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Abstract
It is proved that a kernel, doubly Markovian operator T is asymptotically periodic if
and only if its deterministic σ -field Σd(T ) (equivalently Σd(T ∗)) is finite. It follows
that kernel doubly Markovian operator T is asymptotically periodic if and only if T ∗
is asymptotically periodic.

Keywords Constrictive Markov operator · Smoothing Markov operator ·
Deterministic σ -algebra

Mathematics Subject Classification 47A35 · 37A30 · 60J05

1 Introduction

Stochastic Markov processes may be described, defined and studied with the use of
different mathematical theories. Depending on needs and context we may introduce
them as a family of random variables (elements) {ξt }t∈Θ , defined on a fixed probability
space and satisfying the so-called Markov property, or by the system of transition
probabilities {P(x, A) : x ∈ S, A ∈ G}, where (S,G) is a fixed measurable space
(called a phase space). In another approach, one can entirely use functional analysis
language and say that a Markov process is exactly a linear, positive operator T (called
Markov or stochastic) defined on some Banach function space X (= L p or C(S)),
which satisfies other additional properties (for instance T 1 = 1 if 1 ∈ X). Themethods
and techniques of functional analysis are commonly accepted in a noncommutative
Markov processes theory.
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The evolution and asymptotic properties of a Markov process {ξt }t∈Θ (once it is
carried over to the operator theory framework) is reflected as an asymptotic behaviour
(limit) of iterates T n . There are many monographs on Markov processes, where prob-
ability theory and functional analysis intertwine. We shall borrow ideas, notions and
inspiration from [8], which still may serve as a very good source of knowledge
on limits of Markov processes (mainly for discrete time). Some other monographs
[4,6,18,19,21,23] were used once working on this project.

We revisit the notion of smoothness (smoothing) defined as some property of trajec-
tories T n f , where f ∈ L1(μ) are densities (i.e. f ≥ 0 and

∫
f dμ = 1). The general

idea of smoothing says that as long as integrals
∫
E T n f dμ do not go uncontrolled on

small sets E , the asymptotic behavior of T n becomes periodic. The notion of smooth-
ness may be attributed to A. Lasota (cf. [14,16,17]), who jointly with collaborators
established many interesting results concerning limit properties of Markov processes
(Markov, stochastic operators) under smoothing assumptions.

This paper has been ignited by Y. Iwata (see [10]), who considered constrictivity
and smoothness for the class of Markovian operators possessing a strictly positive
stationary density. His paper is focused entirely on kernel Markov operators. Here we
give some commentaries on Iwata work and generalize his main result. Finishing this
section it is perhaps worth to mention that besides Lasota’s seminal papers [16,17] on
constrictivity, essential contribution to this topic was added by Komornik, Li, Yorke,
Sine, Emel’yanov, Wolff, Miklavčič and Bartoszek (cf. [1,2,5,7,11–14,17,20,22]).

2 Preliminaries and notation

Let (X, ‖ · ‖) be a (real) Banach space. A linear operator T : X → X (in this paper we
deal with contractions ‖T ‖ ≤ 1) is called constrictive if there exists a norm compact
set K ⊂ X such that for every ‖x‖ ≤ 1 the trajectory T nx is attracted to K (i.e.
limn→∞ dist(T nx,K) = 0). If K is weakly compact and limn→∞ dist(T nx,K) = 0,
for all x from the unit ball of X, then T is said to be weakly constrictive. After Lasota,
K is called constrictor (or weak constrictor, respectively).

Definition 1 A linear operator T : X → X is called asymptotically periodic if there
exist a system of vectors g1, . . . , gr ∈ X, Λ1, . . . , Λr ∈ X∗ and a permutation α of
the set of indices {1, . . . , r}, such that

lim
n→∞

∥
∥
∥
∥
∥
∥
T nx −

r∑

j=1

Λ j (x)gαn( j)

∥
∥
∥
∥
∥
∥

= 0

for all x ∈ X. If r = 1, i.e. limn→∞ ‖T nx − Λ(x)g‖ = 0 for all x ∈ X, then we say
that T is asymptotically stable.

Let (X ,F , μ) be a σ -finite measure space and X = L p(μ) stand for the classical
Banach lattice of real valued measurable functions satisfying

∫
X | f |pdμ < ∞ with

the ordinary norm ‖·‖p (functions equalμ almost everywhere are identified). A linear
operator T : L1(μ) → L1(μ) is called Markov if T f ≥ 0 and

∫
X T f dμ = ∫

X f dμ
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for all nonnegative f ∈ L1+(μ). In other words, T is Markov if T ≥ 0 and T ∗1 = 1,
where T ∗ : L∞(μ) → L∞(μ). Clearly, the operator norm ‖T ‖ = 1, so Markov
operators are contractions. f ∈ L1(μ) is called a density if f ≥ 0 and

∫
X f dμ = 1.

The closed convex set of all densities in L1(μ) is denoted by D.
It was proved in [17] (Theorem 1.1) that, if T is a constrictive Markov operator

on L1(μ), then T is asymptotically periodic. This result was subsequently extended
on L p(μ) spaces, general Banach lattices and recently on ordered Banach spaces
with bases (cf. [1,5,20,22]). We do not aim to dive into abstract regions but focus on
classical spaces X = L1(μ). We notice that if there exists an invariant (stationary)
density T f∗ = f∗, which is strictly positive μ a.e., then we may introduce T̃ f =
T ( f f∗)/ f∗, which is defined on L1( f∗μ). Clearly for all f ∈ L1( f∗μ) we have
T̃ n f = T n( f f∗)/ f∗, so the dynamics of T n may be deduced from T̃ n . The Markov
operator T̃ satisfies T̃ 1 = 1, where 1 is simply a density function on the probability
measure space (X ,F , f∗μ).

Therefore, without loss of generality, we shall assume throughout this paper that
(X ,F , μ) is a probability measure space and 1 ∈ L1(μ) is a stationary density of
a Markov operator T : L1(μ) → L1(μ). Such Markov operators T are called dou-
ble Markovian (double stochastic), as T ∗ : L∞(μ) → L∞(μ) may be extended to
L1(μ) ⊇ L∞(μ) and T ∗ becomes again aMarkov operator. Simply both T and T ∗ are
Markovian linear operators acting simultaneously on L1(μ) and L∞(μ) as positive
linear contractions. Notice that T ∗∗ = T (see [4], Proposition 1.1).

We recall an introduced by Lasota and Komornik notion of smoothness.

Definition 2 We say that a Markovian operator T : L1(μ) → L1(μ) is smoothing if
there exist constants 0 < η < 1 and δ > 0 such that for every density f ∈ D there
exists a natural n f , such that for all n ≥ n f we have

∫

E
T n f dμ ≤ η , for all E ∈ F satisfying μ(E) ≤ δ.

Asymptotic periodicity, smoothness and constrictivity of Markovian operators on
L1(μ) appear to be closely related through the Komornik and Lasota works (see [11–
14]). Gathering their results we arrive to the following characterization.

Theorem 1 Let (X ,F , μ) be a probability space and T : L1(μ) → L1(μ) be
a Markov operator. Then the following are equivalent:

(1) T is asymptotically periodic,
(2) T is constrictive,
(3) T is weakly constrictive,
(4) T is smoothing.

In [10] the author studied conditions for smoothness (constrictivity) of doubly
Markovian and kernel operators. He borrowed most of his ideas and techniques from
the Foguel’s monograph (chapters V and VIII). However the power of [8] has not been
exploited to its limits and potential. Let us start recalling necessary notation from [8].

A Markov operator T : L1(μ) → L1(μ) is said to be conservative if∑∞
n=0 T

n f (x) = +∞ μ a.e. for some (equivalently for all) strictly positive
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f ∈ L1(μ). If T is conservative and T ∗h ≤ h for some h ∈ L∞(μ) then T ∗h = h.
Clearly, eachMarkov operator with strictly positive stationary density is conservative.
In particular, doubly Markovian operators are conservative. A conservative operator
T is called ergodic (totally ergodic), if T ∗h = h (T ∗kh = h for some k ≥ 1) implies
that h = const μ a.e. where h ∈ L∞(μ). Ergodicity means that T ∗1A = 1A holds
only whenμ(A) = 0 orμ(A) = 1. Let us recall that conservativeMarkov operators T
(in particular all doubly Markovian operators) are non-disappearing, i.e. if T ∗ f = 0
for some f ≥ 0, then f = 0. Hence, (see Lemma 0 in [15] for all details) if T ∗g = 1A
with 0 ≤ g ≤ 1, then there exists a unique E ∈ F such that g = 1E . The family
of all A ∈ F , such that for every n there exists An ∈ F , such that T ∗n1A = 1An , is
denoted byΣd(T ).Σd(T ) is a sub σ -algebra if T is double Markovian, and it is called
a deterministic σ -algebra. By Σ1(T ) we denote a sub σ -algebra of Σd(T ) of all those
sets A ∈ F such that for every natural n we have T ∗nT n1A = T nT ∗n1A = 1A. By
the symmetry Σ1(T ) = Σ1(T ∗).

Given a doublyMarkovian operator T consider supports B f = {x ∈ X : f (x) > 0}
of a nonnegative f ∈ L1(μ) and BT f = {x ∈ X : T f (x) > 0} corresponding to its
image T f . We notice that

‖ f ‖1 = ‖T f ‖1 =
∫

BT f

T f dμ =
∫

X
f · (T ∗1BT f )dμ

=
∫

B f

f · (T ∗1BT f ) ≤
∫

B f

f dμ = ‖ f ‖1.

Hence T ∗1BT f ≥ 1B f . We obtain μ(BT f ) ≥ μ(B f ) as T ∗ is also Markovian.
We say that a Markov operator T is regular, if there exists a family

{P(x, ·)}x∈X of probability measures P(x, ·) on (X ,F), such that for every A ∈ F
the mapping X � x → P(x, A) is F measurable, and

T ∗h(x) =
∫

X
h(y)P(x, dy),

∫

A
T f (x)dμ(x) =

∫

X
f (x)P(x, A)dμ(x)

for all f ∈ L1(μ), A ∈ F and h ∈ L∞(μ).
A double Markovian operator T is called integral (or kernel) if it has an inte-

gral representation T f (y) = ∫
X k(x, y) f (x)dμ(x), where k : X × X → R+ is a

jointly measurable function satisfying
∫
X k(x, y)dμ(y) = 1 for μ almost all x and∫

X k(x, y)dμ(x) = 1 for μ almost all y. Clearly, all kernel Markov operators (see
[9,23]) are regular and P(x, A) = ∫

X k(x, y)1A(y)dμ(y).
It follows that kernel, double Markovian operators are conservative and therefore

Harris operators. In this situation Σd(T ) is atomic (the geometric structure of Harris
operators and their analytical properties are well known, and are comprehensively
presented in [8], Theorem D, p. 58).

3 Result

The main goal of this note is to upgrade results of [10] (see below).
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Theorem 2 ([10]) Let T : L1(μ) → L1(μ) be a kernel double Markovian operator.
Then the following are equivalent:

(1) T is smoothing (asymptotically periodic),
(2) the deterministic sub σ -algebra Σd(T ∗) has at most finitely many atoms and if q

denotes the least common multiple of orders of atoms in Σd(T ∗) then for every
atom W ∈ Σd(T ∗) one has

lim
n→∞ μ(A \ supp(T nq1B)) = 0,

for all measurable A, B ⊆ W .

Wewill generalize the abovementioned theorem and shall prove that for kernel double
Markovian operator T , in condition (2), finiteness ofΣd(T ∗) is sufficient and no extra
verifications like limn→∞ μ(A \ supp(T nq1B)) = 0 for all measurable A, B ⊆ W ,
need to be done. Definitely, this will bring the Iwata result to its refined and final
shape. Let us mention that, looking from the point of view of structure of Σd(T ∗),
asymptotic behaviour of iterates T n f was studied in [3]. Finiteness of Σd(T ∗) was
guaranteed by assuming that T almost overlaps supports (see [3], Proposition 1),
which was additionally supported with another assumption that trajectories T n f have
strong limit points. However, doubly Markovian operators T were not necessarily
kernel. Here we show that for kernel and doubly Markovian T , we can (if we wish)
replace Σd(T ∗) for a (classical) deterministic σ -field Σd(T ). For this let us start with
the following lemma, which is proved with all details, even though a specialist on
ergodic theory of Markov operators may relatively easily extract its proof from [8].

Lemma 1 Let T : L1(μ) → L1(μ) be a double Markovian operator. IfΣd(T ) is finite
then Σd(T ) = Σ1(T ) ⊆ Σd(T ∗).

Proof We start from a general observation: if T ∗1E = 1F then μ(E) = μ(F), and
μ(E) ≥ ∫

X 1ET 1Fdμ = ∫
X T ∗1E1Fdμ = ∫

X 1F1Fdμ = μ(F) = μ(E). Hence,
T 1F = 1E . It follows from ([15], Lemma 0) that if T ∗1E1 = T ∗1E2 = 1F , then
E1 = E2 . Thus, T ∗1E = 1F if and only T 1F = 1E .

Let A = {A1, . . . , Aa} be the family of all atoms of Σd(T ). We partition A into
subfamilies Ak , such that μ(A) = γk for all A ∈ Ak , where γ1 < γ2 < · · · < γm .
Let Al ∈ A1 be arbitrary. We have T ∗1Al = 1Aβ(l) , where Aβ(l) ∈ Σd(T ). Clearly,
Aβ(l) ∈ A1 is an atom. The transformation Al → Aβ(l) on the set A1 is a bijection
(we do not claim that β is one cycle).

Then considering T ∗1Al = 1Aβ(l) on A2 we obtain that again Al → Aβ(l), on the
setA2, is a bijection. We continue with these arguments to exhaust the whole partition
A.

Because Σd(T ) is finite T ∗ : span({1A1 , . . . , 1Aa }) → span({1A1 , . . . , 1Aa }) is

linear, positive and invertible with T ∗−1 = T . Hence, for any atom Al ∈ Σd(T ), and
any natural n, we have T n1Al = 1Aαn (l) , where α = β−1 is a permutation of the set
{1, 2, . . . , a}. It follows that T nT ∗n1A = T ∗nT n1A = 1A for all A ∈ A. By linearity
T nT ∗n1A = T ∗nT n1A = 1A for all A ∈ Σd(T ), as 1A has a unique representation
as a sum 1A = ∑

j∈J 1A j , where J ⊆ {1, 2, . . . , a} and A j ∈ A. We have obtained
Σd(T ) = Σ1(T ) ⊆ Σd(T ∗). �
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The following corollary is a direct consequence of the above Lemma 1.

Corollary 1 Let T : L1(μ) → L1(μ) be a double Markovian operator. If σ -algebras
Σd(T ) and Σd(T ∗) are finite then Σd(T ) = Σ1(T ) = Σd(T ∗).

Nowwe are ready to explainmutual relations between deterministic σ -fieldsΣd (T )

and σd(T ∗) if T is kernel.

Theorem 3 Let T be a kernel doublyMarkovian operator. The deterministicσ -algebra
Σd(T ) (equivalently Σd(T ∗)) is finite if and only if Σd(T ∗) is finite (respectively
Σd(T ) is finite) and then Σd(T ) = Σ1(T ) = Σd(T ∗).
Proof The σ -algebras Σd(T ) andΣd(T ∗) are atomic as T and T ∗ are kernel and con-
servative. By Lemma 1 we have Σd(T ) = Σ1(T ) ⊆ Σd(T ∗). Denote {W1, . . . ,Wa}
to be the family of all atoms ofΣd(T ).We choose and fix for a while an atomWi = W .
Let ri = r be the period of W (i.e. r is the least j ∈ N0 such that T ∗ j1W = 1W ).
We introduce locally S : L1(W ,FW , μW ) → L1(W ,FW , μW ) defined as S = T r .
Here FW = {E ∩W : E ∈ F} denotes the trace σ -algebra and μW (E) = μ(E)

μ(W )
is the

conditional probability measure. Clearly, S is a kernel doubly Markovian operator on
L1(μW ). In particular, it is conservative and non-disappearing (and of course kernel).

Similarly if E ∈ FW belongs to Σd(S), then S∗k1E = T ∗rk1E = 1Frk , for some
Frk = Ek ∈ FW . Again by [15] we have T ∗ j1E = 1Fj for all 0 ≤ j ≤ rk. In other
words Σd(S) ⊆ Σd(T ). But W ∈ Σd(T ) is taken to be an atom, so E = W . Thus,
Σd(S) = {∅,W } is trivial.

Let us suppose that E ∈ Σd(S∗), for some 0 < μW (E) < 1. Hence, Sk1E = 1Ek

for all k ∈ N, where Ek ∈ FW satisfy μW (Ek) = μW (E). It is well known that
kernel doubly Markovian operators transform order intervals [0, f ] ⊆ L1 into norm
‖ · ‖1 relatively compact subsets (see [21], Proposition IV.9.8). Thus we may find
an increasing subsequence k j → ∞ such that lim j→∞ ‖Sk j 1E − g‖1 = 0, where
0 ≤ g ≤ 1W . Actually g = 1F for some F ∈ FW (g may be approximated by
characteristic functions as close as we wish). Clearly 0 < μW (F) = μW (E) < 1. For
an arbitrary i ∈ N let us consider S∗i1F = lim j→∞ S∗i Sk j 1E = lim j→∞ Sk j−i1E =
1Fi for some Fi ∈ FW (if necessary we may choose another subsequence from k j − i
and again apply the compactness argument). Hence, F ∈ Σd(S), a contradiction as
W is an atom of Σd(S). Thus, Σd(S∗) = {∅,W } is trivial.

Applying these considerations to all (finitely many) atoms Wj ∈ Σd(T ) we obtain
that each atom F ∈ Σd(T ∗) has a representation F = ⋃a

j=1 F ∩ Wj ∈ Σd(T ) as
F ∩ Wj is Wj ∈ Σd(T ) or ∅. Hence, Σd(T ∗) ⊆ Σd(T ) = Σ1(T ) ⊆ Σd(T ∗) and all
are finite. �
Remark 1 In the above Theorem 3 the assumption that T is kernel is essential. In fact,
consider the Frobenius–Perron operator associated with the transformation τ(x) =
(2x) mod 1. It is commonly known that τ preserves the Lebesgue measure λ on
X = [0, 1). In particular, T is doublyMarkovian. ClearlyΣd(T ) = B[0,1) is the full σ -
algebra (simply T ∗h(x) = h(τ (x)), where h ∈ L∞(λ), is the composition operator).
On the other hand τ is exact (T is asymptotically stable), so limn→∞ T n1A = λ(A)1
in the L1 norm (cf. [18]). Hence,

Σd(T
∗) = {A ∈ B[0,1) : T j1A = 1A j for all j = 0, 1, 2, . . .} = {∅, [0, 1)}
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is the trivial σ -algebra, thus finite. Nevertheless Σd(T ) �= Σd(T ∗).

By [8] (Theorem A, p. 85) for any f ∈ L2(μ) such that
∫
X f hdμ = 0 for all

h ∈ L2(X ,Σ1(T ), μ)we have limn→∞ T n f = 0 weakly. If T is kernel we have even
strong convergence limn→∞ ‖T n f ‖2 = 0 (again apply [21], Proposition IV.9.8). We
may easily modify it to limn→∞ ‖T n f ‖1 = 0. Therefore, if T is kernel, doubly
Markovian with finite Σd(T ) = Σd(T ∗) = Σ1(T ) and W is an atom of period r ,
then L2(W ,Σ1(S), μW ) = {t1W : t ∈ R}. Thus, for all f satisfying

∫
W f dμW = 0

we have limn→∞ ‖Sn f ‖1 = 0 and limn→∞ ‖S∗n f ‖1 = 0. Notice that
∫
W [ f −

(
∫
W f dμ)1W ]dμW = 0 for all f ∈ L1(μ). We have obtained:

Corollary 2 Let T : L1(μ) → L1(μ) be a kernel doubleMarkovian operator. IfΣd (T )

is finite (by Theorem 3 equivalently Σd(T ∗) is finite) then for each atom W ∈ Σd(T )

with period r we have

lim
n→∞ ‖T rn f − 1

μ(W )

(∫

W
f dμ

)

1W‖1 = 0,

and by symmetry

lim
n→∞ ‖T ∗rn f − 1

μ(W )

(∫

W
f dμ

)

1W‖1 = 0,

for all f ∈ L1(μ) concentrated on W.
Moreover, denoting {A1, . . . , Aa} to be the family of all atoms ofΣd (T ), there exists

(see our Lemma 1) a permutation α : {1, . . . , a} → {1, . . . , a} such that T 1A j =
1Aα( j) and T ∗1A j = 1A

α−1( j)
.

Now we are in a position to formulate the main result of the paper.

Theorem 4 Let T : L1(μ) → L1(μ) be a kernel doubly Markovian operator. Then
the following are equivalent

(1) Σd(T ) (or Σd(T ∗)) is finite with atoms {A1, A2, . . . , Aa},
(2) Σd(T ) = Σd(T ∗) = Σ1(T ) are finite,
(3) T and T ∗ are simultaneously asymptotically periodic with

lim
n→∞

∥
∥
∥
∥
∥
∥
T n f −

a∑

j=1

(∫

A j

f dμ

)

1Aαn ( j)

∥
∥
∥
∥
∥
∥
1

= lim
n→∞

∥
∥
∥
∥
∥
∥
T ∗n f −

a∑

j=1

(∫

A j

f dμ

)

1A
α−n ( j)

∥
∥
∥
∥
∥
∥
1

= 0,

for all f ∈ L1(μ), where the permutation α is described in our Lemma 1,
(4) T is asymptotically periodic,
(5) T is constrictive,
(6) T is weakly constrictive,
(7) T is smoothing.
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Proof The implication (1) ⇒ (2) is proved in our Theorem 3, (3) ⇒ (4) is obvious.
The implications (4) ⇔ (5) ⇔ . . . ⇔ (7) may be recognized today as classical and
hold for general (doubly) Markovian operators.

(2) ⇒ (3) follows from Corollary 2. Let A1, A2, . . ., Aa be atoms of Σd(T ) =
Σd(T ∗). For a fixed f ∈ L1(μ) consider its partition f = ∑a

j=1 1A j f . Let q be the
least common multiple of all (minimal) periods of atoms. Then

lim
n→∞ T qn f =

a∑

j=1

lim
n→∞ T qn(1A j f )

=
a∑

j=1

1

μ(A j )

(∫

A j

f dμ

)

1A j ,

in the L1 norm.
On limit functions the iterates behave periodically:

T k

⎛

⎝
a∑

j=1

(∫

A j

f dμ

)

1A j

⎞

⎠ =
a∑

j=1

(∫

A j

f dμ

)

1A
αk ( j)

and

T ∗k
⎛

⎝
a∑

j=1

(∫

A j

f dμ

)

1A j

⎞

⎠ =
a∑

j=1

(∫

A j

f dμ

)

1A
α−k ( j)

.

The operators T and T ∗ are asymptotically periodic.
The proof of implication (7) ⇒ (1) may be borrowed from [10]. For the sake of

completeness of this paper we provide its proof (especially because we have replaced
Σd(T ∗) for Σd(T )). Actually, we need only a fraction of Iwata’s argument.

Let δ > 0, η > 0 be as in Definition 2. Suppose that an atomW ∈ Σd(T ∗) satisfies
μ(W ) ≤ δ. For all n ≥ 1 we have μ(Wn) = μ(W ), where T n1W = 1Wn . Then
T ∗n1Wn = 1W . Now let us consider the density f = 1

μ(W )
1W . We have

∫

Wn

T n f dμ =
∫

X
f T ∗n1Wndμ =

∫

X
f 1Wdμ = 1

for all n ∈ N, where μ(Wn) ≤ δ. But the smoothness assumption requires∫
Wn

T n f dμ ≤ η < 1 if n is large enough, a contradiction. Hence μ(W ) ≥ δ are
separated from 0 for all atoms W ∈ Σd(T ∗). The σ -algebra Σd(T ∗) is finite, so
Σd(T ) is also finite. �
Corollary 3 Let T : L1(μ) �→ L1(μ) be a kernel doubly Markovian operator. Then
the following are equivalent
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(1) T is asymptotically stable,
(2) T ∗ is asymptotically stable (as a doubly Markovian operator on L1(μ)),
(3) Σd(T ) = {∅, X},
(4) Σd(T ∗) = {∅, X}.
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