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1. Introduction

In [9] Górniewicz and Granas defined a convenient category which allows to
treat fixed point problems for a broad class of multivalued maps as coinci-
dence problems for single-valued maps. Their notion of morphisms is still the
object of interest in various aspects (see, e.g., [1,12,16–18,20,21]). The aim
of this paper is to define a homotopy notion and to check its basic properties
in their category. In particular, we prove the transitivity property of the ho-
motopy what seems new (comp. the remark before Lemma 3.4. in [1, p. 602]).
Note that in some papers, a different notion of homotopy is considered [8,13].
We prove some basic properties of the homotopy and also introduce a homo-
topy invariant—coincidence point index. This yields some known theorems
on coincidence and fixed points (comp., e.g., [5,7,9,14,19,24]).

The index was in fact defined in [5] for a broader class of multivalued
maps but then it appeared to be a set of indices. Note that our notion of
homotopy appears to be not the usual one in the case of single-valued maps.
It seems to be closer to the homology relation. Nevertheless, it is satisfactory
from the point of view of index theory.
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2. The Górniewicz–Granas category of morphisms

By a space, we understand a Hausdorff topological space and by a map—a
continuous transformation.

Definition 2.1. A map p : X → Y is a Vietoris map provided

1. p is onto and closed (an image of a closed set is a closed set),
2. for each y ∈ Y p−1(y) is a compact acyclic set (i.e., all its reduced Čech

homology groups with rational coefficients are zero).

We will denote Vietoris maps by a double arrow p : X =⇒ Y . We make
use of the following basic properties of them. Observe that Vietoris maps are
proper maps (i.e., the preimage of a compact set is compact).

Theorem 2.2. (see [11, Ch. VI §19 Thm 3.2]) If p : X =⇒ Y then the in-
duced linear map p∗ : H∗(X) → H∗(Y ) is an isomorphism. The composite
of Vietoris maps is also a Vietoris map. The pullback of a Vietoris map is a
Vietoris map.

We use the Čech homology theory with compact carriers here and there-
after.

Given two spaces X and Y , we consider the set of all diagrams of the
form X Z Y.

p q
Two such diagrams are said to be equivalent

if there are maps f : Z → Z ′ and g : Z ′ → Z such that the following two
diagrams commute

Z Z

X Y X Y

Z ′ Z ′

f

p q p q

p′ q′

g

p′ q′

.

Clearly, this is an equivalence relation (see [9]). Let us note that in [8,13] a
different (more restrictive) relation is considered. The maps f, g are required
to be homeomorphisms there.

Definition 2.3. ([9]) An equivalence class of a diagram (p, q) with respect to
the above relation is called a morphism and is denoted by

ϕ = {X Z Y } : X Y.
p q

Given two morphisms ϕ = {X Z Y } : X Y
p q

and

ψ = {Y Z ′ W} : Y W
p′ q′

, we write a commutative
diagram:
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Z � Z ′ Z ′ W

Z Y

X

p̄

q̄

p′

q′

q

p

in which Z � Z ′ = {(z, z′) ∈ Z × Z ′; q(z) = p′(z′)}, p̄(z, z′) = z and
q̄(z, z′) = z′. Then, we define the composite of ϕ and ψ to be a mor-

phism ψ ◦ ϕ = {X Z � Z ′ W} : X W
p◦p̄ q′◦q̄

(p̄ is Vietoris
being the pullback of p′). It is easy to check that the above definition is
independent of the choice of representatives. The law of composition al-
lows to regard the collection of morphisms on spaces as a category M. The
category of usual single-valued maps regarded as morphisms of the form
{X X Y }id is a subcategory of M. Górniewicz and Granas

[9] established that the Čech homology functor extends to the category M.
One easily see that morphisms can be treated as multivalued maps. We

define an image of a point as the set ϕ(x) = q
(
p−1(x)

)
and it is obviously

independent of the choice of representatives. We say that a morphism deter-
mines a multivalued map ϕ. Such a map ϕ is upper-semicontinuous (see, e.g.,
[19] for a detailed but easy proof). A broad class of multivalued maps can be
viewed in this way. A multivalued map ϕ : X � Y is acyclic provided it is
u.s.c. and the image of each point ϕ(x) is an acyclic compact set.

Proposition 2.4. A multivalued map ϕ : X � Y is determined by a morphism
if and only if it is a composition of acyclic maps.

Proof. Every acyclic map is determined by a morphism of the form

ϕ = {X Γϕ Y }π1 π2 ,

where Γϕ is the graph of ϕ, Γϕ = {(x, y) ∈ X × Y ; y ∈ ϕ(x)} and π1, π2

are projections. Therefore, a composition of acyclic maps is determined by a
composition of the above morphisms.

Now, given any morphism ϕ = {X Z Y }p q
, it is sufficient

to notice that a map ψ : X → Z,ψ(x) = p−1(x) is acyclic and ϕ is a
composition ϕ = q ◦ ψ. �

Remark 2.5. In [7], a broader class of admissible maps was considered. Those
were maps admitting selections which were determined by morphisms.

Example. A multivalued map may be determined by different morphisms.
Consider an acyclic map ϕ̃ : Sn → Sn, ϕ̃(x) =

{
y ∈ Sn; ‖y − x‖ ≤ 3

2

}
,

where Sn = {x ∈ R
n; ‖x‖ = 1}.

It is determined by a morphism ϕ = {Sn Γϕ̃ Sn}.
π1 π2 There-

fore, the square ϕ2 = ϕ ◦ ϕ determines a map ψ̃ : Sn → Sn, ψ̃(x) = Sn. But
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ψ̃ is also determined by any morphism of the form ψ2,

ψ = {Sn Γϕ Sn}π1 f◦π2
,

where f : Sn → Sn is a map of degree k.
It is easily seen that ϕ∗ : H∗(Sn) → H∗(Sn) is an identity isomorphism

and so is ϕ2
∗. But ψ∗ is not an identity. Therefore, ϕ2 and ψ2 are different

morphisms.

3. Homotopy of morphisms

There are various ways of defining a homotopy relation in the category M.
We have chosen the one which seems to be the most straightforward and
has been used by some authors (see, e.g., [1,4,7]), though it was not obvious
whether it was an equivalence relation.

Definition 3.1. Two diagrams

X Z Y
p q

and X Z ′ Y
p′ q′

are homotopic if there is a diagram X × [0, 1] Z̄ Y
p̄ q̄

and
maps f0, f1 such that the following diagram commutes:

X Z

X × [0, 1] Z̄ Y

X Z ′

i0

p

f0
q

p̄ q̄

i1 f1

p′ q′

.

Here i0(x) = (x, 0), i1(x) = (x, 1).

Proposition 3.2. The homotopy relation is an equivalence relation in the set
of diagrams from X to Y .

Proof. The only non-obvious property is the transitivity. Assume we have
two commutative diagrams:

X Z0 X Z1

X × [0, 1] Z Y X × [0, 1] Z̄ Y

X Z1 X Z2

i0

p0

f0
q0 i0

p1

f2
q1

p q p̄ q̄

i1 f1

p1

q1 i1

p2

f3 q2

,

where ik(x) = (x, k).
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0

1

-1

Z̄

Z1

Z

Figure 1. The space K

We have the mapping cylinders:

Zf1 = Z1 × [−1, 0] ∪ Z/∼ , (x,−1) ∼ y iff y = f1(x), x ∈ Z1, y ∈ Z;

Zf2 = Z1 × [0, 1] ∪ Z̄/∼ , (x, 1) ∼ y iff y = f2(x), x ∈ Z1, y ∈ Z̄.

Now, we define a space K = Zf1 ∪Z1 Zf2 which can be seen schematically
in Fig. 1.

Define a map p̃ : K =⇒ X × [−1, 1] by a formula

p̃([x]) =

⎧
⎨

⎩

(p1(x), t) for [x] = [(x, t)], −1 ≤ t ≤ 1
(π1(p(x)),−1) for x ∈ Z
(π1(p̄(x)), 1) for x ∈ Z̄

,

and a map q̃ : K −→ Y by

q̃([x]) =

⎧
⎨

⎩

q1(x) for [x] = [(x, t)], x ∈ Z1

q(x) for x ∈ Z
q̄(x) for x ∈ Z̄

.

It follows immediately from the definition of K that p̃, q̃ are correctly defined
continuous maps. Moreover, p̃ is a Vietoris map since the preimages of points
are exactly the same as for p1 whenever −1 < t < 1, and for t = 1, t = −1
the maps π1 ◦ p and π1 ◦ p̄, which are Vietoris maps, respectively.

X Z0

X × [−1, 1] K Y

X Z2

i−1

p0

f̃0
q0

p̃ q̃

i1 f̃3

p2

q2

,

where f̃0(x) = j ◦ f0(x), f̃3(x) = j̄ ◦ f3(x), with inclusions j : Z ↪→ K,
j̄ : Z̄ ↪→ K. �

Proposition 3.3. Assume that there exists a map f : Z → Z ′ such that the
following diagram commutes
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Z

X Y

Z ′

p

f

q

p′ q′

.

Then, the diagrams X Z Y,
p q

X Z ′ Y
p′ q′

are
homotopic.

Proof. It is sufficient to write a commutative diagram

X Z

X × [0, 1] Zf Y

X Z ′

i0

p

f
q

p̄ q̄

i1 j

p′ q′

,

where the maps are defined by formulas:

p̄([x]) =
{

(p(x), t) for [x] = [(x, t)], x ∈ Z, t ∈ [0, 1]
p′(x) for x ∈ Z ′ ,

q̄([x]) =
{

q(x) for [x] = [(x, t)], x ∈ Z, t ∈ [0, 1]
q′(x) for x ∈ Z ′ ,

f̄(x) = [f(x)], j(x) = x. It is easily seen that p̄, q̄ are well defined. �

Definition 3.4. Two morphisms

ϕ = {X Z Y }p q
and ψ = {X Z ′ Y }p′ q′

are homotopic if there is a morphism χ = {X × [0, 1] Z̄ Y }p̄ q̄

and maps f0, f1 such that the following diagram commutes:

X Z

X × [0, 1] Z̄ Y

X Z ′

i0

p

f0
q

p̄ q̄

i1 f1

p′ q′

.

Here i0(x) = (x, 0), i1(x) = (x, 1).

The following proposition is an immediate consequence of Propositions 3.2
and 3.3:

Proposition 3.5. The definition 3.4 does not depend on the choice of repre-
sentatives.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Vol. 22 (2020) On homotopies of morphisms Page 7 of 17 91

The following property is an immediate consequence of the definition of
homotopy:

Proposition 3.6. Homotopic morphisms induce the same homology homomor-
phism.

Given three spaces X,Y,Z and maps α : X → Z, β : Y → Z we denote
by X �

α,β
Y their fiber-product X �

α,β
Y = {(x, y) ∈ X × Y ; α(x) = β(y)}.

Proposition 3.7. Compositions of homotopic morphisms are also homotopic.

Proof. The proof is a diagram game. First, assume that

ϕ0 = {X Z0 Y },
p0 q0 and ϕ1 = {X Z1 Y }p1 q1

are homotopic and let ψ = {W Z X}.
p q

Define a morphism ψ̃ = {W × [0, 1] Z̃ X × [0, 1]},
p̃ q̃

where

Z̃ = Z × [0, 1], p̃(x, t) = (p(x), t) and q̃(x, t) = (q(x), t). We can write the fol-
lowing commutative diagram

W Z �
q,p0

Z0

W × [0, 1] Z̃ �̃
q,p̄

Z̄ Y

W Z �
q,p1

Z1

i0

p◦π1

f q0◦π2

p̃◦π1 q̄◦π2

i1 g

p◦π1

q1◦π2

.

Here f(x, y) = ((x, 0), f0(y)), g(x, y) = ((x, 1), f1(y)), where fi are the maps
from the diagram defining a homotopy between ϕ0 and ϕ1 (see Def. 3.4), and
π1(x, y) = x, π2(x, y) = y. One easily checks that the above diagram satisfies
the conditions of 3.1 and thus the morphisms ϕ0◦ψ and ϕ1◦ψ are homotopic.

Now let ϕ0, ϕ1 be as above and ψ = {Y Z W}.
p q

Con-
sider the following diagram:

X Z0 �
q0,p

Z

X × [0, 1] Z̄ �̄
q,p

Z W

X Z1 �
q1,p

Z

i0

p0◦π1

f̃0
q◦π2

p̄◦π1 q◦π2

i1 f̃1

p1◦π1

q◦π2

,

where πi are projections and f̃i(x, y) = (fi(x), y). The above diagram defines
a homotopy joining morphisms ψ ◦ϕ0 and ψ ◦ϕ1. Now we use the transitivity
property of homotopy to end the proof. �
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4. Acyclic maps and homotopy of morphisms

As the Example 2 shows, different morphisms may determine the same mul-
tivalued map. In view of 3.6 these morphisms may even be not homotopic in
general. The reason for it was the fact that the determined map in 2 was not
acyclic.

Proposition 4.1. If ϕ : X � Y is an acyclic map then every two morphisms
which determine a selection of ϕ, must be homotopic.

Proof. Consider the graph Γϕ = {(x, y) ∈ X × Y ; y ∈ ϕ(x)} and maps
pϕ(x, y) = x, qϕ(x, y) = y. Then pϕ : Γϕ → X is a Vietoris map. Assume

that ψ = {X Z Y }p q
determines a selection of ϕ (i.e. for each

x ∈ X we have an inclusion ψ(x) ⊂ ϕ(x)). Then we have a commutative
diagram

Γϕ

X Y

Z

pϕ qϕ

f

p q

,

where f(x) = (p(x), q(x)). The assertion follows from 3.3. �

Corollary 4.2. If two morphisms ϕ0, ϕ1 : X → Y have a common acyclic
support (i.e., an acyclic map such that ϕ0, ϕ1 determine its selections) then,
the induced homology homomorphisms are the same.

Proposition 4.3. There exist non-homotopic single-valued maps which are ho-
motopic as morphisms.

Proof. It is enough to consider a space X which is acyclic but not contractible.
Then, the identity map id : X → X is not homotopic to any constant map
y0(x) = y0. But they are homotopic as morphisms since they are selections
of the acyclic map ϕ : X � X,ϕ(x) = X.

5. A local coincidence index for morphisms

In [5], an index theory for a broad class of multi-valued maps including ad-
missible maps as well some maps with non-connected images of points has
been constructed (comp. [7], Ch. IV). It has been proved that such maps
induce arbitrarily fine chain approximations on nerves of coverings in the
sense of [22] (see [5, Thm 4.3]). Regarding a representative of a morphism
ϕ = {X Y X}p q

as a sequence of two acyclic maps p−1 and
q there are chain maps induced by it. If X is a compact polyhedron and
U is a polyhedral open subset of X such that x �∈ q(p−1(x)) for x ∈ ∂U ,
an index of (p, q) can be defined to be a ’local Lefschetz number’ (comp.
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[5,22]). It has been proved to be independent of the choice of approxima-
tion and representatives (since they are all homotopic). Therefore, the index
i(X,ϕ,U) of a morphism ϕ is defined (see [5, Def. 5.6]) to be a rational
number (more exactly, it is an element of the coefficient field). The defi-
nition can be extended in quite a routine way to the case of a morphism
ϕ = {X Y X}p q

, where X is a metric ANR, ϕ(X) compact
and U ⊂ X an open set with x �∈ ϕ(x) for x ∈ ∂U (equivalently p(x) �= q(x)
for x ∈ p−1(∂U)). The detailed proofs can be found in [5].

Let (K, τ) be a compact polyhedron with a fixed triangulation τ . Its
n-th barycentric subdivision is denoted by τn. A subset U ⊂ K is polyhedral
provided there is an integer l such that τ l induces a triangulation of the
closure U of U in K.

Let l be a natural number and F a field. We denote by C∗(K, τ l) the
oriented chain complex C∗(K, τ l;F ). The carrier of c ∈ C∗(K, τ) (carr c)
is the smallest polyhedral subset X ⊂ K such that c ∈ C∗(X, τ). By b :
C∗(K, τ) → C∗(K, τ l) we denote the subdivision chain mapping which maps
each chain into its l-th barycentric subdivision.

By χ : C∗(K, τ l) → C∗(K, τ), we denote a chain mapping which is
induced by a simplicial approximation of the identity map id : (K, τ l) →
(K, τ). It is known that b and χ are chain homotopy inverses to each other.
In the context of approximations the notion of a closed star is useful. Let
B ⊂ K be a subset. The k-th closed star of B in (K, τ) is defined inductively
(simplices are closed here):

St1(B, τ) = St(B, τ) :=
⋃

{σ ∈ τ ; σ ∩ B �= ∅},

Stk(B, τ) := St(Stk−1(B, τ), τ).

Let Φ : (K, τ) � (L, μ) be an u.s.c. multivalued mapping.

Definition 5.1. Let k and l be two natural numbers.
A chain mapping ϕ : C∗(K, τ l) → C∗(L, μk) is called an (n, k)-

approximation of Φ provided the following conditions holds: for each sim-
plex σ ∈ τ l, there exists a point y(σ) ∈ K such that

σ ⊂ Stn(y(σ), τ l), carr ϕσ ⊂ Stn(Φ(y(σ)), μk).

Definition 5.2. A graded set

A(Φ) = {A(Φ)j}j∈N,

where A(Φ)j ⊂ hom(C∗(K, τ j), C∗(L, μj)) is called an approximation system
(A-system) for Φ provided there is an integer n = n(A) such that:

(i) If ϕ ∈ A(Φ)j then ϕ = ϕ1 ◦ b, where ϕ1 is an (n, j)-approximation of Φ.
(ii) For every j ∈ N, there exists j1 ∈ N such that for m ≥ l ≥ j1 and for

all ϕ = ϕ1 ◦ b ∈ A(Φ)l and ψ = ψ1 ◦ b ∈ A(Φ)m the diagram
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C∗(K, τ l1) C∗(L, μl)

C∗(K, τm1) C∗(L, μm)

ϕ1

χ

ψ1

χ

with m1 ≥ l1 is homotopy commutative with a chain homotopy D sat-
isfying the following smallness condition:

• For any simplex σ ∈ τm1 , there exists a point z(σ) ∈ K such that

σ ⊂ Stn(z(σ), τ j), carr Dσ ⊂ Stn(Φ(z(σ)), μj).

Definition 5.3. Let Φ1,Φ2 : K � L be u.s.c. maps and let H : K × [0, 1] � L
be an u.s.c. homotopy joining Φ1 and Φ2. Let A(Φ1) and A(Φ2) be A-systems
for Φ1 and Φ2, respectively. They are H-homotopic provided there is an
integer m ∈ N such that the following condition holds:

(I) For every j ∈ N, there is j1 ∈ N such that for any l ≥ j1 there are
ϕ = ϕ1 ◦ b ∈ A(Φ1)l and ψ = ψ1 ◦ b ∈ A(Φ2)l such that ϕ1, ψ1 :
C∗(K, τ l1) → C∗(L, μl) are chain homotopic with an H-small homotopy
D, i.e.:

(i) For σ ∈ τ l1 there is a point d(σ) ∈ K such that

σ ⊂ Stm(d(σ), τ j), carr Dσ ⊂ Stm(H(d(σ) × [0, 1]), μj).

One can define an index for an A-system as follows: Let K be a compact
polyhedron with a given triangulation τ and let U be a polyhedral open subset
of K (i.e., U is open and Ū is a subpolyhedron of K). Let Φ : Ū � K be
such that x /∈ Φ(x) for x ∈ ∂U , and let A = A(Φ) be an A-system for Φ.
Denote by pU : C∗(K, τk) → C∗(Ū , τk) the natural linear projection and let
ϕ ∈ A(Φ)k. We define a ’local Lefschetz number’

λ(pU ◦ ϕ) :=
dimK∑

i=0

(−1)itr (pU ◦ ϕ)i.

It has been proved in [22] that there exists sufficiently large k0 such that the
above defined number does not depend on the choice of ϕ ∈ A(Φ)k, k ≥ k0.

Thus, we can define the index properly.

Definition 5.4. iA(K,Φ, U) := λ(pU ◦ ϕ) for ϕ ∈ A(Φ)k, k ≥ k0.

Proposition 5.5. Properties of index:

(1) (Additivity) Let U1, U2 be open, disjoint and polyhedral subsets of U and
Φ : Ū → K an u.s.c. mapping such that Fix(Φ) ⊂ U1 ∪ U2. If A(Φ) is
an A-system for Φ then

iA(K,Φ, U) = iA(K,Φ, U1) + iA(K,Φ, U2).
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(2) (Excision) Let U1 ⊂ U be two open and polyhedral subsets of K and
Fix(Φ) ⊂ U1. Then,

iA(K,Φ, U) = iA(K,Φ, U1).

(3) (Homotopy invariance) Let H : Ū × [0, 1] → K be an u.s.c. homotopy
such that x �∈ H(x, t) for x ∈ ∂U and t ∈ [0, 1]. Let A0, A1 be H-
homotopic A-systems for H0 = H(·, 0) and H1 = H(·, 1),, respectively.
Then,

iA0(K,H0, U) = iA1(K,H1, U).

(4) (Commutativity) Let W ⊂ K be open and let Φ1 : K → L,Φ2 : L → K
be u.s.c. maps.
Assume that x �∈ Φ2 ◦ Φ1(x) for x ∈ ∂W and y �∈ Φ1 ◦ Φ2(y) for
y ∈ ∂(Φ−1

2 (W )). Assume further that if y ∈ Fix(Φ1 ◦ Φ2) \ Φ−1
2 (W )

then Φ2(y)∩Fix(Φ2 ◦Φ1)
∣
∣
∣
W̄

= ∅. Then for any A-systems A1 = A(Φ1),

A2 = A(Φ2)

iA1◦A2(L,Φ1 ◦ Φ2,Φ−1
2 (W )) = iA2◦A1(K,Φ2 ◦ Φ1,W ).

(5) (Mod-p property) Let the coefficient field F = Zp, p prime. Let W ⊂ K
be open and Φ : K → K an u.s.c. map such that x �∈ Φp(x) for x ∈ ∂W .
Assume that if y ∈ Fix(Φp) \ W then Φk(y) ∩ Fix(Φp)

∣
∣
∣
W̄

= ∅ for k < p.
Then

iA(K,Φ,W ) = iAp(K,Φp,W ).

Remark 5.6. Because of Prop. 5.5(2), one can also define the index iA(K,Φ, V ),
when V is open and not polyhedral, if Φ : L → K,V ⊂ L ⊂ K, and L is a
subpolyhedron of K. Then one puts

iA(K,Φ, V ) := iA(K,Φ, U),

where U ⊂ V is polyhedral and Fix(Φ)
∣
∣
∣
V̄

⊂ U .

The existence of an A-system for maps determined by morphisms was
proved in fact in [5], where more general maps were considered. Recall that we
can associate an abstract simplicial complex with a locally finite covering α of
a given space X, called its’ nerve N(α). Simplices of N(α) are the nonempty
intersections of the sets Vi ∈ α. We denote the support of a simplex s ∈ N(α)
as the union of the forming sets (vertices). Similarly we define the star of a
set as the union of all simplices intersecting it. We denote by Nn(α) the n-
dimensional skeleton of the nerve. Let X,Y be compact spaces. By CovX,
CovY we denote the sets of finite open coverings of these spaces, respectively.

Definition 5.7. Let α, ᾱ ∈ CovX, β, β̄ ∈ CovY and let Φ : X � Y .
A chain map ϕ : C∗(Nn(ᾱ)) → C∗(Nn(β̄)) is called an (α, β)-

approximation of Φ provided: for every simplex s ∈ Nn(ᾱ) there exists a
point p(s) ∈ X such that

supp s ⊂ St(p(s), α), suppϕs ⊂ St(Φ(p(s)), β).
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The following basic approximation result is a special case of Theorem 4.3
in [5]:

Theorem 5.8. Let Φ : X � Y be an acyclic-valued u.s.c. map of compact
spaces, and α ∈ CovX, β ∈ CovY . Then for every n ∈ N, there exist: a
refinement ᾱ of α and an (α, β)- approximation ϕ : C∗(Nn(ᾱ)) → C∗(Nn(β))
of Φ.

Recall that given a morphism ϕ = {X Z Y }p q
, the map

p−1 : X � Z is u.s.c. and acyclic, and Theorem 5.8 applies. Thus, we can
formulate

Proposition 5.9. If (K, τ), (L, μ) are compact polyhedra and

ϕ = {K Z L}p q

is a morphism, then the compositions of chain approximations of p−1 and q
form an A-system.

Proof. Let us recall that given a triangulation τ , we can associate an open
covering α(τ) by the sets st(v, τ) = Int(St(v, τ)), where v are vertices of
the triangulation. The simplicial maps θ : (K, τ) → N(α(τ)), λ : N(α(τ)) →
(K, τ) defined on vertices by θ(v) := st(v, τ), and λ(st(v, τ)) := v, define
a natural simplicial isomorphism. The same is true for (L, μ). Considering
barycentric subdivisions of the triangulation τ we obtain arbitrarily fine re-
finements of α(τ)). It has been detailly proved that the compositions of suf-
ficiently close chain approximations: ψ2 of the acyclic map p−1 and ψ1 of
the single-valued map q are chain homotopic (see [5, Prop. 4.8 and 4.14], [8,
Prop. 50.30 and 50.39]).

Therefore, the compositions of the form λ ◦ ψ1 ◦ ψ2 ◦ θ ◦ b form an A-
system for the given morphism ϕ. The map b is the standard subdivision map
(see [23]) and λ, θ are the above isomorphisms for barycentric subdivisions
τk, μk. �

Let now U be an open polyhedral subset of a compact polyhedron (K, τ)
(i.e. U is a subpolyhedron) and let ϕ : U → K be a morphism such that
x /∈ ϕ(x) (equivalently p(y) �= q(y) for y ∈ p−1(∂U) for the representatives).

Then, we define

i(K,ϕ,U) := iA(K,ϕ,U).

By localization property, we do not need to assume that U is polyhedral.
Now let X be a compact metric ANR, U ⊂ X open and let ϕ : U →

X be a morphism such that Fix ϕ ∩ ∂U = ∅. Then, there exists a finite
polyhedron K ε-dominating X with ε > 0 smaller than the distance of Fixϕ
from ∂U (see [3, p. 41]). Denoting the maps r : K → X, s : X → K
(r ◦ s = idX , d(s ◦ r(x), x) < ε), we define the index as follows:

i(X,ϕ,U) := i(K, s ◦ ϕ ◦ r, r−1(U)).

Independent of the choice of K, r, s is detailly proved in [5], and [8, Sect. IV.52].
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The next step is to extend the definition of the index to the case of arbi-
trary ANRs. By the Arens–Eells embedding Theorem (see, e.g., [8, Thm 1.6])
we can assume that X is a closed subset of a normed space E. Since X is an
ANR, there is an open subset V ⊂ E and a retraction r : V → X. Consider

a compact morphism ϕ = {U Z X}p q
such that q(Z) is com-

pact, and p(z) �= q(z) for p(z) ∈ ∂U . Denoting by i : X → V the inclusion
map we define a morphism ψ = i ◦ ϕ ◦ r : U ′ = r−1(U) → V . One easily
checks that Fixψ ∩ r−1(∂U) = ∅. By the result of J. Girolo [6] there exists a
compact ANR K such that ψ(U ′) ⊂ K ⊂ V . We let W = K ∩ r−1(U) and
then the index i(K,ψ

∣
∣
∣
K

,W ) is well defined as above.
Thus, we define

i(X,ψ,U) = i(K,ψ
∣
∣
∣
K

,W ).

Theorem 5.10. ([5, Prop. 7.5]) The index has the following properties:

1. Additivity. If U1, U2 ⊂ U are open and disjoint and if Fix ϕ
∣
∣
∣
U

⊂
U1 ∪ U2 then i(X,ϕ,U) = i(X,ϕ,U1) + i(X,ϕ,U2).

2. Homotopy invariance. Assume that the morphisms ϕ,ψ : X → X
are homotopic by a homotopy such that for its representatives holds

x �∈ q(p−1(x, t)) whenever x ∈ ∂U . Then i(X,ϕ,U) = i(X,ψ,U).
3. Normalization. If Λ(ϕ∗) denotes the (generalized) Lefschetz number

of the induced homology homomorphism then i(X,ϕ,X) = Λ(ϕ∗).
4. Commutativity. Let W ⊂ X be open and ϕ : X → Y , ψ : Y → X be

morphisms. Assume that x �∈ ψ ◦ ϕ(x) for x ∈ ∂W and y �∈ ϕ ◦ ψ(y) for
y ∈ ∂(ψ−1(W )) and moreover ψ(Fix ϕ◦ψ−ψ−1(W ))∩Fix ψ◦ϕ

∣
∣
∣
W

= ∅.
Then i(X,ψ ◦ ϕ,W ) = i(Y, ϕ ◦ ψ,ψ−1(W )).

Corollary 5.11. If i(X,ϕ,U) �= 0 then the determined map has a fixed point
in U (or equivalently any representative X Z X

p q
has a co-

incidence in p−1(U)).

Corollary 5.12. If Y ⊂ X is an ANR and ϕ(U) ⊂ Y , then

i(X,ϕ,U) = i(Y, ϕ, U ∩ Y ).

The first corollary is a consequence of additivity and the last one of
commutativity (see. Thm 5.10).

Now, we prove a generalization of the well-known nonlinear alternative
(comp. [11, II.6, Thm 5.2]) from which one can derive many fixed point or
coincidence results. We omit the corollaries since they are routine (comp.
[4,7,11]).

Theorem 5.13. Let C be a convex subset of a normed space E and U an open
set in C containing 0. Then for any morphism

ϕ = {C Z C} : C C
p q

one of the following conditions is satisfied:
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(i) ϕ has a fixed point in U ,
(ii) for some x ∈ ∂U and 0 < t < 1 there is y ∈ p−1(x) such that x = t·q(y).

Proof. Consider the following commutative diagram

C Z

C × [0, 1] Z × [0, 1] C

C Z

i0

p

f 0

p̃ q̃

i1 g

p
q

,

where p̄(x, t) = (p(x), t), q̄(x, t) = t · q(x), 0(x) = 0, f(x) = (x, 0) and
g(x) = (x, 1). Denoting by ψ the morphism defined by (p, 0) we observe that
i(C,ψ,U) = 1 since 0 ∈ U and it is a constant map x �→ 0. If ϕ has a
fixed point in U then we are done. If not and if moreover (ii) is not satisfied
that means exactly that assumptions of homotopy invariance (Thm 5.10) are
fulfilled. Therefore, i(C,ϕ,U) = 1 and ϕ has a fixed point in U by Cor. 5.11.
�
Remark 5.14. We assumed in this section that the considered morphisms
determined compact maps, but one can extend all the results to some non-
compact maps. We touched the example of compact attraction maps in [5].
The classes of condensing morphisms mentioned in [15] (comp. [24]) may be
also included into the theory.

Remark 5.15. The index is a priori a rational number but there are no exam-
ples where it is not an integer. Moreover, in [2], it was proved that in the case
of acyclic maps of ENR-s, the index is an integer and the theory is unique.

6. Extending morphisms from a sphere

In this short section, we prove one extremely simple geometric result which
analog for single-valued maps is an exercise (see, e.g., [11, Thm II.5.1]). We
say a morphism is nullhomotopic provided it is homotopic to a morphism
ϕ = {X X Y },id y0 where y0(x) = y0 is any constant map.

Proposition 6.1. A morphism ϕ = {Sn Z Y }p q
is nullhomo-

topic if and only if ϕ is extendable to a morphism Φ : Dn+1 → Y in the unit
disc.

Proof. Assume ϕ is nullhomotopic, i.e., we have a diagram

Sn Z

Sn × [0, 1] Z̄ Y

Sn Sn

i1

p

f1
q

p̄ q̄

i0 f0

id

y0

.
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Z

Z̄

Dn+1

Figure 2. A sketch of K

We define a morphism Φ : Dn+1 → Y . Let K be a space obtained from
the disjoint sum of three spaces Z × [0, 1], Z̄, Sn × [0, 1] ∪ Dn+1 × {0} by
the following relations: if x ∈ Z then (x, 0) ∼ f1(x), and if x ∈ Sn then
(x, 1) ∼ f0(x) (see Fig. 2 for a sketch).

Define a map p̃ : K =⇒ Dn+1 by the formula

p̃([x]) =

⎧
⎪⎪⎨

⎪⎪⎩

1
4 (3 + t)p(x) if [x] = [(x, t)], x ∈ Z
g(p̄(x)) if x ∈ Z̄
1
4 (1 + t)x if [x] = [(x, t)], x ∈ Sn

1
4x if x ∈ Dn+1

,

where g : Sn × [0, 1] → Dn+1, g(x, t) = 1
4 (2 + t)x.

A map q̃ : K → Y is defined by the formula

q̃([x]) =

⎧
⎨

⎩

q(x) if [x] = [(x, t)], x ∈ Z
q̄(x) if x ∈ Z̄
y0 in other case

.

It is easily seen that p is a Vietoris map, and moreover

p−1(Sn) = Z × {1} ≈ Z.

Hence a morphism Φ = {Dn+1 K Y }p̃ q̃
is an extension of ϕ.

Conversely, assume we have a morphism {Dn+1 Z̄ Y }.
p̄ q̄

There is a map g : Sn × [0, 1] → Dn+1 given by

g(x, t) =
{

0 if 0 ≤ t ≤ 1
2

(2t − 1)x if 1
2 ≤ t ≤ 1 .

Define a space K = {(x, t, y, z) ∈ Sn × [0, 1]×Dn+1 × Z̄; y = g(x, t) = p̄(z)}.
Then we have a commutative diagram

Sn × {1} Z

Sn × [0, 1] K Y

Sn × {0} Sn

i1

p

f
q

p̃ q̃

i0 h

id

z0

.
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Here Z = p̄−1(Sn × {1}), p̃(x, t, y, z) = (x, t), q̃(x, t, y, z) = q̄(z), f(x) =
= (p̄(x), 1, p̄(x), x), h(x) = (x, 0, 0, y0), where y0 is any point in p̄−1(0)

and z0 = q(y0), and p, q are restrictions of p̄, q̄. The diagram proves that
{Sn Z Y }p q

is a morphism homotopic to a constant
map. �

Combining Propositions 6.1 together with 4.3, we obtain:

Corollary 6.2. If Y is an acyclic space with πn(Y ) �= 0 then there exists a
single-valued map f : Sn → Y such that f is not extendable to Dn+1 as a
map but it is extendable as a morphism (there is a multivalued extension).

The results of this section suggest that one can extend theorems con-
cerning essential maps of [11, Ch. II]. A version of this approach can be found
in [16–18].
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282, 978–985 (1976)

[11] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

[12] Hara, Y., Moriwaki, Y.: The degree of multivalued maps from manifolds to
spheres. J. Fixed Point Theory Appl. 11, 253–259 (2012)

[13] Kryszewski, W.: Topological and approximation methods of degree theory of
set-valued maps Dissert. Math. 336, 1–101 (1994)

[14] Kucharski, Z.: A coincidence index Bull. Acad. Polon. Sci. 24, 245–252 (1976)

[15] Nussbaum, R.: Generalizing the fixed point index Math. Ann. 228, 259–278
(1977)

[16] O’Regan, D.: Coincidence theory for compact morphisms Fixed Point Theory
Appl. 19, (2017)

[17] O’Regan, D.: Coincidence for morphisms based on compactness conditions on
countable sets. Appl. Math. Comput. 339, 59–62 (2018)

[18] O’Regan, D.: Coincidence for morphisms based on compactness principles. J.
Nonlinear Sci. Appl. 11, 1096–1098 (2018)

[19] Segiet, W.: Local coincidence index for morphisms Bull. Acad. Polon. Sci. 30,
261–267 (1982)

[20] Shitanda, Y.: The degree of set-valued mappings from ANR spaces to homology
spheres Math. J. Okayama Univ. 59, 27–40 (2017)

[21] Shitanda, Y.: A generalization of antipodal point theorems for set-valued map-
pings. Hokkaido Math. J. 20(3), 217–238 (2010)

[22] Siegberg, H.W., Skordev, G.: Fixed point index and chain approximations.
Pacific J. Math. 102, 455–486 (1982)

[23] Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)

[24] Violette, D., Fournier, G.: A fixed point index for compositions of acyclic mul-
tivalued maps in Banach space (in French) Ann. Sci. Math. Québec 22(2),
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