 69-71] have been carried out tabulating Tables 2-4. The data in 

Table 2 have been collected on account of the different BCs from ref [69]. Accordingly, the 

results of this reference for the C-C and C-S conditions are a little different from those of ours. 

The reason may be in different beam models and solution processes. However, going to Table 

3 which has been added by additional references [70, 71] to complete this validation path, 

displays a good agreement for the aforesaid BCs. In addition, comparison in Table 4 has been 
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performed for higher-order beam theories, and this table can more appropriately corroborate 

the present results in light of the fact that the present results have been calculated for a higher-

order beam model. The agreements in all the shown tables permit the extraction of the principal 

results and discussions. 

Table 2. Dimensionless critical buckling load (
2

11N NL C I= , Lx/h=10, C11=30e6, υ=0.3, 

h=varied) 

τ2 
[69] 

Present 

NDM 

S-S C-S C-C S-S C-S C-C 

0 9.86960 20.19073 39.47842 9.62275 19.5968 36.5449 

0.000025 9.86958 20.17045 39.43858 9.62273 19.5967 36.5445 

0.0025 9.8672 19.9804 39.0485 9.62044 19.5872 36.5115 

0.25 9.6319 17.5368 32.9505 9.39669 18.6815 33.4852 

0.5 9.4055 16.2445 29.5604 9.18101 17.8479 30.8984 

1 8.9830 14.4205 24.9354 8.77805 16.3856 26.7633 

2 8.2426 12.0418 19.3589 8.06969 14.0787 21.1126 

3 7.6149 10.4517 15.9592 7.46711 12.3412 17.4321 

4 7.0761 9.2784 13.6240 6.94827 10.9854 14.8444 

5 6.6085 8.3647 11.9070 6.49685 9.89807 12.9256 

Table 3. Dimensionless critical buckling load (
2

11N NL C I= , Lx/h=10, C11=30e6, υ=0.3, 

h=varied) 

τ2 

C-S C-C 

Present 

NDM 
[70] 

Present 

NDM 
[70] [71] 

0 19.5968 20.1997 36.5449 39.4786 39.4781 

0.25 18.6815 19.2206 33.4852 35.9320 35.1000 

1 16.3856 16.7988 26.7633 28.3044 30.3811 

4 10.9854 11.1699 14.8444 15.3068 - 
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Table 4. Dimensionless critical buckling load (
2

11N NL C I= , Lx/h=10, C11=30e6, υ=0.3, 

h=varied) 

τ2 

[43] 

S-S 

Present 

NDM 

S-S TBT RBT LBT 

0 9.6227 9.6228 9.6630 9.6228 

0.5 9.1701 9.1702 9.2085 9.1810 

1 8.7583 8.7583 8.7949 8.7780 

2 8.0364 8.0364 8.0700 8.0696 

3 7.4244 7.4245 7.4555 7.4671 

4 6.8990 6.8991 6.9279 6.9482 

5 6.4431 6.4432 6.4701 6.4968 

5    Results presentation 

Let us commence the results argues by assuming that ijkl ijklh f= −  and ignoring the direct FM 

parameter in Eqs. (47) and (56). Moreover, materials properties for the utilized piezomagnetic 

structure are tabulated by dint of Table 5 [9-23]. Finally, it is germane to note that all the 

numerical results have been given for the first buckling mode. 

Table 5. Properties of the piezomagnetic ceramic nanobeam 

 

 

 

We here abbreviate the nonlocal integral and differential models with NIM and NDM, 

respectively. First, with the help of Figures 2a-2d, we examine the difference between the 

results of the assumed beam-like structure in the forms of piezomagnetic-flexomagnetic (PFM), 

piezomagnetic with the removal of flexomagnetic effect (PM), and simple beam without any 

CoFe2O4 

C11=286 GPa, ν=0.32 

f31=10-9 N/A 

q31=580.3 N/A.m 

a33=1.57×10-4 N/A2 
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magnetic effect (NB). Figures 2a and 2b are prepared for the boundary condition of two hinge 

edges, and Figures 2c and 2d are provided for the boundary condition of two fixed ends. In 

Figures 2a and 2c, the local phase of the integral model is ignored, and the nonlocal phase is 

investigated only. A superficial look at all figures shows that the NIM, like the NDM, leads to 

the softness of the material, and here the critical buckling load is reduced by increasing the 

nonlocal parameter. However, the reduction slope of the results is observed differently for both 

integral and differential models. It should be cognizant that to find the results for τ=0 (locality), 

the integral model is implemented in the local phase mode. This is true in the rest and the whole 

results of the article. In addition, here, it is also specified analogously to the literature that the 

PFM beam is more rigid than the PM beam and the NB one, respectively. This means that the 

flexomagnetic impact leads to the greater rigidity of the material, which has been proven in all 

literature. What is more, the figures demonstrate that the nonlocal sensitivity of the pure NIM 

is more than NDM by a change in the nonlocal coefficient. A deeper look at the figures proves 

that in PFM beam analysis, the difference between the integral and differential models results 

is reduced, and the largest difference is seen in the NB beam. Thus, it can be argued that the 

FM effect will reduce the importance of using the integral model. 
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Figure 2a. Nonlocal parameter vs. buckling load for different small scale beams and assigned 

conditions including ψ=1e-4A, Lx=10h, l=0.05h, ξ1=0, ξ2=1, S-S. 

 

Figure 2b. Nonlocal parameter vs. buckling load for different small scale beams and assigned 

conditions including ψ=1e-4A, Lx=10h, l=0.05h, ξ1=0.5, ξ2=0.5, S-S. 

 

Figure 2c. Nonlocal parameter vs. buckling load for different small scale beams and assigned 

conditions including ψ=1e-4A, Lx=10h, l=0.05h, ξ1=0, ξ2=1, C-C. 
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Figure 2d. Nonlocal parameter vs. buckling load for different small scale beams and assigned 

conditions including ψ=1e-4A, Lx=10h, l=0.05h, ξ1=0.5, ξ2=0.5, C-C. 

In the following, by drawing Figures 3a and 3b, the results in a variety of boundary 

conditions and in both nonlocal models with changes in the amount of the nonlocal coefficient 

have been examined. Figure 3a has been presented for the integral model based on single-phase 

nonlocality, and Figure 3b has been illustrated for the hybrid phase of the integral model. As it 

is evident, the larger value of the nonlocal parameter increases the difference between the NIM 

and NDM. This difference in the first figure is much greater for the non-hybrid phase. 

Interestingly, with the increase of the nonlocal parameter, in the differential model, the results 

for different boundary conditions will be closer to each other with a larger inclination, and this 

tendency is less inclined in the integral model. This finding can be unrelated to the result of the 

previous figures, which we obtained the pure NIM is more sensitive to the nonlocal coefficient. 

It means that when using a hybrid NIM, the NIM is less sensitive to the nonlocal parameter. On 

the other hand, with the assistance of Figure 3b, it can be concluded that the clamped boundary 

condition will make the greatest difference between the two nonlocal models. It goes without 

saying that the results of these two figures are obtained for the PFM beam. 
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Figure 3a. Nonlocal parameter vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, l=0.05h, ξ1=0, ξ2=1. 

 

Figure 3b. Nonlocal parameter vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, l=0.05h, ξ1=0.5, ξ2=0.5. 

Strain gradient parameter variations can also be analyzed to evaluate the results better. For 

this purpose, Figures 4a-4d are plotted, which show the results for different boundary 

conditions. The first two figures are for the single-phase nonlocal integral model where the 

local phase is left out for the NIM (pure nonlocal case), and the second two figures are displayed 
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for the hybrid phase. It is quite vivid that the coincidence of results of the NDM to those of the 

NIM depends on boundary conditions. For S-S, the NDM results are nearer to those of the 

hybrid NIM's. For other boundary conditions, it seems that the NDM results are far from those 

of the NIM. Although the basis for having higher accuracy and efficiency is the integral model 

(the nonlocal differential model is only an approximation for the NIM), the hybrid phase may 

present steady higher results values compared to NDM, and this bigness is higher in results of 

boundary conditions with lower degrees of freedom. According to the results, the differential 

model is a reasonable estimation of the integral model in the case where the amounts of the 

nonlocal parameter are very little. It is to be noted that when l/h=0, in fact, the PM structure 

comes along due to the very small amount of FM parameter. Whatever the value of SGLS is 

considerable, the FM effect is more indispensable.  

 

Figure 4a. SGLS parameter vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, τ=h, ξ1=0, ξ2=1. 

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4

B
u
ck

li
n
g
 l

o
ad

 (
n
N

)

l/h

NDM, S-S NIM, S-S

NDM, C-C NIM, C-C

NDM, C-S NIM, C-S

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Figure 4b. SGLS parameter vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, τ=0.5h, ξ1=0, ξ2=1. 

 

Figure 4c. SGLS parameter vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, τ=h, ξ1=0.5, ξ2=0.5. 
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Figure 4d. SGLS parameter vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, τ=0.5h, ξ1=0.5, ξ2=0.5. 

Now, the attention has been turned to Figures 5a-5d, in which the changes in the ratio of 

length to thickness have been studied. Again, all conditions and variables are applied as in the 

previous figures. The first two figures show that increasing the beam's length will reduce the 

difference in results of all boundary conditions for both nonlocal integral and differential 

models. The shift between the results of the integral model and the differential type again shows 

more sense in using the NIM. The most important extractive result of this section can be that 

for thicker beams, the difference between the results of the two nonlocal models will increase. 

It implies that the importance of using the NIM for thicker beams increases. In contrast, the 

NDM is well-conjecture for the NIM when the beam is thinner. 
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Figure 5a. Slenderness ratio vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, l=0.05h, τ=h, ξ1=0, ξ2=1. 

 

Figure 5b. Slenderness ratio vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, l=0.05h, τ=0.5h, ξ1=0, ξ2=1. 
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Figure 5c. Slenderness ratio vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, l=0.05h, τ=h, ξ1=0.5, ξ2=0.5. 

 

Figure 5d. Slenderness ratio vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, l=0.05h, τ=0.5h, ξ1=0.5, ξ2=0.5. 
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magnetization in the beam laterally, which eventually causes deformation. This is exactly the 

converse flexoeffect. This magnetization and the production of an internal magnetic field lead 

to creating a force perpendicular to the field. Since the field is created in the direction of 

thickness, so the established force is along with the longitudinal axis, which as a result, it 

compresses and contracts the beam. This is why the greater the magnetic potential, the higher 

the critical buckling load. When the material is denser, in fact, its stiffness has increased, and 

more mechanical force is needed for the beam to reach the buckle and bifurcation. Reviewing 

the figures, it is delineated that the NDM results have an orientation to those of the hybrid NIM. 

And documented to the pure NIM, the NDM results are mostly unacceptable unless the more 

flexible edge conditions are thought-out. 

 

Figure 6a. Magnetic potential vs. buckling load for different BCs and assigned conditions including 

l=0.05h, Lx=10h, τ=h, ξ1=0, ξ2=1. 
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Figure 6b. Magnetic potential vs. buckling load for different BCs and assigned conditions including 

l=0.05h, Lx=10h, τ=0.5h, ξ1=0, ξ2=1. 

 

Figure 6c. Magnetic potential vs. buckling load for different BCs and assigned conditions including 

l=0.05h, Lx=10h, τ=h, ξ1=0.5, ξ2=0.5. 
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Figure 6d. Magnetic potential vs. buckling load for different BCs and assigned conditions including 

l=0.05h, Lx=10h, τ=0.5h, ξ1=0.5, ξ2=0.5. 

The last figures in the results section, Figures 7a-7d are allocated to investigate the 

behavior of the weight factors in NIM. As observed, ξ1 has an opposite response to ξ2. As found 

out, ξ1 has a stiffness-hardening effect, and ξ2 makes a stiffness-softening effect into the 

material. Thus, while using a hybrid case of NIM, the values of both factors can play a 

momentous role in distinguishing the mechanical response. 
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Figure 7a. First weight factor vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, l=0.05h, τ=h. 

 

Figure 7b. First weight factor vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, l=0.05h, τ=0.5h. 

 

Figure 7c. Second weight factor vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, l=0.05h, τ=h. 
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Figure 7d. Second weight factor vs. buckling load for different BCs and assigned conditions including 

ψ=1e-4A, Lx=10h, l=0.05h, τ=0.5h. 

A series of tabulated results are organized in the following by fixing Tables 6-11 to make 

a benchmark section for the subsequent studies on PFM models. The assigned quantities are 

clearly placed beside the titles of the tables. 

Table 6. SGLS parameter vs. nonlocal factor for buckling loads (nN) at S-S end conditions 

(Lx=10h, ψ=1e-4A, ξ1=0, ξ2=1, S-S) 

l/h 
τ=0.01h τ=0.1h τ=0.5h 

NDM NIM NDM NIM NDM NIM 

0.00 2.3673 2.3628 2.3651 2.3201 2.3131 2.0980 

0.05 2.4935 2.4890 2.4913 2.4464 2.4394 2.2248 

0.10 2.8706 2.8661 2.8684 2.8239 2.8169 2.6038 

0.15 3.4942 3.4898 3.4921 3.4481 3.4412 3.2306 

0.20 4.3573 4.3530 4.3552 4.3119 4.3051 4.0979 

0.25 5.4502 5.4459 5.4481 5.4057 5.3990 5.1962 

0.30 6.7610 6.7569 6.7590 6.7177 6.7112 6.5133 

0.35 8.2762 8.2722 8.2743 8.2341 8.2278 8.0357 

0.40 9.9807 9.9769 9.9788 9.9400 9.9339 9.7481 

0.45 11.8586 11.8549 11.8568 11.8194 11.8135 11.6345 

0.50 13.8933 13.8897 13.8915 13.8556 13.8499 13.6781 
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Table 7. SGLS parameter vs. nonlocal factor for buckling loads (nN) at C-C end conditions 

(Lx=10h, ψ=1e-4A, ξ1=0, ξ2=1, C-C) 

l/h 
τ=0.01h τ=0.1h τ=0.5h 

NDM NIM NDM NIM NDM NIM 

0.00 8.8138 8.7246 8.7823 8.4329 8.0824 7.0122 

0.05 9.2687 9.1804 9.2362 8.8913 8.5145 7.4834 

0.10 10.6143 10.5283 10.5789 10.2468 9.7934 8.8764 

0.15 12.7949 12.7126 12.7551 12.4432 11.8690 11.1320 

0.20 15.7259 15.6485 15.6803 15.3946 14.6642 14.1599 

0.25 19.3031 19.2313 19.2508 18.9955 18.0841 17.8498 

0.30 23.4136 23.3479 23.3541 23.1317 22.0244 22.0822 

0.35 27.9456 27.8861 27.8786 27.6901 26.3808 26.7392 

0.40 32.7957 32.7424 32.7214 32.5663 31.0557 31.7128 

0.45 37.8743 37.8270 37.7927 37.6699 35.9632 36.9094 

0.50 43.1077 43.0659 43.0191 42.9266 41.0314 42.2530 

Table 8. Nonlocal parameter vs. weight factors for buckling loads (nN) at S-S end conditions 

(Lx=10h, l=0.05h, ψ=1e-4A, S-S) 

τ/h NDM 

NIM 

ξ1=1, 

ξ2=0 

NIM 

ξ1=0.75, 

ξ2=0.25 

NIM 

ξ1=0.5, 

ξ2=0.5 

NIM 

ξ1=0.25, 

ξ2=0.75 

NIM 

ξ1=0, 

ξ2=1 

0.0025 2.4935 2.4935 2.4932 2.4929 2.4926 2.4924 

0.01 2.4935 2.4935 2.4923 2.4912 2.4901 2.4890 

0.05 2.4929 2.4935 2.4877 2.4820 2.4762 2.4705 

0.10 2.4913 2.4935 2.4817 2.4700 2.4582 2.4464 

0.20 2.4846 2.4935 2.4690 2.4445 2.4200 2.3954 

0.30 2.4737 2.4935 2.4554 2.4174 2.3793 2.3411 

0.40 2.4586 2.4935 2.4412 2.3889 2.3365 2.2840 

0.50 2.4394 2.4935 2.4265 2.3593 2.2921 2.2248 

Table 9. Nonlocal parameter vs. weight factors for buckling loads (nN) at C-C end conditions 

(Lx=10h, l=0.05h, ψ=1e-4A, C-C) 

τ/h NDM NIM NIM NIM NIM NIM 
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ξ1=1, 

ξ2=0 

ξ1=0.75, 

ξ2=0.25 

ξ1=0.5, 

ξ2=0.5 

ξ1=0.25, 

ξ2=0.75 

ξ1=0, 

ξ2=1 

0.0025 9.2690 9.2690 9.2527 9.2364 9.2201 9.2038 

0.01 9.2687 9.2690 9.2469 9.2247 9.2026 9.1804 

0.05 9.2608 9.2690 9.2153 9.1616 9.1077 9.0538 

0.1 9.2362 9.2690 9.1749 9.0806 8.9860 8.8913 

0.2 9.1392 9.2690 9.0913 8.9129 8.7336 8.5535 

0.3 8.9821 9.2690 9.0051 8.7395 8.4721 8.2030 

0.4 8.7712 9.2690 8.9175 8.5630 8.2054 7.8446 

0.5 8.5145 9.2690 8.8299 8.3859 7.9371 7.4834 

Table 10. SGLS parameter vs. weight factors for buckling loads (nN) at S-S end conditions 

(Lx=10h, τ=0.05h, ψ=1e-4A, S-S) 

l/h NDM 

NIM 

ξ1=1, 

ξ2=0 

NIM 

ξ1=0.75, 

ξ2=0.25 

NIM 

ξ1=0.5, 

ξ2=0.5 

NIM 

ξ1=0.25, 

ξ2=0.75 

NIM 

ξ1=0, 

ξ2=1 

0.00 2.3667 2.3673 2.3615 2.3558 2.3500 2.3442 

0.05 2.4929 2.4935 2.4877 2.4820 2.4762 2.4705 

0.10 2.8700 2.8706 2.8649 2.8592 2.8535 2.8478 

0.15 3.4937 3.4942 3.4886 3.4830 3.4773 3.4717 

0.20 4.3568 4.3573 4.3518 4.3462 4.3407 4.3351 

0.25 5.4497 5.4502 5.4448 5.4393 5.4339 5.4284 

0.30 6.7605 6.7610 6.7557 6.7504 6.7451 6.7398 

0.35 8.2757 8.2762 8.2711 8.2659 8.2608 8.2556 

0.40 9.9803 9.9808 9.9758 9.9708 9.9658 9.9608 

0.45 11.8582 11.8587 11.8539 11.8491 11.8443 11.8395 

0.50 13.8928 13.8933 13.8887 13.8841 13.8795 13.8749 

Table 11. SGLS parameter vs. weight factors for buckling loads (nN) at C-C end conditions 

(Lx=10h, τ=0.05h, ψ=1e-4A, C-C) 

l/h NDM 

NIM 

ξ1=1, 

ξ2=0 

NIM 

ξ1=0.75, 

ξ2=0.25 

NIM 

ξ1=0.5, 

ξ2=0.5 

NIM 

ξ1=0.25, 

ξ2=0.75 

NIM 

ξ1=0, 

ξ2=1 

0.00 8.8061 8.8142 8.7599 8.7057 8.6513 8.5969 

0.05 9.2608 9.2690 9.2153 9.1616 9.1077 9.0538 
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0.10 10.6057 10.6146 10.5623 10.5100 10.4576 10.4051 

0.15 12.7852 12.7953 12.7452 12.6951 12.6449 12.5947 

0.20 15.7148 15.7263 15.6792 15.6319 15.5847 15.5373 

0.25 19.2904 19.3036 19.2598 19.2159 19.1720 19.1281 

0.30 23.3992 23.4142 23.3741 23.3338 23.2936 23.2533 

0.35 27.9293 27.9463 27.9098 27.8734 27.8368 27.8003 

0.40 32.7777 32.7965 32.7637 32.7310 32.6982 32.6653 

0.45 37.8545 37.8752 37.8460 37.8167 37.7875 37.7582 

0.50 43.0862 43.1086 43.0827 43.0568 43.0308 43.0049 

6    Conclusion 

In summary, this paper has been prepared to clarify and expound some unclear and 

incoherencies in the available flexomagnetic (FM) theoretical model. Conjointly, an attempt 

has been made to propose a new general FM model that is competent for both direct and 

converse effects of FM. In order to establish elastic strain and strain gradient, a higher-order 

shear deformation beam theory has been selected. The novel FM model has been transmitted 

into the nonlocal phase based on the weak and strong forms of nonlocal elasticity, namely 

differential and integral modes. The gained mathematical models have been discussed 

detailedly after solving through associated analytical processes, within which various 

conditions have been considered for both ends of the beam-like finite-size intelligent actuator. 

A series comparison has been provided to illustrate results divergence of differential nonlocality 

vis-à-vis the integral one, evaluating several boundary conditions. We expect this research 

paper to play the role of a benchmark reference for MEMS/NEMS researchers and indicate the 

concept of flexomagneticity simpler. The contributed results become listed below, 

• The disordered former flexomagnetic model has been corrected by presenting a 

modified FM version, which deserves both inverse and direct FM effects. 

• In order to study FM in both Centro- and non-centrosymmetric crystalline structures, 
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the non-uniform strain has to be implemented to keep the FM parameter in the final 

equations. Apart from this, the FM coefficient will disappear from the final governing 

equations based on any flexomagnetic model. 

• Flexomagnetic effect and, in general, magnetic properties lessen the discrepancy of 

results of NIM and NDM.  

• In some cases, it was manifested that there are significant differences between results 

obtained by the integral form of nonlocality versus the differential one. 

• The most profound differences between differential and integral forms of nonlocality 

have been witnessed for clamped-clamped boundary conditions and the least one 

through simply-supported end conditions. Thus, it can be declared that the further rigid 

the boundary conditions, the more recommended the use of the integral model will be. 

• It can be told that the increase of the SGLS coefficient results in the further significance 

of the nonlocal integral model. Moreover, it showed that after a certain value of SGLS, 

the difference in results of NIM and NDM is enormous. 

• An advantage of employing NIM is obviating the approximations of NDM during 

applying the Eringen relation on the governing equations (Eq. 53). In fact, the NIM does 

not need any supposition like that in Eq. (53). 

• The use of NIM becomes more serious while the structure gets thicker. 

• The NDM grants correct results if the value of the nonlocal parameter is small to some 

degree. 

• NDM results tend to those of the hybrid NIM, and based on the single-phase pure NIM, 

the NDM results are not always convincing. 
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• NIM also has a stiffness-softening effect in all states, similar to the NDM. However, a 

further softening behavior has been beholden by the use of NIM when the local phase 

is obliterated. 
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Appendix B: 

Pure elastic: 
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Piezomagnetic-flexomagnetic interaction: 
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*The number of primes defines the number of derivatives. As an example, double prime 

( )  means the second derivative with respect to z. 
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Appendix C: 
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quadruple prime ( )  means the fourth derivative with respect to x. 
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Nomenclature: 

xx : Axial strain  

xz : Shear strain 

xxz : Gradient of the axial elastic strain  

11C : Elastic modulus 

G : Shear modulus 

xx : Axial stress 

xz : Shear stress 

31f : Component of the fourth-order flexomagnetic coefficients tensor 

33a : Component of the second-order magnetic permeability tensor  

31q : Component of the third-order piezomagnetic tensor 

xxz : Component of the higher-order hyper-stress tensor 

zB : Magnetic flux  

zH : Component of magnetic field 

W : Works performed by external forces  

1 2 &   : Free energy 

U : Strain energy  

31g : Influence of the sixth-order gradient elasticity tensor 

ui (i=1,3): Displacement in the x- and z- directions 

u and w: Mid-plane's axial and lateral displacements 

 : Rotation of beam elements around the y-axis 

z: Thickness coordinate 

 : External magnetic potential 
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 : Magnetic potential function 

0
xN : Axial in-plane force 

0N : Critical buckling load 

xQ : Shear stress resultant 

xM : Moment stress resultant 

xxzT : Hyper stress resultant 

,x xV  R : Higher-order stress resultants 
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