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Abstract The present research investigates the theory and numerical analysis of shells stiffened with beams in
the framework based on the geometrically exact theories of shells and beams. Shell’s and beam’s kinematics are
described by theCosserat surface and theCosserat rod, respectively,which are consistent including deformation
and strain measures. A FEM approximation of the virtual work principle leads to the conforming shell and
beam FE with 6 DoFs (including the drilling rotation for shells) in each node. Examples of static and stability
linear analyses are included. Novel design formulas for the stability of stiffened shells are included.

Keywords Stiffened shell · Cosserat shell · Cosserat beam · Shell stability · Finite element method · Drilling
rotation

1 Introduction

Shells are commonly used as a part of various structures. They are considered as an economical, efficient, and
aesthetic choice since are able to bear high loads with low weight kept. Additional reinforcement could be
achieved by using locally placed stiffeners. Stiffened shells have various applications, like structural elements
in vessels, aircraft, and aerospace vehicles. They are also used as bridge decks and as floor slabs in buildings.
Inspiration for this type of structures might be found in nature: leaves and insects’ wings are often membranes
enforced with veins.

Over the years, great effort has been done to investigate and understand stiffened plates and shell behaviour
in various circumstances: under static and dynamic loading, deformation in thermal environment, free vibration,
etc. Nevertheless, still novel contributions are provided to better understand their behaviour and capabilities
in up-to-date applications.

The current study is focused on the employment geometrically exact shell and beam theories to stiffened
shells analysis as the original contribution. This approach results in compatible kinematics’ formulations of
a shell as the Cosserat surface and beam as the Cosserat rod. The virtual work principle, applicable to the
stiffened shell as an unseparated structure, is used to develop the finite element method (FEM) approximate
solution. Consistency of shell and beam finite elements (FE) is achieved. In the present paper, the static linear
analysis and stability analysis of various stiffened homogenous shells are conducted, including curved and
branched shells. Since stiffened shells are widely used in engineering design, current parametric studies consist
not only of rare data (e.g. displacements and critical load factors), but also a proposition of approximate design
formulas given.
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Poland
E-mail: stanislaw.burzynski@pg.edu.pl

http://orcid.org/0000-0002-5201-4362
http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-020-00928-7&domain=pdf


S. Burzyński

The present paper is prepared on the occasion of the 65th birthday of Prof. Altenbach, in recognition of
his research in the field of the shell structures. It should be noted that the models of complex models of beams,
plates, and shells are in the focus of interests of Prof. Altenbach, see e.g. papers [1–5] and books [6,7].

2 Literature overview

Many papers, devoted to the problem of static response and buckling of plates and shells stiffened with beams,
have been published over the years. The present overview will be focused on those papers, in which reference
solutions (mainly which employs FEM) for isotropic stiffened plates and shells could be found.

In 1940s, three reports have been published, which provide reference results for the buckling of unstiffened
curved panels [8] and stiffened curved panels [9,10]. The results are obtained by the analytical approach, and
even nowadays many papers refer to those as reference solutions. Buckling of stiffened panels and shells was
also investigated by Timoshenko, by analytical methods. His results could be found e.g. in [11].

Pioneer FEManalysis of stiffened shells has been carried out inMcBeam’s thesis in 1968 [12]. Since 1980s,
FEM is widely employed for the analysis of stiffened plates and shells. Constant development of FEM theory
and codes, together with the rapid growth of computer resources, indicates the necessity of re-considering even
some basic problems, keeping in mind that FEM is an approximate method and needs careful verification.

In 1970s and 1980s, several results based on numerical calculations were published. Rossow and
Ibrahimkhail [13] used FEM enriched with a constraint method for the linear study of stiffened plates. Sobel
and Agrwal [14] adopted the numerical code based on Donell’s theory to obtain buckling loads of curved
panels. Mizusawa and co-workers [15] used the Rayleigh–Ritz method with B-spline functions as coordinates
to investigate buckling of skew plates in a wide range parametric analysis. Bathe and Bolourchi [16] presented
a novel finite element for different aims, including linear and nonlinear static analyses. Those were shell
elements with max. 16 nodes and beam elements with max. 4 nodes, both with the Lagrangian interpolation
functions. The integral equation technique was used by Srinivasan and Thiruvenkatachari [17] to analyse the
static and dynamic responses of an annular eccentrically stiffened sector. Deb and Booton [18] proposed an
8-noded Serendipity plate FE and a 3-noded stiffener element dedicated to the linear analysis.

In the last decade of the twentieth century, further development of computational methods was observed.
Bhimaraddi and co-workers [19] developed the special-purpose FE for annular plates. Palani and co-
workers [20] proposed an isoparametric FE with quadratic shape function applied for the analysis of stiffened
plates and shells. Nevertheless, numerical examples consist only of plate tasks. Kolli and Chandrashekharat
[21] provided a formulation of a FE for stiffeners which incorporates the effect of lateral strain, with verifica-
tion calculation conducted for isotropic shells. Bedair [22] original contribution was the usage of sequential
quadratic programming in stiffened plates analysis. Work by Satish Kumar andMukhopadhyay [23] is devoted
to composite structures, but it should be mentioned as the first FEM implementation (to author’s best knowl-
edge), where the placement of stiffener is independent from plate nodal lines. Sadek and Tawfik [24] followed
this concept, developing a 9-noded plate FE with stiffener placement parallel to nodal lines.

Here the review reaches the twenty-first century, with the paper by Wen and co-workers [25] who used
the boundary element method to analyse stiffened plates. Interaction forces between a plate and stiffeners
are considered. Peng and co-workers [26] employed the element-free Galerkin method to perform the static
analysis of stiffened plates. This approach allows independency of discretization of a plate and a stiffener. The
differential quadrature element method was used by Jiang and co-workers [27] to investigate the buckling of
stiffened cylindrical panels under axial compression. Voros [28] applied the novel stiffener FE with 7 DOFs
in each node for the plate buckling analysis. Torsion warping and flexion–torsion interaction are included in
stiffener FE.

Ojeda’s thesis [29] consists of geometrically linear and nonlinear analyses of stiffened plates with FEM
employed. The Bedair’s paper [30] is focused on the design of stiffened box girders (multibranched shells)
in buckling. A numerical procedure is presented there, which uses a combination of energy formulations and
mathematical programming techniques. Jafarpour Hamedani and Rahbar Ranji [31] adopted conventional and
super-elements to a FEM analysis of buckling of stiffened plates. Again, stiffener placement is arbitrary. A
parametric study of stiffeners’ stiffness, various boundary conditions, and loads is carried out. Nguyen-Thoi
and co-workers [32] proposed the usage of triangular elements with the cell-based smoothed discrete shear
gap method to the static linear, frequency, and buckling analyses of stiffened plates. Tran and co-workers
[33] performed a FEM analysis of buckling and ultimate strength of curved panels in uniaxial compression.
A design procedure for such structures is proposed. Shi and co-workers [34] analysed a static response and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


On FEM analysis of Cosserat-type stiffened shells

Fig. 1 Concept of a dimension reduction

buckling loads of plates stiffened with arbitrary placed curved stiffeners. Bedair [35] committed the paper
that was devoted to the problem of the design of stiffened box girders, in case of web shear buckling. Panda
and Barik [36] developed a 4-noded stiffened plate FE, based on an isoparametric approach with the shear-
locking problem solved. The approach was verified by a buckling analysis of plates (square, skew, rectangular,
circular). Hosseini and Soltani [37] adopted the meshless collocation method to the linear static bending
analysis of stiffened plates. Zhang and Xu [38] provided results of static analysis of stiffened plates with
partially composite action. Investigations are based on an analytical approach.

Amongmanypapers, reviewpapers byMukhopadhyay andMukherjee [39], Sinha andMukhopadhyay [40],
Bedair [41], and Ojeda and co-workers [42] are exceptionally valuable.

Summarizing, many investigations were dedicated to stiffened plates and shells. The special-purpose and
universal FEM applications were developed. Other methods were also used, proving their accuracy and effi-
ciency. Many reference solutions are available, which is useful in verifying novel theories and codes. Never-
theless, curved and branched shell examples are insufficiently represented, even though such shells are widely
used in the design of real structures.

3 Theory

The Cosserat approach to modelling shells and beams is widely used in the literature, see reviews for shells
[43,44] and the references which are given in [45–48]. Below the derivation of the model using a 3D-to-2D
reduction is considered.

3.1 3D-to-2D reduction

What distinguishes the 6-parameter nonlinear shell theory (see e.g. fundamental works by Zhilin [49] and
Chróścielewski et. al. [50]) and the exact nonlinear rod theory [51] from other well-established theories is the
exact reduction of 3D equilibrium equations to 2D equilibrium equations, without any kinematic assumptions
(Fig. 1). It results in exact virtual work principles with the material law excluded from them. Integration of the
3D balance law could be done by an application of a standard through the thickness integration, for further
details see [50,51]. Both theories are capable of describing structures that experience finite translations, finite
rotations, and small strains.

Integrations performed on the shell and rod bodies separately are described in previouslymentioned papers.
The present paper employs results obtained there, and the following derivations start from the reduced 2D shell
and 1D rod. Nevertheless, some comments on the integration over the body of stiffened shell should be enlisted:

• a division between shell and rod bodies is arbitrary, but must be chosen to fulfil some requirements on their
regularity;

• in some cases, the problem of doubly integrated volume may arise. A similar problem is observed in
junctions of multibranched shells (see e.g. [52,53]);

• shell and rod are perfectly bonded in initial and any following configuration, without possible separation
or slipping;

• no limitations on the rod’s cross section are introduced. A centre of mass and shear centre do not have to
lay directly on a curve that defines the reduced beam.
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S. Burzyński

Fig. 2 A shell with a stiffener placed at the edge, forces, and couples on surfaces and edges

3.2 Equilibrium conditions, virtual work principle

Formal derivations will start from the configuration as in Fig. 2. There is an arbitrarily chosen part Π of the
surface M , with the edge divided into 3 parts: ∂Π (arbitrary cut), ∂M f (free edge), and Γ (free edge where
stiffener is placed). The stiffing rod is drawn outwards shell in Fig. 2 for clarity. The current study omits
multibranched shells, where Γ could be also a singular curve on which branches meet. This extension could
be straightforwardly adapted from previous studies. Every point of the configuration is defined by the position
vector y.

Various loads are acting on the body: surface force and couple loads (f and c); stress resultant and stress
couple vectors (nn and mn) on the edge ∂Π ; external edge loads (n∗ and m∗). There are also loads acting on
the rod: distributed resultant force and couple (f Γ and cΓ ); stress resultant and couple (n+, n−, m+ and m−).
Stress resultant and couples are equal to external end loads (n+ = n∗

Γ , m
+ = m∗

Γ ) at the free end of the rod.
The novelty of the current approach is in taking into account the interaction between shell and rod, which

is represented by distributed resultant forces f Γ and couples cΓ . They act on both sides of the imaginary cross
section, with opposite signs, and are treated as resultant of normal and traction stresses acting between the 3D
shell and the 3D rod before the dimension reduction.

The total force acting on the shell is given as

FΠ =
∫∫

Π

f da +
∫

∂Π\(∂M f ∩Γ )
nndl +

∫
∂M f

n∗dl +
∫

Γ

nΓ dl (1)

and the total moment is

MΠ =
∫∫

Π

(c+ y × f )da +
∫

∂Π\(∂M f ∩Γ )
(mn + y × nn)dl

+
∫

∂M f

(m∗ + y × n∗)dl +
∫

Γ

(mΓ + y × nΓ ) dl (2)

The total force acting on the rod is given as

FΓ =
∫

Γ

(
f Γ − nΓ

)
dl + n+ − n− (3)

and the total moment is

MΓ =
∫

Γ

(
cΓ + y × f Γ − mΓ − y × nΓ

)
dl + y × n+ − y × n− + m+ − m− (4)

Thus, the next step of the derivation is to transform those formulas to surface integrals over Π and curvilinear
integrals over Γ with appropriate boundary conditions. This is performed with the usage of surface Cauchy
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On FEM analysis of Cosserat-type stiffened shells

theorem and surface divergence operator Div. As the result of Eqs. (1–4) conversion (for details see e.g. [52])
the following formulas are obtained:

FΠ =
∫∫

Π

(Div N + f ) da +
∫

∂M f

n∗dl +
∫

Γ

nΓ dl, (5)

MΠ =
∫∫

Π

(Div M + y × Div N − ad−1
(
(∇ y) NT − N (∇ y)T

)
+ c+ y × f )da

+
∫

∂M f

(m∗ + y × n∗)dl +
∫

Γ

(mΓ + y × nΓ ) dl, (6)

FΓ =
∫

Γ

(
f Γ − nΓ + n′) dl, (7)

MΓ =
∫

Γ

(
cΓ − mΓ + m′ + y′ × n

)
dl, (8)

where ad: E3 → so(3) is an isomorphism, where so(3) is a vector space of skew-symmetric tensors (see [50]
for details). The symbol (.)′ denotes differentiation with respect to an arc coordinate of the rod’s reference
curve.

The global equilibrium is achievedwhen FΠ = MΠ = FΓ = MΓ = 0. Meanwhile, the local equilibrium
conditions, which result from Eqs. (5)–(8), are as follows:

– for a regular point of the shell: DivN+ f = 0, Div M + ad−1
(
NFT + FNT

)+ c = 0
– for a regular point of the beam: f Γ − nΓ + n′ = 0, cΓ − mΓ + m′ + y′ × n = 0,

where F = ∇ y. Those are supplementedwith boundary conditions for the shell: at the edge ∂M f : n∗−Nv = 0,
m∗−Mv = 0; at the edgeΓ : nΓ −Nv = 0,mΓ −Mv = 0 and for the rod at curve’sΓ endpoints: n+n− = 0,
n − n+ = 0, m + m− = 0, m − m+ = 0.

The next step towards FEM implementation is to build a virtual work principle based on local equilibrium
conditions and appropriate boundary conditions. Details of derivations could be found, e.g. in [54] (for shells)
and in [55] (for rods). It is important tomention that further derivationswill bemadewithout any simplifications
nor additional assumptions. So, the following formula could be written:

G =
∫∫

Π

[
(DivN + f ) · v +

(
Div M + ad−1

(
NFT + FNT

)
+ c

)
· w
]
da

+
∫

∂M f

[(
n∗ − Nv

) · v + (
m∗ − Mv

) · w
]
dl

+
∫

Γ

[(nΓ − Nv) · v + (mΓ − Mv) · w] dl = 0 (9)

where v andw denote any vector field over the areaΠ . After transformations the following formula is obtained:

G =
∫∫

Π

[N · (∇v − WF) + M · ∇w] da −
∫∫

Π

( f · v + c · w) da

−
∫

∂M f

(
n∗ · v + m∗ · w

)
dl −

∫
Γ

(nΓ · v + mΓ · w) dl = 0, (10)

where W = adw, ∇v, and ∇w are surface gradients of vector fields. Similar transformations could be done
with local equilibrium conditions for rod, obtaining

G =
∫

Γ

[(
f Γ − nΓ + n′) · v + (

cΓ − mΓ + m′ + y′ × n
) · w

]
dl

+ (
n + n−) · v− + (

n − n+) · v+ + (
m + m−) · w− + (

m − m+) · w+ = 0, (11)

and after transformations

G =
∫

Γ

[
n · (v′ − w × y′)+ m · w′] dl −

∫
Γ

(
f Γ · v + cΓ · w

)
dl +

∫
Γ

(nΓ · v + mΓ · w) dl
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Fig. 3 The undeformed stiffened shell configuration with a parametrization

−n− · v− − n+ · v+ − m− · w− − m+ · w+ (12)

Equations (10) and (12) are added to obtain the virtual work principle for a stiffened shell. After this summation
is made, the term

∫
Γ (nΓ · v + mΓ · w) dl, which includes contact forces and couples, vanishes. Since this is

possible at this point, the rest of the derivations which lead to the finite element formulation (e.g. interpolation
of quantities) are carried out in a known manner and will be omitted here.

Equations (10) and (12) consist of terms which can be interpreted as the virtual strain and curvature tensors
for the shell

δE = ∇v − WF, δK = ∇w (13)

and for the rod

δE = v′ − w × y′, δK = w′. (14)

3.3 Kinematics of stiffened shell

It is assumed that the position of each point of undeformed shell reference configuration is given by vector x
(Fig. 3). At each point tangent space TxM exists, defined by two vectors t0β = x,β . There is also an orthogonal
vector

t03 = t01 × t02∥∥t01 × t02
∥∥ . (15)

The structure tensor T0 ∈ SO(3) is defined by the orthogonal rigid triad t0i (x). Stiffeners are placed along
some curves, chosen so that one of the vectors t01 or t02 remains tangent to them. Stiffener and shell share
the same position vector and microstructure tensor and remain tied during motion. The current position and
orientation are given by

y(x) = x + u(x), ti (x) = Q(x)t0i (x) = Q(x)T0(x) ei = T(x) ei , (16)

where Q(x),T0(x),T(x) ∈ SO(3).
Strains and curvatures at the reference surfaces are given by:

εβ = y,β − tβ = u,β + (1 − Q)t0β, κβ = ad−1(Q,β QT), β = 1, 2. (17)
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On FEM analysis of Cosserat-type stiffened shells

Fig. 4 Conforming finite elements used in the analysis

If the index of the axis parallel to the beam is chosen (β = 1 or β = 2), strains in the beam could be easily
recovered from (17).

Virtual strains and curvatures given by (13) now can be denoted as:

δεβ(x) = v,β +y,β × w = v,β + (tβ + εβ) × w, δκβ(x) = w,β , β = 1, 2. (18)

Again, it is enough to choose the proper index β to get virtual strains of the beam.

4 Finite elements

In the FEM approximation, shell and beam-compatible Lagrangian FE are developed and used to conduct the
linear static and stability analyses. Appropriate linear material laws for shell and beam are applied in the FEM
analysis. Numerical examples are limited to the cases where stiffeners are placed exactly at the shell FE edges
and they share nodes, so that problem of nonconforming shell and beam discretizations is not addressed in the
current study.

In numerical studies in the present paper, conforming finite elements used for shell and beam domain are
used (Fig. 4). The same number of degrees of freedom (3 translations and 3 rotation parameters) is present in
each shared node, and conforming definition of shape functions (a 3rd-order polynomial) is chosen for shell
and beam FE. Both types of elements are derived by the appropriate application of the theory described above.
What’s important, shell elements are equipped with so-called drilling rotation, which acts with respect to shell
normal. This rotation corresponds with beam rotation related to in-plane bending.

4.1 Shell and beam 6-parameter FE

In the current study, fully integrated CAMe16 shell finite elements are used to simulate shell structure. They
are 16-node C0 Lagrangian elements with 6 parameters (3 translations u, v, w, and 3 rotation parameters ψ1,
ψ2, ψ3) in each node. They were widely used in previous studies of unstiffened shells, e.g. [56–58]. They are
characterized by negligible hourglassing and locking effects without additional techniques implemented. The
constitutive relation for elastic, homogenous, isotropic Cosserat shells is discussed, e.g. in [57]. In the current
study, parameters E (Young’s modulus) and v (Poisson’s ratio) are various in numerical examples, while other
parameters are kept the same, namely N = √

2/2 and αt = 0.01.
In beam’s discretization, B6e4 finite elements are used. These are 4-node C0 Lagrangian elements. Their

application is shown, e.g. in [55], and similar FE was also developed by Smoleński in [51]. The constitutive
relation for the beam is given as

σ = Cε, (19)

where σ = {
N1 T2 T3 Ms M2 M3

}T and ε = {
ε11 ε12 ε13 κ11 κ2 1 κ31

}T denotes forces and strains, respec-
tively, while C denotes a constitutive matrix. Since in applications eccentric beams are often used (see Fig. 5),
relation (19) could be rearranged to form

σ = TT ĈTε, (20)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Burzyński

Fig. 5 Eccentric placement of a stiffener cross section

where

C = TT ĈT and T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 e3 −e2
0 1 0 e3 0 0
0 0 1 −e2 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

. (21)

In the present paper, the constitutive matrix for a beam with respect to its centre of mass is given in standard
form as

Ĉ = diag
{
E A GA GA GJs E J2 E J3

}
, (22)

where inertia moments are calculated with respect to axes t̂
0
2, t̂

0
3 (Fig. 5).

4.2 Solution techniques

A linearized equation of equilibrium (summedEqs. (10) and (12)) after discretization for a typical finite element
has a form:

K(e)
T Δq(e) = Δp(e) + j(e). (23)

In Eq. (23) symbols not mentioned before stand for: K(e)
T = K(e)

M + K(e)
G , j(e) = p(e) − r(e). Matrices and

vectors are calculated for each finite element and are aggregated to obtain global matrices and vectors, denoted
without (e) index.

To compute results for the linear analysis, a set of linear equations

KMΔq = Δp (24)

is solved to obtain translations and rotation parameters for the prescribed load. In (24) KM denotes the tangent
material stiffness matrix obtained in the reference (undeformed) configuration. The theory itself was not
linearized; thus, it is not the static linear analysis in the rigorous form.

In the stability analysis an eigenproblem in the form

(KM − λKG) v = 0 (25)

is solved, giving eigenvalues λ (critical load multipliers) and eigenvectors v (buckling modes). Matrices KM
and KG are calculated at a basis of the deformed configuration, resulting from the appropriate linear analysis.
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On FEM analysis of Cosserat-type stiffened shells

Fig. 6 Slab supported by a single column-overall view of the task

5 Numerical examples

All calculations are carried out in the author’s code written in Fortran. PARDISO sparse linear solver is
employed in the linear analysis, and FEAST sparse eigenproblem solver is used in the stability analysis.
Commonly, Young’s modulus is denoted as E , Poisson’s ratio as v, and a shell thickness as h.

5.1 Slab supported by a single column

The first example is not exactly a stiffened shell, but a slab with a tied perpendicular column. The task was
previously employed in research [59–62]. This analysis’s goal is to demonstrate that the connection between
finite elements of two types is properly modelled. Geometry is shown in Fig. 6. The slab’s thickness is constant
and equal to h = 1, and the column’s cross section is circular with radius r = 0.25. The whole structure is
made of a linear elastic material with parameters E = 106 and v = 0.3. Two load cases are considered: A
with concentrated loads and B with concentrated moments, both with equal resultant moment on the structure.
The discretization of the slab is regular and consists of 4× 4, 8× 8, or 16× 16 CAMe16 elements, while the
column is always divided into 4 B6e4 elements.

Expected deformation in both cases is achieved, namely uniform twisting of the column and almost rigid
rotation of the plate. The first results compared with reference are the drilling rotation value at the slab’s vertex,
and they are collected in Table 1. Values of translation of vertex in the direction of the acting force in case A
(or corresponding values in case B) are enlisted in Table 2. Obtained results are identical in both cases. Mesh
density variation does not cause a meaningful change in the absolute value of displacement, but, what is worth
noticing, the absolute difference between meshes 4× 4 and 8× 8 is smaller than between 8× 8 and 16× 16.
It could be explained by analysing drilling rotations values in the close neighbourhood of the connection point
of column and slab (Fig. 7). The value of the rotation of the middle node is dependent only on the column’s
properties and its FE discretization (the same in every analysis). A significant jump of rotation value between
the middle and next node is observed; it rises along with mesh refinement. Nonmonotonous distribution of
rotation angle values is observed approximately in the range of single FE and nearly constant value of the
angle in the far field.

5.2 Stiffened simply supported plate

In this example, simply supported plates with various dimensions ratios (square and rectangular), stiffeners
placement, and parameters are analysed (Fig. 8). The common attribute of these analyses is taking advantage
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S. Burzyński

Table 1 The supported slab, the drilling rotation angle values at slab’s vertex

4 × 4e16 8 × 8e16 16 × 6e16 [59]

Case A 0.4245 0.4286 0.4329 0.4238
Case B 0.4255 0.4286 0.4329 0.4240

Table 2 The supported slab, the reference displacements for different discretizations

4 × 4e16 8 × 8e16 16 × 6e16

Case A 2.122 2.129 2.139
Case B 2.122 2.129 2.139

Fig. 7 The supported slab, drilling rotation values

Fig. 8 The simply supported plate geometry, loads, stiffener’s cross section

of symmetry, so that torsional and lateral bending stiffnesses of beams, lying on symmetry planes, can be
neglected. This example tests the capability of the current theory and its implementation to predict the linear
behaviour in bending under distributed or concentrated transverse loads. Material and geometrical data are
listed in Table 3. In the square plate, only the x-stiffener is used and this plate is analysed in two cases: with a
concentric or an eccentric stiffener. In the rectangular plate, the x-stiffener and y-stiffener are different from
each other, but common for two analyses (with concentrated or distributed load).

The square plate with a single stiffener placed along the x-axis was analysed in papers [13,20–22,24–
26,32,37]. The second case, the rectangular plate with two orthogonal stiffeners, was the topic of research
in [13,18,20–22,26,37,38,63,64].
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On FEM analysis of Cosserat-type stiffened shells

Table 3 Simply supported plate material and geometrical data

Square plate Rectangular plate

E 1.7e7 3.0e7
v 0.3 0.3
B 1.0 30.0
L 1.0 60.0
h 0.01 0.25
P not applicable 1.0
q 1.0 10.0

Concentric Eccentric x-stiffener y-stiffener
bs 0.1 0.1 5.0 3.0
hs 0.01 0.01 0.5 0.5

Table 4 Square plate with single stiffener centre point deflection

References Concentric Eccentric

w × −104 w × −104

Present 1 × 1e16 4.699 1.461
2 × 2e16 4.635 1.462
4 × 4e16 4.638 1.476

Rossow et al. [13] 4.556* 1.367*
Palani et al. [20] 4.51** 1.54**
Kolli et al. [21] – 1.342*
Bedair 1997 [22] 4.39* 1.20*
Sadek et al. [24] 4.632* 1.424*
Wen et al. [25] 4.553* 1.335*
Peng et al. [26] 4.87** 1.36**
Nguyen-Thoi et al. [32] 4.498* 1.431*
Hosseini and Soltani [37] 4.8363* 1.3647*

*Explicitly given in reference
**Read from a graph in reference

Table 5 Rectangular plate with two eccentric stiffeners centre point deflection

References Distributed load Concentrated load

w × −103 w × −103

Present 1 × 1e16 7.616 1.066
2 × 2e16 8.133 1.121
4 × 4e16 8.345 1.152

Rossow et al. [13] 8.850* 1.270*
Deb et al. [18] 8.67** 1.49**
Palani et al. [20] 14.95** –
Kolli et al. [21] 8.702* 1.240*
Bedair [22] 8.00* 1.12*
Peng et al. [26] 8.70** 1.30**
Tamijani et al. [63] 9.75** –
Hosseini and Soltani [37] 8.875** –
Zhang and Xu [38] 8.91265* 1.23191*
Cunha et al. [64] 11.2** –

*Explicitly given in a reference
**Read from a graph in a reference

The results of the displacement of the centre point are collected in Tables 4 and 5. It is worth noticing that
some of the reference results are obtained from graphs by their digitalization. Present results are given for 3
different discretizations. The obtained results are comparable with those from literature.

Additionally, graphs of displacements along selected paths are collected in Figs. 9 and 10.When the path is
placed along stiffener, every used discretization (including discretization with the single shell and single beam
elements) gives almost the same result. When paths located on the unstiffened area are analysed, the simplest
discretization is revealed as not sufficient. This is more visible in cases with distributed loads. Summarizing,
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S. Burzyński

Fig. 9 Simply supported square plate deflections along different paths

Fig. 10 Simply supported rectangular plate deflections along different paths

when exactly these or similar tasks are analysed, not only middle point deflection should be compared with
reference values, but also deflections along paths placed on unstiffened areas, to check both stiffened and
unstiffened shell bending action.

5.3 Buckling of a plate with a single stiffener

In the third example, a wide range of parametric analysis of plate buckling is carried out. Rectangular, skew,
unstiffened, and stiffened plates with various stiffener parameters are taken into account. The obtained results
are compared to those taken from [11] (analytical solutions), [15] (Rayleigh–Ritz method with B-spline func-
tions), and [65] (FEM method, based on Mindlin theory). For unstiffened skew plates, reference values of
critical load are taken from [66] (analytical results for thin shells, span to thickness ratio equal to 1000).
Although results will be presented as nondimensional values, it is worth to enlist explicit values of dimensions
and loads, boundary conditions, and material parameters, to make further comparisons possible. Therefore, as
shown in Fig. 11, dimensions are a = b = 1, t = 0.01, and linear elastic behaviour is described by Hooke’s
law with parameters E = 2e11, v = 0.3. The skew angle is denoted as ϕ (equal to zero for the rectangular
plate).

Motion in the z-direction is prohibited on the whole edge, at two corners displacement in y-directions
is equal to zero, and finally at one of the corners displacements along the x-axis are prohibited. Two edges
of the plate are loaded in-plane with line loads heading in opposite directions. In order to induce a uniform
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On FEM analysis of Cosserat-type stiffened shells

Fig. 11 Buckling of a skew plate with a single stiffener

Table 6 Critical load multiplier for the unstiffened plate with various skew angles

Skew angle Present [65] [66]

4 × 4 8 × 8 16 × 16

0◦ 3.993 3.988 3.981 4.00 4.0000
6.266 6.234 6.226

11.366 11.094 11.070
15◦ 4.392 4.378 4.367 4.77 4.3938

6.748 6.701 6.690
11.825 11.507 11.479

30◦ 5.960 5.864 5.810 6.169 5.8969
8.527 8.391 8.363

14.072 13.448 13.396
45◦ 10.602 9.933 9.610 11.00 10.1032

13.283 12.578 12.481
21.937 19.273 19.052

uniaxial state of stress also in stiffened plates, additional point loads for concentric stiffeners and point loads
and moments for eccentric stiffeners are needed. Values of reference loads are qref = π2ED/b2 (where
D = Eh3

12(1−v2)
is plate bending stiffness), Pref = Asqref/t (where As is the cross-sectional area of the stiffener),

Mref = Prefe (where e is stiffener’s eccentricity). Additionally, stiffener bending stiffness around local axis 2
is denoted as E J2 , and its torsional stiffness is given as GJs (G = E

2(1+v)
is Kirchhoff modulus). Stiffness for

bending in the second direction is neglected, just like eccentricity. It is assumed that the total cross-sectional
area of the stiffened plate is a sum of bt and As . For clarity, a constitutive matrix for beam could be given in
explicit form as

C =

⎡
⎢⎢⎢⎢⎢⎣

E As 0 0 0 E Ase 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 GJs 0 0

E Ase 0 0 0 E J2 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(26)

FE discretizations are denoted as M × N , where M and N are the numbers of shell elements along the x- and
y-axis, while M denotes also the number of beam elements used.

Tables 6, 7, 8, 9, 10, 11, and 12 present current and reference values of buckle load multiplier λcrit =
qcrit/qref . In the first test, the buckling load for the unstiffened plate with various skew angles was analysed
(Table 6). Present results reveal better correspondence with those obtained by the analytical method [66] than
those from reference FEM solutions [31,36,63,65]. For present results, 1st, 2nd, and 3rd load multipliers are
presented in a single table’s cell, while reference results consist of 1st load multipliers.

Significant differences have been noticed for plates with skew angle 30◦ and 45◦ , both in unstiffened
(Table 6) and stiffened cases (Table 10). In other cases, good agreement between the present and reference
solutions has been obtained. It isworth to note that enlisting 2nd and 3rd critical loads is an original contribution,
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S. Burzyński

Table 7 Critical load multiplier for the rectangular plate with various stiffener parameters

E J2/Db As/bt Present [65] [31], S9 [63]

4 × 4 8 × 8 16 × 16

5.0 0.05 11.794 11.731 11.708 11.72 11.87 11.71
16.007 15.931 15.902
18.994 18.698 18.654

0.10 11.008 10.968 10.956 10.93 11.00 10.94
16.007 15.931 15.902
18.994 18.698 18.654

0.20 9.649 9.625 9.618 9.70 9.759 9.61
16.007 15.931 15.902
18.718 18.458 18.418

10.0 0.05 16.007 15.931 15.902 16.0 16.00 15.85
18.147 17.972 17.915
18.994 18.698 18.654

0.10 16.007 15.931 15.902 16.0 16.00 15.86
17.235 17.122 17.095
18.994 18.698 18.654

0.20 15.483 15.414 15.399 15.8 14.91 15.37
16.007 15.931 15.902
18.994 18.698 18.654

15.0 0.05 16.007 15.931 15.902 16.0 16.00 15.86
18.994 18.698 18.654
21.652 21.288 21.208

0.10 16.007 15.931 15.902 16.0 16.00 15.86
18.994 18.698 18.654
21.700 21.367 21.307

0.20 16.007 15.931 15.902 16.0 16.00 16.87
18.994 18.698 18.654
20.376 20.245 20.222

Table 8 Critical load multiplier for the stiffened skew plates, skew angle variation (As/bt = 0.1, E J2/Db = 10.0)

Skew angle Present [65] [36]

4 × 4 8 × 8 16 × 16

0◦ 16.007 15.931 15.902 16.00 16.00
17.235 17.122 17.095
18.994 18.698 18.654

15◦ 16.999 16.821 16.768 n/a n/a
19.072 18.910 18.879
20.412 19.983 19.925

30◦ 20.418 19.967 19.805 20.90 19.96
25.320 24.283 24.145
25.898 24.700 24.543

45◦ 29.202 27.914 27.338 29.89 27.68
43.223 36.932 36.052
44.648 37.700 36.781

deformationmodes paired with those are usually more complicated than 1st one, and then it is more demanding
for a used method to calculate them.

5.4 Buckling of an axially loaded cylindrical panel

In this example, the buckling of axially loaded of panel curved in one direction is analysed. The aim and scope
of the simulation are similar to the previous example investigation of critical loads and corresponding modes
in various parametric studies. Geometry, FEM discretization and boundary conditions are shown in Fig. 12.
Two types of boundary conditions are used: in type A, all outer edges are supported in the z-direction, in type
B in the radial direction. Additional boundary conditions are used to prevent rigid motions. Axial compression
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On FEM analysis of Cosserat-type stiffened shells

Table 9 Critical load multiplier for the stiffened skew plates, skew angle and E J2/Db ratio variation (As/bt = 0.1)

Skew angle E J2/Db Present [65]

4 × 4 8 × 8 16 × 16

0◦ 0.0 3.323 3.318 3.313 4.00
5.191 5.164 5.157
9.322 9.093 9.072

2.5 7.356 7.341 7.333 7.32
15.836 15.634 15.601
16.007 15.931 15.902

5.0 11.008 10.968 10.956 10.93
16.007 15.931 15.902
18.994 18.698 18.654

7.5 14.294 14.220 14.201 13.90
16.007 15.931 15.902
18.994 18.698 18.654

8.75 15.806 15.713 15.690 15.74
16.007 15.931 15.902
18.994 18.698 18.654

10.0 16.007 15.931 15.902 16.00
17.235 17.122 17.095
18.994 18.698 18.654

45◦ 0.0 8.399 7.886 7.644 11.00
10.163 9.650 9.585
16.606 14.639 14.465

2.5 15.152 14.491 14.152 15.40
30.866 28.846 28.463
42.948 36.770 35.873

5.0 20.147 19.316 18.913 20.60
41.254 35.787 34.948
43.147 36.870 35.972

7.5 24.814 23.780 23.300 25.44
43.192 36.906 36.014
43.937 37.244 36.332

8.75 27.043 25.888 25.363 n/a
43.208 36.919 36.032
44.380 37.522 36.604

10.0 29.202 27.914 27.338 29.89
43.223 36.932 36.052
44.648 37.700 36.781

is applied as distributed loads placed along curved edges. The reference value of the load is qref = π2ED/B2,
and in latter considerations buckling load multiplier λcrit = qcrit/qref is given as a result.

The first step of the study is the stability analysis of the unstiffened cylindrical shell. This type of problem
was analysed, e.g. in studies [8–11,14,27,33,67–73].Attentionmust be paid to the definition of nondimensional
parameters that represent the curvature and dimension of the panel. Two definitions are used among papers:

Z = b2

Rh
and Zb = b2

Rh

√
1 − v2. (27)

Explicit shells dimensions used in the present study are a = 1000, a/b = 1.0, h = 10.0, E = 210,000,
v = 0.3, while R is calculated from relation (27).

Results collected in Table 13 show good agreement between the present and reference results from
paper [72]. The current investigation is extended to the first 3 values of critical load multiplier comparing
to reference. Additionally, the influence of boundary conditions is studied for the most curved panel, showing
minor differences. For further studies, shell discretization 8 × 8e16 is chosen. For stiffened shells, for both
longitudinal and circumferential stiffeners, 8 4-node B6 elements are used.
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S. Burzyński

Table 10 Critical load multiplier, skew angle, and GJs/Db ratio variation

Skew angle GJs/Db Present [65]

4 × 4 8 × 8 16 × 16

0◦ 0.0 16.007 15.931 15.902 16.00
17.235 17.122 17.095
18.994 18.698 18.654

2.5 17.235 17.122 17.095 17.15
20.952 20.398 20.176
21.021 20.700 20.643

5.0 17.235 17.122 17.095 17.15
21.021 20.700 20.643
21.691 21.142 20.960

10.0 17.235 17.122 17.095 17.15
21.021 20.700 20.643
22.210 21.735 21.521

45◦ 0.0 29.202 27.914 27.338 29.89
43.223 36.932 36.052
44.648 37.700 36.781

2.5 31.420 29.502 28.729 40.40
54.766 43.453 41.906
58.049 44.750 43.065

5.0 32.724 30.264 29.329 45.49
54.864 43.555 42.006
59.806 45.347 43.568

10.0 34.232 31.022 29.896 n/a
54.906 43.606 42.056
60.838 45.660 43.831

Among the years, various formulas were developed to predict the buckling of a cylindrical panel. Timo-
shenko and Gere proposed the following formula

λT imoshenko
crit =

⎧⎪⎨
⎪⎩
4 + 3

(
1−v2

)
π4 Z2 if Z <

2πβ
h

4

√
a2h2

12(1−v2)

4
√

3(1−v2)
π2 Z otherwise

, (28)

with the assumption of deformation as a product of trigonometric functions in both directions. Stowell in the
report [8] cited equation given by Redshaw in 1934

λRedshawcrit = 2

⎛
⎝1 +

√
12
(
1 − v2

)
π4 Z2

⎞
⎠ , (29)

and proposed new formula

λStowellcrit = λ∞
2

⎛
⎝1 +

√
1 + 48

(
1 − v2

)
π4λ2∞

Z2

⎞
⎠ , (30)

where λ∞ is buckling coefficient for the flat shell (λ∞ = 4 for rectangular, simply supported plate). Stowell
assumed deformation given by multiplication of trigonometric (longitudinal direction) and exponential func-
tions (chordwise direction). The same formula was obtained by Tran [73], by analysis of limit states (plate
when Z → 0 and cylinder when Z → ∞).

Furthermore, Domb and Leigh [71] proposed an empirical curve based on nonlinear FEM analysis of
aircraft fuselage panels:

λ
Domb& Leigh
crit =

{
10
∑3

i=0 ci (log Zb)
i
if 1 ≤ Zb ≤ 23.15

c (Zb)
d if 23.15 ≤ Zb ≤ 200

, (31)

where c0 = 0.6021, c1 = 0.005377, c2 = 0.192495, c3 = 0.00267, c = 0.4323, d = 0.9748.
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On FEM analysis of Cosserat-type stiffened shells

Table 11 Buckling modes, skew angle, and GJs/Db ratio variation (16 × 16 discretization)

sGJ Db 1st mode 2nd mode 3rd mode
skew angle 0°

0.0

2.5

5.0

10.0

skew angle 45°
0.0

2.5

5.0

10.0

Finally, Martins and co-workers ([67,72] proposed few formulas for buckling coefficient, e.g. for short
panels under uniform compression. In [72] formula

λMartins2013
crit = A

B + 1
(32)

is given, where

A =
{
8.2 + 0.0704Z + 0.0163Z2 if 0 < Z ≤ 23
3.214 + 0.5976Z + 0.0028Z2 if 23 < Z ≤ 100

(33)

and

B =
{
1.05 − 0.0002Z + 0.0003Z2 if 0 < Z ≤ 23
0.961 + 0.0104Z + 0.5976Z if 23 < Z ≤ 100

. (34)

In paper [67] simple formula

λMartins2016
crit = 2

⎛
⎝1 +

√
π6 + 12

(
π2 − 8

)
Z2

π3

⎞
⎠ . (35)
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Table 12 Critical load multiplier, eccentricity, and E J2/Db ratio variation

e/t E J2/Db Present [65]

4 × 4 8 × 8 16 × 16

0.0 2.5 7.957 7.934 7.923 7.9307
16.007 15.931 15.902
16.210 15.981 15.934

5.0 11.794 11.731 11.708 11.72
16.007 15.931 15.902
18.994 18.698 18.654

10.0 16.007 15.931 15.902 16.00
18.147 17.972 17.915
18.994 18.698 18.654

1.25 2.5 7.732 7.657 7.578 7.756
15.642 15.189 14.830
16.007 15.931 15.901

5.0 11.486 11.248 10.993 11.54
16.007 15.931 15.901
18.772 18.132 17.608

10.0 16.007 15.931 15.901 16.00
17.577 16.889 16.167
18.994 18.698 18.654

2.50 2.5 7.182 7.110 7.045 7.234
14.320 13.885 13.574
16.007 15.931 15.901

5.0 11.008 10.786 10.554 11.087
16.007 15.931 15.901
18.342 17.707 17.196

10.0 16.007 15.931 15.862 16.00
17.217 16.553 15.901
18.994 18.698 18.653

4.00 2.5 6.006 5.924 5.866 7.003
9.676 9.426 8.841

12.080 10.130 9.157
5.0 9.981 9.788 9.603 10.112

16.007 15.931 15.901
17.090 16.455 15.977

10.0 16.007 15.832 15.204 16.00
16.445 15.931 15.901
18.994 18.698 18.652

was presented.
The graph in Fig. 13 shows data generated by formulas (28)–(35), compared to present results obtained

by FEM and linear buckling analysis. The present results are in good agreement with reference curves. From
Z = 1 up to Z = 10 best convergence is with Martins’ formula (10), then the transition zone begins, and for
Z ≥ 50 Stowell’s (30) and Domb’s and Leigh’s (31) formulas are in best agreement.

From this point, attention is paid to stiffened curved cylindrical panels. Figures 14 and 15 consist of results
obtained for stiffened panels, with different stiffener types and panel’s curvatures. Buckling modes are shown
for curvature parameters in range Z ∈ 〈101.0; 102.0〉. As in the unstiffened panel case, 1st mode shape changes
gradually. For very stiff longitudinal stiffener this change is less pronounced, while in other cases it is clearly
visible.

The obtained data points were used to determine empirical design curves obtained with data fitting. A
least-square optimization algorithm was used. Those curves are based on the formula

λcrit = c0 +
√
c1 + c2Z2 (36)

and values of coefficients are enlisted in Table 14 along with basic fitting statistics.

5.5 Buckling of a box section

In the last numerical example, the buckling of a box section is analysed. A literature survey and description
of references where the selected design problems of box sections are addressed could be found in the paper
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On FEM analysis of Cosserat-type stiffened shells

Fig. 12 Axially loaded cylindrical panel

Table 13 Critical load multiplier for the unstiffened cylindrical shells

Present [72]

4 × 4 8 × 8 16 × 16

Z = 1 BCs type A 4.005 3.999 3.992 4.009
6.274 6.242 6.234

11.373 11.101 11.077
Z = 25 BCs type A 9.728 9.597 9.579 9.602

11.245 11.141 11.127
17.117 16.907 16.888

Z = 100 BCs type A 37.390 35.124 34.428 34.497
42.294 40.292 39.815
44.987 42.381 41.800

Z = 100 BCs type B 37.140 34.897 34.205 –
41.573 39.654 39.196
44.297 41.775 41.210

Table 14 Design curves for buckling of stiffened cylindrical panels, data fitting parameters

λcrit = c0 +
√
c1 + c2Z2 Residual sum of squares Coef. of determination

c0 c1 c2

Unstiffened −0.1383 16.36 0.1332 0.116 1.000
Longitudinal E J2/Db = 1.0 −0.5064 28.10 0.1715 1.960 0.999
Longitudinal E J2/Db = 10.0 −2.667 341.5 0.1599 0.057 1.000
Chordwise E J2/Db = 1.0 −0.06661 35.57 0.1319 0.062 1.000
Chordwise E J2/Db = 10.0 2.207 14.65 0.1333 1.230 0.999
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S. Burzyński

Fig. 13 Critical multipliers for unstiffened cylindrical panels with various curvatures

Fig. 14 Buckling multipliers for cylindrical panels with a longitudinal stiffener with various curvatures

by Bedair [35]. To the best author’s knowledge, there are no reference examples or design expressions for
buckling of box sections in the scientific literature. Critical loads could be estimated if the box section is treated
as a set of isolated plates with appropriate boundary conditions. The current example is provided to fill this
gap, as a reference result for further analysis.

The box section (Fig. 16) with dimensions B = 50, H = 100, L = 200, and uniform thickness h = 2
is considered. Figure 16 also describes boundary conditions which prevent rigid motions. Two separate load
cases are considered, namely compression and torsion. In both cases point loads are defined by Pref = 104

and load multiplier λ. To avoid problems with stress concentrations under point loads on free upper and lower
edges of the box is stiffened by quasi-rigid rims, made of beams with cross section 40x40.

The box is stiffened in two independent ways: longitudinal (two stiffeners on opposite sides of the box) or
circumferential (four stiffeners which form a rim around the box). Both stiffeners are placed eccentrically, on
the inner side of the box, with cross-sectional dimensions hs × bs (various in the following analysis). In the
present analysis, the box is unstiffened or stiffened with only one type of stiffener. The whole structure is built
of a linear elastic material with constants E = 1.07e5, v = 0.34.

Shell discretization consists of 2x4x8 CAMe16 finite elements. Stiffeners are placed exactly on node lines,
discretized with an appropriate number of 4-node B6 finite elements.
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On FEM analysis of Cosserat-type stiffened shells

Fig. 15 Buckling multipliers for cylindrical panels with a chordwise stiffener with various curvatures

Fig. 16 The box section geometry, discretization, loads

Thefirst analysed case is the compression test. Results (1st, 2nd, and 3rd critical loadmultipliers andmodes)
for the unstiffened box section, and two cases of stiffeners are collected in Tables 15 and 16. Longitudinal
stiffeners have a significant influence on buckling load, with over 3 times increase of 1st buckling load with
the addition of 5.3% of total structure volume. For circumferential stiffener, an 18% increase of buckling load
is achieved for the biggest stiffener.

The second analysis is devoted to the case of torsion. Critical load multipliers and modes (1st, 2nd, and
3rd mode) are collected in Tables 17 and 18. As previously, longitudinal stiffeners have a bigger influence on
critical load multipliers, up to 232% increase of first critical load.

The last study is a case of combined loading in which both compression and torsion loads are applied
simultaneously. Both of them are proportional to the load multiplier λ. Stiffeners with dimensions hs = 8,
bs = 2 are used. Results are presented in the interaction curves in Fig. 17, where loads are normalized with
respect to buckling loads in pure compression and pure torsion.
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Table 15 The box section in compression with circumferential stiffener, 1st, 2nd, and 3rd critical load multiplier λcrit

Unstiffened 
Circumferential, 2sb =

4sh = 8sh = 16sh =
3.454

3.737

3.870

3.691

4.113

4.297

3.693

4.119

4.373

4.081

4.453

4.516

Table 16 The box section in compression with longitudinal stiffener, 1st, 2nd, and 3rd critical load multiplier λcrit

Unstiffened 
Longitudinal, 2sb =

4sh = 8sh = 16sh =
3.454

3.737

6.156

6.269

7.705

8.061

11.431

11.545

3.870 6.751 9.004 11.619

6 Conclusions

In the present paper theoretical background and FEM application of stiffened shell are presented. The theory
should be considered as exact theory, since it takes advantage of the exact reduction of 3D equilibrium equations
to 2D equilibrium equations, without any kinematic assumptions. The virtual work principle is derived since
it is necessary for FEM formulation.
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Table 17 Box section in torsion with circumferential stiffener, 1st, 2nd, and 3rd critical load multiplier λcrit

Unstiffened 
Circumferential, 2sb =

4sh = 8sh = 16sh =
5.048

5.180

5.248

6.685

6.787

6.929

7.008

7.030

7.340

7.547

7.606

8.065

Table 18 Box section in torsion with longitudinal stiffener, 1st, 2nd, and 3rd buckling load multiplier λcrit

Unstiffened 
Longitudinal, 2sb =

4sh = 8sh = 16sh =
5.048

5.180

5.248

6.794

6.954

7.338

7.331

7.499

8.309

11.707

11.997

12.762

The present paper also consists of a wide range of FEM analyses, including static linear response and
buckling problems. Results are compared to those obtained from previous studies with excellent agreement
achieved. Novel results are presented, especially including those from the analysis of branched shells, which
were seldom investigated so far. Some design formulas for stability analysis of stiffened curved panels and
box sections have been proposed at the basis of obtained results.
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Fig. 17 Normalized results for buckling analysis of box section with combined loading
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