
https://doi.org/10.1007/s00224-019-09948-6

On-line Search in Two-Dimensional Environment

Dariusz Dereniowski1 ·Dorota Osula1

© The Author(s) 2019

Abstract
We consider the following on-line pursuit-evasion problem. A team of mobile agents
called searchers starts at an arbitrary node of an unknown network. Their goal is
to execute a search strategy that guarantees capturing a fast and invisible intruder
regardless of its movements using as few searchers as possible. We require that the
strategy is connected and monotone, that is, at each point of the execution the part
of the graph that is guaranteed to be free of the fugitive is connected and whenever
some node gains a property that it cannot be occupied by the fugitive, the strategy
must operate in such a way to keep this property till its end. As a way of modeling
two-dimensional shapes, we restrict our attention to networks that are embedded into
partial grids: nodes are placed on the plane at integer coordinates and only nodes at
distance one can be adjacent. Agents do not have any knowledge about the graph a
priori, but they recognize the direction of the incident edge (up, down, left or right).
We give an on-line algorithm for the searchers that allows them to compute a con-
nected and monotone strategy that guarantees searching any unknown partial grid
with the use of O(

√
n) searchers, where n is the number of nodes in the grid. As

for a lower bound, there exist partial grids that require Ω(
√

n) searchers. Moreover,
we prove that for each on-line searching algorithm there is a partial grid that forces
the algorithm to use Ω(

√
n) searchers but O(log n) searchers are sufficient in the

off-line scenario. This gives a lower bound on Ω(
√

n/ log n) in terms of achievable
competitive ratio of any on-line algorithm.

Keywords Connected search · Distributed searching · On-line searching · Partial
grid · Pursuit-evasion

This article is part of the Topical Collection on Special Issue on Approximation and Online
Algorithms (2017)

� Dariusz Dereniowski
deren@eti.pg.edu.pl

Dorota Osula
dorurban@student.pg.edu.pl

1 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
Gdańsk, Poland

Theory of Computing Systems (2019) 63:1819–1848

Published online: 11 September 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-019-09948-6&domain=pdf
http://orcid.org/0000-0003-4000-4818
mailto: deren@eti.pg.edu.pl
mailto: dorurban@student.pg.edu.pl

1 Introduction

A team of mobile autonomous robots wants to search an area with the goal of finding
a mobile intruder (or lost entity). The intruder has several properties that dictate how
a search should be conducted. First, the intruder is invisible and therefore the robots
may conclude its potential locations only from the history of their own moves. Sec-
ond, it is assumed that the speed of the intruder is unknown and therefore the robots
build their search strategy assuming that the intruder is very fast: it may traverse arbi-
trarily long distance between any two actions of a robot. Third, the intruder is very
clever, i.e., it will avoid being captured as long as possible; in other words we may
imagine that it knows locations of robots and their future movements at any point.
This assumption enforces robots to consider the worst case scenario for them since
they want to have a search strategy that guarantees interception. The above prob-
lem is usually restated in discrete terms, naturally expressing the search game using
graph-theoretic notation. Following the widely used terminology, the mobile entities
performing the search are called searchers.

In this work we focus on the graph-theoretic problem statement, where the
searchers operate in a given graph in which they move along edges. Moreover, what
greatly influences algorithmic approaches is the assumption of whether the searchers
know the graph in advance (off-line version of the problem) or whether the graph
is unknown and the searchers learn its structure while conducting the search (on-
line or distributed setting). We shortly review both approaches, giving later a formal
statement of the problem we study in this work. In all cases we are interested in
minimizing the number of searchers needed to clear the given network.1 We discuss
briefly later a possibility for our algorithm to be adopted to operate in distributed
asynchronous setting, with searchers having local communication and polynomial
memory. From the point of view of this work, the terms on-line and distributed are
used exchangeably because we do not impose any communication, memory or syn-
chronization restrictions on the agents (a more detailed discussion on this topic is
provided in Section 2).

Off-line searching Off-line graph searching models are extensively studied and
numerous deep results have been obtained, providing insight into not only the prob-
lem itself but also enriching the more widely understood graph theory through
the connections between graph searching games and many graph parameters, e.g.,
pathwidth, treewidth, branchwidth, bandwidth, profile, interval thickness, vertex sep-
aration number; see, e.g., [24] for a survey and further references. The historically
first studied graph searching model is called edge search [37, 38]. In this problem,
the goal is to construct a search strategy that guarantees capturing a fast and invisible
fugitive (thus, the strategy must ensure success regardless of the moves performed by
the fugitive) in a graph that is given as an input to an algorithm computing a search

1In this work the terms graph and network are used exchangeably.

Theory of Computing Systems (2019) 63:1819–18481820

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

strategy. A search strategy itself is a sequence of moves, where each move is one of
the following: (i) placing a searcher on any graph node; (ii) removing a searcher from
the node it occupies; (iii) sliding a searcher along an edge in order to clear it. At each
point of the strategy one can distinguish a subgraph the is guaranteed to be free of
the fugitive. In a valid strategy we require that this subgraph is the input graph at the
end of the strategy (thus the capture of the fugitive necessarily occurs at some point)
and, additionally, in a connected search strategy we require that after each move this
subgraph is connected. In a monotone search strategy we require that once an edge
has been cleared, it must remain clear till the end of the search; in other words, the
subgraph composed of edges that may contain the fugitive may only shrink as the
search progresses. Since we adopt the monotone connected searching problem in our
on-line model, we point out to few recent works on the problem [2, 3, 14, 15, 19, 20].

On-line searching In the distributed, or on-line, version of the problem it is assumed
that the network is unknown in advance to the searchers. In this setting, some assump-
tions need to be made. First, only monotone search strategies are considered. This
assumption is dictated by an observation that otherwise the searchers may first learn
the structure of the network by exploring it (and thus ignoring the possibility of cap-
turing the intruder at this stage) and once the network is known, they can compute
a search strategy by using an off-line algorithm and finally execute the strategy. The
problem then reduces to exploration and map construction, well studied problems in
distributed computing. Another natural assumption is to forbid placing a searcher on
a node that has not been visited before. Recall that we are interested in minimizing
the number of searchers. On-line algorithms are formulated usually in such a way
that the algorithm is adding new searchers whenever necessary and in the analysis
one counts how many searchers will be added in the worst case — we will follow
this route.

We consider connected search strategies in this work, i.e., strategies that guarantee
that at any given time point the subgraph that is clear is connected. Note that this
allows us to assume that all searchers start at some node called the homebase and only
moves of type (iii) are then made (see the definition of edge search above). Indeed,
removing a searcher from a node u and placing it on another one v (i.e., jumping)
may be replaced2 by a sequence of sliding moves along a path from u to v consisting
of clear edges only (such a path must exists due to connectedness and monotonicity).

1.1 RelatedWork

Off-line problems One of the central questions raised in the context of various graph
searching problems is if the search problem is monotone, i.e, if there exists a mono-

2Note that this observation is true as long as the considered optimization criterion is to minimize the
number of searchers. For other criteria, like, e.g., search time, the exclusion of jumping may be potentially
limiting.

Theory of Computing Systems (2019) 63:1819–1848 1821

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

tone search strategy solving it. Note that proving monotonicity is a tool that allows
to conclude membership in NP for a given problem. It is known that the edge search
problem is monotone [31]. On the other hand, the connected search is not monotone
[44]. A question related to the latter searching model is: how many extra searchers
one needs to ensure connectivity. It turns out that each monotone edge search strategy
can be converted (in polynomial time) into a monotone connected one by approx-
imately ‘doubling’ the number of searchers [16]. Thus, for asymptotic results, like
the one in this work, this gives another reason that justifies restricting attention to
monotone connected search strategies.

On-line searching In most cases, when designing distributed searching algorithms,
the monotonicity requirement is adopted. (See [6] for an example how an optimal
connected search strategy can be constructed in a distributed fashion when recontam-
ination is allowed.) During construction of a monotone strategy in an on-line way,
there is naturally some ‘cost’ involved in terms of increased number of searchers
required for guarding — this cost measured as the ratio of number of searchers that
each on-line algorithm needs to use for some n-node graph and its monotone con-
nected (off-line) search number is know to be Ω(n/ log n) [28]. In the realm of
distributed algorithms, natural questions arise with respect to the amount (and type)
of additional information regarding the underlying network given a priori to an algo-
rithm. In [36] is was proved that O(n log n) bits of advice are sufficient to construct
an optimal connected monotone search strategy (the concept of such quantitative
approach to advice analysis was introduced in [25]). An example of an algorithmic
approach in a very weak computational model see, e.g., [5, 13].

Grid networks were studied in searching models, where the concepts of tem-
poral and threshold immunities were used. In the first one, a node after clearing
remains protected (even if unguarded) against recontamination for a certain amount
of time t . A tight upper bound for the grid of size m × n, m ≥ n, is equal to
min {�m/ �t/2�� , �(2m − 1)/t�} [11]. In [21, 22] d-dimensional meshes were inves-
tigated in the threshold immunity model, where a node becomes recontaminated
when a specified number m (or greater) of its neighbors is contaminated. Especially,
it has been proved that for d = 2 (i.e., grids) and m ≥ 2 one searcher is enough. For
other searching works involving threshold immunity see, e.g., [12, 23, 32].

For other distributed searching models and algorithms for specific network
topologies see [8, 20, 26, 35].

Applications in robotics We note that our results may be of particular interest not
only by providing theoretical insight into searching dynamics in distributed agent
computations, but may also find applications in the field of robotics. Most investiga-
tions oriented towards algorithms that can be applied on physical devices need to deal
with the problem of modeling of the real world. This can be done either by discretiz-
ing it (usually through graphs) or by building algorithms that work in continuous
search space and need to address the geometric issues that emerge. In Section 7.1,

Theory of Computing Systems (2019) 63:1819–18481822

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

we add a brief discussion on this subject from the point of view of our results. Hav-
ing in mind the vast literature on the subject we point the interested reader to a few
references to recent works in this field [10, 17, 27, 30, 39–43].

1.2 Outline of This Work

The next section provides the notation used in this work and the problem statement. It
is subdivided so that Section 2.1 defines the graph searching problem we study while
Section 2.2 introduces the terminology related to the partial grid networks we con-
sider in this paper. Section 3 gives a construction of a class of n-node networks such
that each on-line algorithm, which produces a monotone connected strategy, uses
Ω(

√
n) searchers for some network in the class which turns out to be Ω(

√
n/ log n)

times more than an optimal off-line algorithm would use (recall that by off-line algo-
rithm we refer to the case when the entire network is given as an input and hence is
known in advance to the algorithm).

Section 4 describes an on-line (i.e., agents do not have any knowledge about the
graph a priori) algorithm that performs a monotone connected search in partial grids
where it is assumed that the algorithm is given an upper bound n on the size of the
network. We assume a ‘sense of direction’ in our model, that is, the grid is embedded
into a two-dimensional space by assigning integer coordinates to the nodes. Then,
an agent knows the coordinates of each neighbor of the currently occupied node.
More details are given in Section 2.2. We point out that this algorithm uses an on-
line procedure from [7] as a subroutine that is called many times to clear selected
parts of a grid and it can be seen as a generalization from a ‘linear’ graph structure
studied in [7] to a 2-dimensional structure discussed in this work. Also, although both
algorithms are conducted via some greedy rules which dictate how a search should
‘expand’ to unknown parts of the graph, the analysis of our algorithm is different
from the one in [7].

Then, in Section 5 we prove the correctness of the algorithm and provide an upper
bound on its performance: it is using O(

√
n) searchers for any partial grid network.

In Section 6 we consider a modified version of the algorithm, which receives no
information on the underlying graph in advance, and we prove that the algorithm also
uses O(

√
n) searchers. This result, stated in Theorem 4, is our main contribution. We

finish with conclusions in Section 7, giving a few remarks on how our work relates
to searching two-dimensional environments, like polygons with holes. As there are
many open problems and research directions related to the subject, we list some of
them also in Section 7.

We briefly remark on a potential practical motivation of our setting. Partial grids,
which can be seen as a grids with obstacles (formally defined later), are a way of
modeling two-dimensional shapes, e.g., polygons. Every search strategy for a poly-
gon can be used to obtain a search strategy for its underlying partial grid and vice
versa. The number of searchers in both cases are withing a constant factor of each
other. Thus in particular, searching strategies for continuous scenarios like polygons
can be obtained by first getting the underlying partial grid and then computing a (dis-
crete) search strategy for the grid by the algorithm we propose in this work. For more
details see Section 7.1.

Theory of Computing Systems (2019) 63:1819–1848 1823

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2 Definitions and Terminology

In this section we state our problem formally and present the notation we use.

2.1 Problem Statement

Let G be a simple, undirected, connected graph. A monotone connected k-search
strategy S for a network G is defined as follows. Initially, k searchers are placed on
a node h of G, called the homebase. (We also say that S starts at h.) Then, S is a
sequence of moves, where each move consists of selecting one searcher present at
some node u and sliding the searcher along an edge {u, v}. (Thus, the searcher moves
from its current location to one of the neighbors.)

Initially, all edges are contaminated. After each move of sliding a searcher along
an edge {u, v} it is declared to be clear. It becomes contaminated again (recontami-
nated) if at any time during execution of the strategy S at least one of its endpoints is
not occupied by a searcher and is incident to a contaminated edge. We consider only
strategies in which recontamination does not occur and we call such strategies mono-
tone. Note that this in particular implies that the homebase h remains clear throughout
the entire strategy. Moreover, we require that the clear subgraph, that is, the subgraph
consisting of all clear edges, is connected after each move of the search strategy.
Finally, we require that after the last move of S all edges are clear. Throughout, we
say that a node is clear if it is incident to a clear edge.

The minimum k such that there exists a node h and a monotone connected k-
search strategy that starts at h is called the monotone connected search number of G

and denoted by mcs(G).
Having defined a search strategy, we now state the on-line model we use. All

searchers start at the homebase and the network itself is not known in advance to
the searchers (except for the fact that the searchers may expect that the network is a
partial grid). In fact, the searchers have no information about the network. We assume
that nodes are anonymous and searchers have identifiers. The edges incident to each
node are marked with unique labels (port numbers) and because only partial grids
are considered in this work (for a definition see Section 2.2) we assume that labels
naturally reflect all possible directions for each edge (i.e., left, right, up and down).

For the searchers, we assume that they communicate locally by exchanging infor-
mation when present at the same node. Our algorithm is stated as if there existed
global communication but it can be easily turned into required one with local commu-
nication as follows: we can designate one extra searcher called the leader who will be
performing the following actions at the beginning of each move of the search strategy
to be executed. First, the leader visits all nodes of the subgraph searched to date and
gathers complete information about its structure and positions of all other searchers,
then the leader computes the next move and finally visits all searchers to pass the
information about the next move. Then, the move is performed by the agents.3

3Note that the actions of the leader clearly contain a lot of excess work in terms of the number of moves
it performs; since the criteria as time or cost (number of sliding moves) are out to scope of this work, we
will leave the reader with such a simple leader implementation.

Theory of Computing Systems (2019) 63:1819–18481824

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Our algorithm is described for the synchronous model in which time is divided
into steps, each step having the same unit length duration allowing each searcher
to perform its local computations and slide along an edge if the searcher decides to
move. We note that this assumption can be lifted and the algorithm can be easily
restated to be asynchronous. Indeed, having one agent that is the leader one can
simulate synchronous behavior of the agents in such a way that the leader waits for
the completion of the current move of another searcher and then informs the searcher
that is supposed to perform the next move, dictated by the search strategy, to start the
move. As to the memory model, our algorithm requires that the memory size of the
searchers is polynomial in the size of the network, and we do not attempt to optimize
this parameter.

For any on-line algorithm A, let A(G, h) be the number of searchers that it uses to
clear a network G in a monotone connected way starting from the homebase h. We
say that an algorithm A is f (n)-competitive, for some function f , if

max
h

A(G, h)

mcs(G)
≤ f (n)

for each n-node network G.

2.2 Partial Grid Notation

We define a partial grid G = (V , E) with a set of n nodes V and edges E as a con-
nected subgraph of an n × n grid. We consider each partial grid to be embedded into
two-dimensional Cartesian coordinate system with a horizontal x-axis and vertical
y-axis, where each node of G is located at a point with integer coordinates and two
nodes are adjacent if and only if the distance between them equals one (in Euclidean
metric). This embedding is considered for two reasons. The first one is technical, as
it simplifies some statements when we refer to coordinates when pointing nodes of
G. The second is that our on-line algorithm relies on the underlying geometric struc-
ture. For convenience, the homebase is located at the point (0, 0). In order to refer to
a node that corresponds to a point with coordinates (x, y) we write v (x, y). In this
work n denotes an upper bound on the number of nodes of a partial grid, such that√

n is an integer.
Informally speaking, our algorithm will conduct a search by expanding the clear

part of the graph from one ‘checkpoint’ to another. These checkpoints (defined for-
mally later) will be subsets of nodes and their potential placements on the partial
grid are dictated by the concept of a frontier. Take any x = i

√
n for some integer

i, y = j
√

n for some integer j and take i′, j ′ ∈ {0, 1}, i′ 	= j ′. Then, the line seg-
ment with endpoints (x, y) and (x +√

ni′, y +√
nj ′) is called a frontier and denoted

by F
(
(x, y) ,

(
x + √

ni′, y + √
nj ′)). Whenever the endpoints of a frontier are clear

from the context or not important we will omit them. The frontier F
(
(0, 0) ,

(√
n, 0

))

that contains the origin is called the homebase frontier and the set of all frontiers
is denoted by F . We will also divide frontiers into vertical and horizontal ones,
where coordinates of two extreme nodes do not differ on first and second coordinate,
respectively.

Theory of Computing Systems (2019) 63:1819–1848 1825

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Given any graph H = (V ′, E′) and X ⊆ V ′, H [X] is the subgraph of H induced
by X: its node set is X and consists of all edges {u, v} of H having both endpoints in
X. The subgraph induced by all nodes that belong to a frontier F of a partial grid G

is denoted by G[F].
For i ∈ {1, . . . ,

√
n} and some frontier F = F

(
(x, y) ,

(
x′, y′)), where x ≤ x ′

and y ≤ y′, we define the i-th rectangle of F , denoted by R(F, i), as the rect-
angle with corner vertices (x − i, y − i), (x − i, y + i), (x ′ + i, y ′ − i), (x′ +
i, y ′ + i) if F is horizontal and as the rectangle with corner vertices (x − i, y − i),
(x + i, y − i), (x′ − i, y′ + i), (x′ + i, y′ + i) if F is vertical. See Fig. 1 for an
example.

Informally speaking, the two above concepts, namely frontiers and rectangles,
provide a template on how the search may progress. However, due to the struc-
ture of a partial grid it may be possible that only certain nodes, but not all, that
lie on a frontier have been reached at some point of a search strategy. For this
reason, our notation needs to be extended to subsets of nodes that lie on fron-
tiers and the corresponding rectangles. Any subset C of nodes of G that belong to
some frontier F is called a checkpoint. The 0-th expansion of a checkpoint C is C

itself and is denoted by C〈0〉. For i ∈ {1, . . . ,
√

n} we define the i-th expansion
of C, denoted by C〈i〉, recursively as follows: the set C〈i〉 consists of all nodes
v /∈ C〈0〉 ∪ C〈1〉 ∪ · · · ∪ C〈i − 1〉 for which there exists a node u ∈ C〈i − 1〉, such
that there exists a path between v and u in the subgraph of G induced by nodes that
lie on the rectangles R(F, 0),R(F, 1), . . . ,R(F, i). Define

C+〈i〉 = C〈0〉 ∪ . . . ∪ C〈i〉, i ∈ {0, . . . ,
√

n}.

Fig. 1 An illustration of the concept of rectangles (here
√

n = 4). In a crosses denote nodes that lie on the
homebase frontier F = F ((0, 0) , (4, 0)), empty circles denote nodes that lie on R(F, 1), empty squares
the ones on R(F, 2), dark squares the ones on R(F, 3) and dark dots denote nodes that lie on R(F, 4).
Gray arrows stand for the 10 frontiers, that lie on the R(F, 4) (six horizontal and four vertical ones). We
denote one of the vertical frontiers that lie on R(F, 4) as F1 = F ((8, 0) , (8, 4)). In b dark dots denote
nodes that lie on F1, dark squares the ones on R(F1, 1) and empty squares the ones on R(F1, 2)

Theory of Computing Systems (2019) 63:1819–18481826

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Informally, C〈i〉 consists of only those nodes that belong to the rectangle R(F, i)

that are connected to nodes of C by paths that lie ‘inside’ of R(F, i) — this defi-
nition captures the behavior of searchers (in our algorithm) that guard the nodes of
C and ‘expand’ from C in all directions: then possible nodes that belong to any of
the rectangles R(F, 0),R(F, 1), . . . ,R(F, i) but do not belong to C+〈i〉 will not be
reached by the searchers. See Fig. 2 for an exemplary checkpoint with its expansions.

3 Lower Bound

First note that a regular
√

n × √
n grid requires Ω(

√
n) searchers even in the off-

line setting [18], that is, when the network is known in advance and the searchers
may decide on the location of the homebase. Therefore, our on-line algorithm is
asymptotically optimal with respect to this worst case measure.

We aim at proving that for each on-line algorithm A there exists an n-node
partial grid network G with homebase h such that maxh A(G, h)/mcs(G) =
Ω(

√
n/ log n).4

Define a class of partial grids

L =
⋃

l≥0

Ll ,

where Ll for l ≥ 0 is defined recursively as follows. We take L0 to contain one
network that is a single node located at (0, 0). Then, in order to describe how Ll+1
is obtained from Ll , l ≥ 0, we introduce an operation of extending G ∈ Ll at i,
for i ∈ {0, . . . , l}. In this operation, first take G and add l + 2 new nodes located at
coordinates:

(0, l + 1), (1, l), . . . , (j, l + 1 − j), . . . , (l + 1, 0).

Call these coordinates the (l + 1)-th diagonal. For each j ∈ {0, . . . , i} add an edge
connecting the nodes v (j, l − j) and v (j, l − j + 1), and for each j ∈ {i, . . . , l}
add an edge connecting the nodes v (j, l − j) and v (j + 1, l − j). Then, obtain Ll+1
as follows: initially take Ll+1 to be empty and then for each G ∈ Ll and for each
i ∈ {0, . . . , l}, obtain a network G′ by extending G at i and add G′ to Ll+1. Notice
here that a graph constructed this way is not only a partial grid, but also a tree.

Figure 3 shows a network that was obtained from the corresponding network in
L7 by extending it at 6.

For a network G ∈ Ll , l ≥ 0, we define a characteristic sequence of G, σ(G),
as follows. If l = 0, then the characteristic sequence of G is empty. If l > 0,
then take the network G′ such that G has been obtained by extending G′ at i. The

4We remark that we defined the competitive ratio by taking the worst case homebase for A and in the
definition of mcs(G) the most favorable homebase is selected. However, we note that this does not weaken
the result of this section as, informally speaking, one may take two copies of each grid obtained in this
section, rotate one copy by 180 degrees and merge the two copies at their homebases. Then, we obtain that
for each choice of the homebase any algorithm is forced to use Ω(

√
n) searchers for some grids since in

one copy the search is conducted as in our following analysis.

Theory of Computing Systems (2019) 63:1819–1848 1827

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 2 Some expansions of a checkpoint C (here
√

n = 9); crosses denote C = C〈0〉, thw gray area
covers nodes that belong to C+〈3〉, empty squares denote nodes in C〈4〉 and dark squares denote the ones
that need to be guarded provided that the gray area consists of the clear nodes. The horizontal dotted line
that contains h is the considered frontier

characteristic sequence of G is σ(G), constructed by appending to σ(G′) a new
element v (i, l − i − 1). Note that the characteristic sequence uniquely defines the
corresponding network. In other words, G is a binary tree rooted at v(0, 0) with
l + 1 leaves, where only the vertices from σ(G) have two children. The network
introduced in Fig. 3 has characteristic sequence (v (0, 0), v (1, 0), v (1, 1), v (0, 3),
v (3, 1), v (2, 3), v (1, 5), v (6, 1)).

Lemma 1 For any integer l and for each on-line algorithmA computing a connected
monotone search strategy there exists G ∈ Ll such that for homebase v (0, 0) we
have A(G, v (0, 0)) ≥ (l + 1)/2.

Proof Consider any algorithm A producing a connected monotone search strategy.
Run A for each network in Ll with the homebase v (0, 0). Note that for each network
in Ll , there exist distinct moves m1, . . . , ml such that till the beginning of move mj ,
j ∈ {1, . . . , l}, no node on the j -th diagonal has been occupied by a searcher and at
the end of mj some node v

(
xj , yj

)
of the j -th diagonal is occupied by a searcher.

Fig. 3 A network from L8
obtained from the corresponding
network in L7 by extending it at
6

Theory of Computing Systems (2019) 63:1819–18481828

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Consider G ∈ Ll such that σ(G) = (v (0, 0) , v (x1, y1) , . . . , v (xl−1, yl−1)). Infor-
mally speaking, whenever the algorithm reaches for the first time a node v (i, j − i)

in the j -th diagonal, an adversary decides to extend at i the network explored so far,
thus always forcing the situation that the first node reached on a diagonal is of degree
three.

Note that at the beginning of move mj , j ∈ {1, . . . , l}, no node of the j -th diagonal
has been reached by a searcher and the first j nodes of the characteristic sequence
have been reached by searchers. Recall that G is a binary tree.

We analyze the explored part of any graph G ∈ Ll at the beginning of the move
ml . All edges incident to the leaves in G are contaminated at this point. On the other
hand, all nodes of the characteristic sequence have been visited by searchers till the
end of the move ml − 1. Therefore, the contaminated subgraph of G at this point is a
collection of paths leading from nodes that are guarded to the leaves. Since there are
l +1 leaves in G, there are l +1 such paths, each such a path needs to have a searcher
placed at one of its endpoints (the one that is not a leaf in G) and, by construction of
G, any searcher can be present on at most two such endpoints. Thus, at least (l+1)/2
nodes need to be occupied by searchers, as required by the lemma.

Theorem 1 For each on-line algorithm A computing a connected monotone search
strategy there exists an n-node network G with homebase h such that

A(G, h)

mcs(G)
= Ω(

√
n/ log n).

Proof Observe that each network G in L is a tree and therefore mcs(G) =
O(log(n)), n = |V (G)| [2, 34]. The theorem follows hence from Lemma 1 and
the fact that the length of the characteristic sequence of each network in Ll is
Ω(

√
n).

4 The Algorithm

In this section we describe our algorithm that takes an upper bound on the size of
the network as an input. Section 4.1 deals with the initialization performed at the
beginning of the algorithm. Then, Section 4.2 introduces two procedures used by the
algorithm and finally Section 4.3 states the main algorithm.

We point out that the strategy to be computed is monotone. This means that when-
ever a new node has been reached by some searcher, the node will be guarded as
long as it has some incident contaminated edges. After each move performed by
searchers, each searcher that occupies a node that does not need to be guarded is said
to be free. Each node that needs to be guarded is occupied by at least one searcher;
if more searchers occupy such a node then all of them except for one are also free.
Once all incident edges of a guarded node v become clear, the searcher that has been
guarding v becomes immediately free. So we do not express this fact explicitly in
the algorithm as the above rule is sufficient to partition the searchers into the free
and guarding ones at any point of the strategy computed by the algorithm. Before

Theory of Computing Systems (2019) 63:1819–1848 1829

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

we start the description of the algorithm, we stress out how we ‘reuse’ searchers
that are free. Whenever the algorithm decides that a searcher needs to perform some
action the following decision takes place. If there exists a searcher that is free, then
the action is made by an arbitrary such searcher. If there is no free searcher, then a
new one is introduced by the algorithm to perform the action. Thus, in our analysis
we will count the number of searchers introduced throughout the execution of the
algorithm.

If, at some point, no node of the last expansion of some checkpoint needs to be
guarded, then we say that the expansion is empty.

4.1 Initialization

We start presenting our algorithm by describing initial conditions. Recall that the ori-
gin v (0, 0) of the two-dimensional xy coordinate system is situated in the homebase.
The initial checkpoint C0 is the set of nodes of the connected component of G[F]
that contains h, where F is the homebase frontier. Thus, initially |C0| searchers place
themselves on all nodes of C0 (note that the nodes of C0 induce a path in G). See
Fig. 4 for an example.

4.2 Procedures

4.2.1 Procedure ClearExpansion

We start with an informal description of the procedure. When a new checkpoint
C has been reached, our search strategy ‘expands’ from C by successively clear-
ing subgraphs G[C+〈i〉] for i ∈ {1, . . . ,

√
n}. Once all nodes in C+〈i − 1〉 are

clear for some 0 < i ≤ √
n, the transition to reaching the state in which all nodes

in C+〈i〉 are clear requires clearing all nodes of the i-th expansion of C. This is
done by calling for every guarded node u from C+〈i − 1〉 a special procedure
(ModConnectedSearching, described below), which clears nodes which belong
to C〈i〉 and ‘can be accessed’ from u. Procedure ClearExpansion makes the
above-mentioned calls to ModConnectedSearching and uses O(

√
n) searchers

in the process.
For clearing all nodes of the i-th expansion of C, provided that G[C+〈i − 1〉]

is clear we will use a procedure from [7]. That procedure is more general and it is
stated in [7] as Procedure ConnectedSearching with its performance stated in
Theorem 1 in [7]. Here we give its following reformulation that uses our notation.

Fig. 4 Exemplary initialization for
√

n = 9; crosses denote nodes belonging to the initial checkpoint C0
and empty circles denote nodes that belong to the homebase frontier, but do not fall into C0.

Theory of Computing Systems (2019) 63:1819–18481830

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Theorem 2 [7] Let F be any frontier and let G′ be any connected partial grid whose
nodes lie entirely on the rectangles R(F, 0),R(F, 1), . . . ,R(F, i), i ≥ 0. There
exists an on-line procedure ConnectedSearching that, starting at an arbitrarily
chosen homebase in G′, clears G′ in a connected and monotone way using 6i + 4
searchers.

We stress out that the above theorem assumes that the partial grid is entirely con-
tained in the area covered by the rectangles. In other words, the subgraph G′ in
Theorem 2 has no vertices ‘outside’ of the specified area. However, while using
procedure ConnectedSearching, we will be clearing a subgraph of G[C+〈i〉]
that is embedded into the entire partial grid and thus some nodes v of G[C+〈i〉]
have edges leading to neighbors that lie outside of G[C+〈i〉]. If such an edge is
already clear, then no recontamination happens for the node v and moreover no
searcher used by ConnectedSearching for the subgraph of G[C+〈i〉] needs
to stay at v. On the other hand, if such an edge is contaminated (and thus not
reached yet by our search strategy), then v needs to be guarded and for that end
we place an extra searcher on it that guards v during the remaining execution
of ConnectedSearching. Note that in the latter case, the node v belongs to
R(F, i), where F is the frontier that contains the nodes of C and therefore there
exist O(

√
n) such nodes v. In other words, ConnectedSearching is called

to clear a certain subgraph contained within R(F, i) and whenever a node on
the rectangle R(F, i) has a contaminated edge leading outside of the rectangle
R(F, i), then an extra searcher, not accommodated by ConnectedSearching
in Theorem 2, is introduced to be left behind to guard v. The modification of
ConnectedSearching that leaves behind a searcher on each such newly reached
node of R(F, i) will be denoted by ModConnectedSearching. Note that this
procedure is invoked for every guarded node from C+〈i − 1〉 in order to clear C+〈i〉,
see Fig. 5 for an example.

It follows that it is enough to provide as an input to
ModConnectedSearching: a node v in C+〈i − 1〉 that plays the role of home-
base for ModConnectedSearching, the frontier F and i. We stress out that

Fig. 5 Example of an execution of procedure ClearExpansion; crosses denote C = C〈0〉, empty
circles denote nodes that belong to C+〈1〉, dark squares denote the one that belongs to C+〈1〉 and for
which procedure ModConnectedSearching is invoked, gray areas show nodes that will be cleared
in four calls of ModConnectedSearching in order to clear C〈2〉. Note that the empty circles that lie
on a gray area are guarded at first, but after one of the calls of ModConnectedSearching there is no
need to guard them any more, so the procedure is not invoked for them

Theory of Computing Systems (2019) 63:1819–1848 1831

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

there are possibly many such nodes v and once one of them is selected, some other
such nodes in C+〈i − 1〉 may no longer have an incident edge that is contaminated
since the call to ModConnectedSearching did clear such an edge. However,
we assume that ModConnectedSearching clears only the maximal connected
subgraph that contains v and is induced by contaminated edges only. Thus, once its
execution is completed, there may exist another vertex v for which a new call to
ModConnectedSearching will be made to clear another maximal connected
subgraph induced by contaminated edges. See Fig. 5 that illustrates this process: the
shaded areas indicate which subgraphs have been actually cleared by subsequent
calls to ModConnectedSearching. We point out that, alternatively, a single call
to ModConnectedSearching would suffice if the procedure ‘processed’ the
entire subgraph contained in the expansion C+〈i〉 but this approach would ignore
that some subgraph of C+〈i〉 is already clear and hence we present the procedure as
having multiple calls to ModConnectedSearching that work on contaminated
edges only. We note that each checkpoint used in our final algorithm is obtained as
follows: some frontier F is selected and then a checkpoint C is created as some set
of nodes that belong to F ; thus we assume that with C such a unique frontier F is
associated.

Thus, this approach guarantees us using at most 6i + 4 searchers to clear G[C〈i〉]
and, in addition to those, 2

√
n + 8i searchers for guarding nodes lying on R(F, i),

which will be analyzed in more details in Section 5.
To summarize, we give a formal statement of our procedure.

The following observation summarizes the outcome of an execution of procedure
ClearExpansion.

Lemma 2 Suppose that C〈i − 1〉, that is an expansion contained in a frontier F ,
where i ≥ 1, is an input to procedure ClearExpansion. Suppose that G′ is the
maximal subgraph contained in G[C〈i〉] and induced by all nodes v such that there
exists a path contained in G[C〈i〉] connecting v with a vertex of C. Then, a call to
ClearExpansion with the above input provides the following:

– exactly the edges of G′ that are contaminated prior to the call are cleared during
this call to ClearExpansion,

– after the call, each vertex of G′ with an incident contaminated edge is guarded
by a searcher,

– all of the nodes from C〈i − 1〉 are cleaned and do not have to be guarded.

Theory of Computing Systems (2019) 63:1819–18481832

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

We point out that there may be an indirect interaction between different check-
points. Consider an execution of procedure ClearExpansion with an input
C〈i − 1〉. At the point of performing this call, there may exist a different checkpoint
C′ and a corresponding expansion C′〈i′〉 such that some searcher is guarding a node
v of C′〈i′〉 because v has (assuming for simplicity) a single contaminated edge e inci-
dent to it. It may happen that during the execution of ClearExpansion the edge
e becomes clear as it belongs to C+〈i〉. Therefore, this results in a situation that v

is not guarded (since it has no incident contaminated edges) and the corresponding
searcher becomes free.

4.2.2 Procedure UpdateCheckpoints

By definition, if F is some frontier, then R(F,
√

n) contains 10 frontiers (see
Fig. 1). Thus, reaching the

√
n-th expansion C〈√n〉 of a checkpoint of F pro-

vides a possibility of creating one new checkpoint for each of the above frontiers.
Procedure UpdateCheckpoints, which takes as an input C〈√n〉 and a collec-
tion C of currently present checkpoints, generates these new checkpoints and adds
them to C and removes C from C. Also, if it happens that some newly constructed
checkpoint belongs to the same frontier as some existing checkpoint in C and no
expansion for the existing one has been performed yet, then both checkpoints are
merged into one. Finally, any checkpoint in C whose lastly performed expansion is
empty is removed from C. We remark that procedure UpdateCheckpoints only
modifies the collection of checkpoints C and this procedure performs no clearing
moves.

Thus, to summarize, the ‘lifetime’ of a checkpoint is as follows. Once the 1-st
expansion of C is performed, the checkpoint will remain in the collection C and

Theory of Computing Systems (2019) 63:1819–1848 1833

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

possibly more expansions of C are made (in total at most
√

n expansion are possible
for each checkpoint). A checkpoint C may disappear from C in three ways:

– when C is in its 0-th expansion and another checkpoint C′ appears in the same
frontier (thus, C′ is in its 0-th expansion) and then the nodes of C are added to
C′, or

– some expansion of C becomes empty (then C is not removed from C right away
but during the subsequent call to UpdateCheckpoints), or

– C reaches its
√

n-th expansion and procedure UpdateCheckpoints is called
for C (in which case C possibly ‘gives birth’ to new checkpoints during the
execution of UpdateCheckpoints).

Our algorithm maintains a collection C of currently used checkpoints.

4.3 Procedure GridSearching

GridSearching is the main algorithm, whose aim it is to clear the entire partial
grid G in a connected and monotone way. We start with an informal introduction
of the algorithm. The search strategy it produces is divided into phases, which will
formally be defined in the next section. In each step of the algorithm, a checkpoint
with the highest number of nodes that need to be guarded is chosen and the next
expansion is made on it. When one of the checkpoints reaches its

√
n-th expansion,

then the current phase ends and the procedure UpdateCheckpoints is invoked.
Thus, the division of search strategy into phases is dictated by consecutive calls to
procedure UpdateCheckpoints. For an expansion C, in the pseudocode below
we write δ(C) to refer to the set of nodes that belong to the last expansion of C and
need to be guarded at a given point.

We now introduce a classification of searchers used in our algorithm. This
classification will be used in the proof of Theorem 3 but we place it here as it
provides another way of describing several actions that take place in the algo-
rithm. We can divide searchers into three groups: explorers, cleaners and guards.
Suppose that procedure ClearExpansion performs the i-th expansion of a check-
point Cmax. Denote by Fmax the frontier that contains the nodes in Cmax. All

Theory of Computing Systems (2019) 63:1819–18481834

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

searchers located at nodes on the (i − 1)-th rectangle of Fmax that need to be occu-
pied in order to avoid recontamination at the beginning of the call to procedure
ClearExpansion are named to be guards. The explorers and cleaners are used by
algorithm ModConnectedSearching called during the execution of procedure
ClearExpansion. Each time ModConnectedSearching reaches a node v on
the i-th rectangle of Fmax such that v needs to be guarded, the searcher used for guard-
ing v is called an explorer. The searchers used in ModConnectedSearching that
mimic the movements of searchers in algorithm ConnectedSearching are the
cleaners. We point out that we do not alter here the behavior of ClearExpansion
and ModConnectedSearching but just assign one of the three categories to each
searcher they use. Informally speaking, when explorers protect nodes lying on the i-
th rectangle and the guards protect the ones lying on the (i − 1)-th rectangle of Fmax,
cleaners clear nodes inside the i-th rectangle of Fmax (i.e., the remaining nodes of the
i-th expansion of Cmax).

We close this chapter with giving examples of the first three expansions of some
checkpoint C, see Fig. 6, and showing how our algorithm clears an exemplary partial
grid network, see Fig. 7 (for a formal definition of a phase see the first paragraph of
Section 5).

Fig. 6 First three expansions for some checkpoint C (here
√

n = 9); crosses denote C = C〈0〉, empty
circles denote nodes cleared in previous expansions; squares denote nodes explored in the current expan-
sion; dark circles are nodes not reached yet by the searchers; and dark squares denote nodes that need to
be guarded at the end of current expansion. Gray areas show the clear part of the graph, i.e., C+〈i〉 for
i ∈ {1, 2, 3}

Theory of Computing Systems (2019) 63:1819–1848 1835

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 7 Clearing an exemplary partial grid by procedure GridSearching; gray areas denote the clear
part, arrows denote frontiers on which the marked checkpoints lie, dotted rectangles around checkpoints
denote their current expansions and solid rectangles denote the

√
n-th expansions, which end phases

Theory of Computing Systems (2019) 63:1819–18481836

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5 Analysis of the Algorithm

By a step of the algorithm, or simply a step, we mean all searching moves performed
during a single iteration of the internal ‘while’ loop of procedure GridSearching.
Thus, one step of the algorithm includes all moves produced by one call to procedure
ClearExpansion. A phase of an algorithm consists of all its steps between two
consecutive calls to procedure UpdateCheckpoints. Note that phases may differ
with respect to the number of steps they are made of.

We say that a checkpoint is present in a given phase if its last expansion is not
empty at the beginning of this phase, i.e., if this checkpoint belongs to C at the begin-
ning of the phase. Similarly, a checkpoint is present in a given step if it is present in
the phase to which the step belongs. Thus, in particular, a checkpoint is present in
none or in all steps of a given phase. Note that some checkpoints may have empty
expansions during a part of a the phase, but they still remain present to the end of the
phase; this assumption is made to simplify the analysis of the algorithm.

Let t be a step and v be a node, which needs to be guarded at the beginning of step
t . We say that the checkpoint C owns v in step t if:

– either C owns v in step t − 1 or
– no checkpoint owns v in step t − 1 and v belongs to the last expansion of C

performed till the end of step t − 1.

(Intuitively, if a node v is reached by searchers in a step in which an expansion
of C occurred, then C owns v as long as v is guarded.) We note that any vertex v

can be owned by only one checkpoint. This follows from the fact that our strategy
is monotone. More precisely, once v is owned by some checkpoint C in some step,
then in the following steps it either continues to be owned by C or v does not need
to be guarded. In the latter case v will not be owned by any checkpoint till the end
of the strategy. Given a checkpoint C present in a step t , we write E(C, t) to denote
the set of nodes that C owns in step t . The weight of a checkpoint C present in a step
t is ωt(C) = |E(C, t)| and if a checkpoint C is not present in a step t , then we take
ωt(C) = 0. Note that each guarded node is owned by exactly one checkpoint and
hence, for a step t , the sum of weights of all checkpoints present in step t equals the
number of nodes that need to be guarded.

The checkpoint Cmax selected in a step t (see the pseudocode of Proce-
dure GridSearching) is called active in step t , or simply active if the step is clear
from the context or not important. All other checkpoints present in this step are called
inactive. We define an active interval of a checkpoint C to be a maximal interval
[t ′, t ′′] such that C is active in all steps t ∈ {t ′, . . . , t ′′}.

5.1 Single Phase Analysis—HowWeights of Checkpoints Evolve

We now prove lemmas that characterize how the weight of a checkpoint changes over
time — see Fig. 8 for an exemplary life cycle of a checkpoint. Informally, the weight
of a checkpoint C does not grow in intervals in which C is inactive (Lemma 3). Also,
the weight of C at the end of an active interval is not greater than at the beginning of

Theory of Computing Systems (2019) 63:1819–1848 1837

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 8 Exemplary life cycle of a checkpoint C

it (Remark 1); however, no upper bounds except for the trivial one of O(
√

n) can be
concluded for the weight of C inside its active interval.

Lemma 3 If a checkpoint C is present and inactive in a step t , then ωt+1(C) ≤
ωt(C).

Proof It follows directly from the definitions and procedure ClearExpansion
that the only checkpoint on which an expansion is performed during execution of
ClearExpansion is the active one. The weight of an inactive checkpoint C can
change only in the situation where the active checkpoint in a step t expands on some
nodes owned by C. In other words, the weight of C may decrease if C contains in
step t nodes that are added to the active checkpoint in step t + 1. Thus, if t is not the
last step of a phase, then the proof is completed.

If t is the last step of some phase, then apart from procedure ClearExpansion,
procedure UpdateCheckpoints is invoked, which affects C in two situations:

– there exists a step t ′ in the phase that ends such that ωt ′(C) = 0. Then, because
C cannot be expanded during steps t ′, . . . , t of the phase, we get directly that
ωt+1(C) = ωt(C) = 0.

– C is in its 0-th expansion and a new checkpoint is placed on the same frontier,
which implies that C is not present in step t + 1 and thus ωt+1(C) = 0.

Thus, in all cases we obtain that ωt+1(C) ≤ ωt(C).

We next observe that, informally speaking, once a checkpoint becomes active, it
remains active until either the phase ends or its weight decreases. Note that a check-
point that is active in the last step of the phase is not present in the first step of the
next phase, i.e., its weight is then zero, which allows us to state the lemma as follows:

Lemma 4 Let C be a checkpoint and let [t ′, t ′′] be an active interval of C. For every
step t ∈ {t ′, . . . , t ′′} it holds ωt(C) ≥ ωt ′′+1(C).

Theory of Computing Systems (2019) 63:1819–18481838

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Proof Obviously, t and t ′′ must belong to the same phase, because at the end of each
phase the active checkpoint is removed from C, i.e., it is no longer present in the next
phase.

If t ′′ is the last step of the phase then the lemma follows, because ωt ′′+1(C) = 0 ≤
ωt ′(C).

We will now prove that lemma holds when t ′′ is not the last step of the phase. Let
us suppose for a contradiction that ωt ′′+1(C) > ωt(C). From the assumptions of the
lemma and definition of an active interval we get that C is not the active checkpoint
in step t ′′ + 1. Because we are still in the same phase, it means that there must exist
a checkpoint C∗ such that ωt ′′+1(C

∗) ≥ ωt ′′+1(C). Moreover from Lemma 3 we
know, that because C∗ was inactive from step t ′ to t ′′, it holds ωt(C

∗) ≥ ωt ′′(C∗) ≥
ωt ′′+1(C

∗). This gives us

ωt(C
∗) ≥ ωt ′′+1(C

∗) ≥ ωt ′′+1(C) > ωt(C),

which is in a contradiction to the assumption that C is the active checkpoint in step
t .

Remark 1 Let C be a checkpoint and let [t ′, t ′′] be an active interval of C. Then,
ωt ′′+1(C) ≤ ωt ′(C).

We now conclude from the two previous lemmas about the weight of inactive
checkpoints in the ends of the consecutive phases.

Lemma 5 Suppose that a phase ends in a step t ′ and the next one ends in a step t ′′.
If a checkpoint C is inactive (but present) in steps t ′ and t ′′, then ωt ′′(C) ≤ ωt ′(C).

Proof Each checkpoint C can be active or inactive in different steps during the whole
phase. If in some step t ∈ {t ′, . . . , t ′′} a checkpoint C is inactive then from Lemma 3
we have that its weight will not increase, i.e., ωt(C) ≥ ωt+1(C). On the other hand,
Lemma 4 guarantees us, that the weight of an active checkpoint cannot be greater
after its active interval than at the beginning.

5.2 HowMany Nodes are Explored by a Checkpoint?

Define a bottleneck of a checkpoint C, denoted by b(C) to be its minimum weight
taken over all steps in which C was present. (Note that a checkpoint may be present
in many consecutive phases, see Fig. 8.)

Suppose that a node v has been reached by a searcher for the first time in a step t .
Let C be the active checkpoint in step t . We say that v has been explored by C.

If an expansion of an active checkpoint C reaches in a step t a node u already
explored by some checkpoint C′, then in most situations u does not need to be
guarded. However there might occur a “corner situation” when u still needs to be
guarded in order to avoid contamination. In such case, the algorithm clearly needs one
searcher on u to guard it and so it is counted in our analysis due to the ‘ownership’
relation used in the definition of the weight of a checkpoint.

Theory of Computing Systems (2019) 63:1819–1848 1839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

The next lemma states a lower bound on the number of nodes explored by a
checkpoint reaching its last expansion.

Lemma 6 Suppose that a phase ends in a step t . Let C be the active checkpoint in
step t . The number of nodes explored by C in all steps is at least b(C)

√
n.

Proof First let us make a remark that nodes can be only explored by C during execu-
tion of procedure ClearExpansion that took C as an input, i.e., when C is active.
Let us denote by S the set of all nodes explored by C.

Because C is active in the last step of the phase, it had to be active in exactly
√

n

steps in total, which can be contained in several past phases. Let t1, t2, . . . , t
√

n = t

be all steps in which C is active. Note that
√

n⋃

i=1

E(C, ti) ⊆ S

and E(C, ti) ∩ E(C, tj) = ∅ for i 	= j . The latter follows directly from the fact that
nodes in E(C, ti) and E(C, tj) belong to different rectangles of the frontier containing
C for i 	= j . (Recall that |E(C, t)| = ωt(C) for each step t .) Also from the definition
of the bottleneck, we get that b(C) ≤ ωti (C) for each i ∈ {1, . . . ,

√
n} and hence we

conclude that:

|S| ≥
√

n∑

i=1

ωti (C) ≥ b(C)
√

n.

We now give an upper bound on the weight of each inactive checkpoint at the end
of a phase.

Lemma 7 Suppose that a phase ends in a step t . Let C1, . . . , Cl be all checkpoints
present in this phase, where C1 is the active checkpoint in step t . Then, b(C1) ≥
ωt(Cj) for each j ∈ {2, . . . , l}.

Proof Let us denote by t ′ the last step in which ωt ′(C1) = b(C1). If t ′ = t then
the lemma follows strictly from the definition of an active checkpoint. We will now
prove that lemma stands also when t ′ < t .

Suppose that t ′ and t do not belong to the same active interval of C1. From the
Lemma 4 we know that ωt ′′(C1) = b(C1) occurs for some t ′′ that does not belong to
an active interval. Moreover from Remark 1 we get that every next active interval will
need to start and finish on the same weight as the bottleneck, which is in contradiction
that t ′ is the last step when b(C1) occurred.

Hence t and t ′ are part of the same active interval of C1. Then, we get from Lemma
3 and the fact that C1 is active in step t ′:

ωt(Cj) ≤ ωt ′(Cj) ≤ ωt ′(C1) = b(C1), j ∈ {2, . . . , l},
which finishes our proof.

Theory of Computing Systems (2019) 63:1819–18481840

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Let us introduce a relation ≺ on a set of checkpoints. Whenever C ≺ C′, we
say that C is a predecessor of C′ and C′ is a successor of C. We stress out that the
construction depends on the execution of the algorithm, namely only checkpoints that
appear in some step are considered, and the division of the steps into phases shapes
the relation. More precisely, the relation is defined only for checkpoints added to the
set C during all executions of procedure UpdateCheckpoints. To construct the
relation we iterate over the consecutive phases of the algorithm. Initially the relation
is empty and once the construction is done for each phase smaller than i, we perform
the following for phase i. Let C be the active checkpoint in the last step of phase i.
Let C1, . . . , Cl be all checkpoints, different from C, that have no successors so far
and were added to C till the end of phase i − 1 (including the last step). Then, let
Cj ≺ C for each j ∈ {1, . . . , l}.

An important property of our algorithm is that each checkpoint may have only a
constant number of predecessors:

Lemma 8 Each checkpoint has at most 10 predecessors.

Proof A checkpoint C can only once be active in the last step of some phase i,
because after that it will not be present in any later phases. At the end of phase i the
only checkpoints that do not have any successors are the ones that were constructed
by the procedure UpdateCheckpoints at the end of phase i − 1. There are at
most 10 such checkpoints.

5.3 The Algorithm Uses O(
√
n) Searchers in Total

We now bound the total weight of all checkpoints at the end of each phase — note
that this bounds the total number of searchers used for guarding at the end of a phase.
A high level intuition behind the proof of Lemma 9 is as follows. Due to Lemma 6,
each checkpoint C that is active in the last step of a phase explores at least b(C)

√
n

nodes in total. Therefore, the sum of bottlenecks of all such checkpoints C cannot
exceed

√
n. Moreover, C can have at most 10 predecessors and hence the sum of

weights of those predecessors is bounded by 10b(C) according to Lemma 7. Since
each checkpoint (except the one that is active in the last step of a given phase) is a
predecessor of some checkpoint that is active in the last step of some phase, we bound
the sum of all weights of all such checkpoints present in a given phase by 10

√
n.

Lemma 9 Suppose that C1, . . . , Cl are all checkpoints present in a phase that ends
in step t , where C1 is active in step t . Then,

l∑

i=1

ωt(Ci) ≤ ωt(C1) + 10
√

n.

Proof Suppose that phase j ends in step t . Let ti be the last step of phase i and let
C0

i be the active checkpoint in step ti for each i ∈ {0, . . . , j}. We denote by s the
number of nodes visited by searchers till the end of step t = tj . From Lemma 6 and

Theory of Computing Systems (2019) 63:1819–1848 1841

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the fact that the number of all nodes n is at least s we have:

n ≥ s ≥
j∑

i=0

b(C0
i)

√
n ⇒ 10

√
n ≥ 10

j∑

i=0

b(C0
i). (1)

From Lemma 8 we have that the checkpoints C0
0 , . . . , C0

j can have at most 10
predecessors. From the definition, they are constructed (i.e., added to collection C
during the execution of procedure UpdateCheckpoints) at the beginning of the
first step of a phase at the end of which their successor is active. Let us denote by
C1

i , . . . , C
li
i , 0 ≤ li ≤ 10, the predecessors of C0

i for each i ∈ {0, . . . , j} (by li = 0
we denote that C0

i has no predecessors). From Lemma 7 we have:

li∑

k=1

ωti (C
k
i) ≤ 10b(C0

i), i ∈ {0, . . . , j}. (2)

Lemma 5 assures us that weights of inactive checkpoints will not be greater at the
end of the next phase than they are in the last step of current phase:

ωt(C
k
i) = ωtj (C

k
i) ≤ ωtj−1(C

k
i) ≤ · · · ≤ ωti (C

k
i), i ∈ {0, . . . , j}; k ∈ {1, . . . , li}.

(3)
Because

{C1, . . . , Cl} ⊆ {C0
j } ∪

{
Ck

i

∣∣k ∈ {1, . . . , li}, i ∈ {0, . . . , j}
}

,

we can conclude from (3), (2) and (1) (in this order) that:

l∑

i=1

ωt(Ci) ≤ ωt(C
0
j) +

j∑

i=0

li∑

k=1

ωt(C
k
i)

≤ ωt(C
0
j) +

j∑

i=0

li∑

k=1

ωti (C
k
i)

≤ ωt(C
0
j) +

j∑

i=0

10b(C0
i)

≤ ωt(C
0
j) + 10

√
n.

Theorem 3 Given an upper bound n of the size of the network as an input, the
algorithm GridSearching clears in a connected and monotone way any unknown
underlying partial grid network using O(

√
n) searchers.

Proof At first let us notice that the algorithm GridSearching ends with the whole
network cleared. Indeed, as long as there are contaminated nodes, it will continue
clearing next expansions of the checkpoints. Because no recontamination takes place,
it eventually terminates. We will bound the number of searchers s used by a sin-
gle call to procedure ClearExpansion and the total number of searchers s′ used

Theory of Computing Systems (2019) 63:1819–18481842

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

for guarding at the end of any step of the algorithm. Note that s + s′ bounds the
total number of searchers used by GridSearching. In the proof we refer to the
classification of searchers into explorers, cleaners and guards introduced in Section 4.

We first analyze procedure ClearExpansion to give an upper bound on s. The
fact that each rectangle of a frontier contains at most 10

√
n nodes and Theorem 2

give that:

number of explorers ≤ 10
√

n,

number of cleaners ≤ 6
√

n + 4.

Thus,

s ≤ 16
√

n + 4.

The guards used to protect nodes lying on the (i − 1)-th rectangle are accounted for
during the estimation of s′ below.

We now bound the maximal number of searchers used for guarding at the end
of each step t of our search strategy, which we denote by gt . It is easy to see that
gt ≤ 10

√
n if t belongs to phase 0.

Let us now take any step t that belongs to an i-th phase, where i > 0 and denote
by t ′ the last step of the phase i − 1 and by C the active checkpoint in step t ′. From
Lemma 9 we know that gt ′ ≤ ωt ′(C) + 10

√
n ≤ 20

√
n. The latter inequality follows

from the fact that all nodes in E(C, t ′) belong to the j -th rectangle of the frontier that
contains C, j ≤ √

n, and the number of nodes in this rectangle is at most 10
√

n.
We know now that every phase starts with at most 20

√
n guards. If t is the first

step of an active interval of some checkpoint, then by Lemma 3 and Remark 1 we
have that gt ≤ gt ′ ≤ 20

√
n. But if t is a step inside some active interval, then an

active checkpoint can reach at most 10
√

n new nodes that need to be guarded. Note
that by Lemma 2, the nodes of subsequent expansions of a checkpoint that need to
be guarded do not accumulate, that is, we only guard the one of the last expansion.
Because in one step only one checkpoint can be active that leads us to conclusion
that for every step t we have gt ≤ 30

√
n. Therefore, we obtain that s′ ≤ 30

√
n.

Thus, we obtain s + s′ ≤ 46
√

n + 4 = O(
√

n) as required.

6 Unknown Size of the Graph

The algorithm we have described needs to know an upper bound on the size of
the underlying partial grid network G. In this section we design a procedure called
ModGridSearching that performs the search using O(

√
n) searchers and hav-

ing no prior information on the network. The procedure is based on a standard
technique: guessing an upper bound on n by doubling potential estimate each time.
More about applications of the doubling technique in designing on-line and off-line
approximation algorithms can be found in [9].

The procedure ModGridSearching is composed of a certain number of
rounds. In round i, procedure GridSearching first introduces c

√
2i new

searchers called i-th team, where c is the constant from the asymptotic nota-
tion in Theorem 3. Then, a call to GridSearching is made, where procedure

Theory of Computing Systems (2019) 63:1819–1848 1843

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

GridSearching is using only the searchers of the i-th team. The outcome can be
twofold. The procedure may succeed in searching the entire graph and in such case
the i-th round is the last one and ModGridSearching is completed, or the proce-
dure may encounter a situation in which it would be forced to use more than c

√
2i

searchers to continue. In such case GridSearching stops, the i-th round ends and
the (i + 1)-th round will follow. Once the i-th round is completed, the searchers of
the i-th team stay idle indefinitely. We point out that during the execution of an i-th
round, i > 1, procedure GridSearching using the searchers of the i-th team is
ignoring the fact that the network may be partially clear as a result of the work done
in previous rounds. Moreover, the searchers of j -th team for each j < i are not used
and thus also ignored during i-th round.

We close this section by giving an upper bound on the number of searchers that
need to be used in the presented modified version of our algorithm.

Theorem 4 The on-line algorithm ModGridSearching clears (starting at an
arbitrary homebase) in a connected and monotone way any unknown underly-
ing partial grid network using O(

√
n) searchers. The algorithm receives no prior

information on the network.

Proof Let n be the number of nodes of the partial grid network, which is unknown to
our procedure. The number of rounds m fulfills 2m−1 < n ≤ 2m, i.e., m = ⌈

log2 n
⌉

.

At the end of i-th round, c
√

2i searchers need to stay in their last positions till the
end of our procedure and are not used in subsequent rounds. This means that the total
number of searcher s is upper bounded by a sum of searchers used in every round:

s ≤ c
√

2 + c
√

22 + · · · + c

√
2�log2 n� = c

�log2 n�∑

j=1

(√
2
)j

= √
2c

1 − √
2
�log2 n�

1 − √
2

=
√

2c√
2 − 1

(√
2�log2 n� − 1

)
.

Because
√

n ≤
√

2�log2 n� <
√

2n, we conclude

s <

√
2c√

2 − 1

(√
2n − 1

)
⇒ s = O(

√
n).

7 Conclusions

7.1 Motivation

There exists a number of studies of graph searching problems in the graph-theoretic
context. Much less is known for geometric scenarios. It turns out that the geometric

Theory of Computing Systems (2019) 63:1819–18481844

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

(or continuous) analogue of graph searching is challenging to analyze. More pre-
cisely, in the recently introduced continuous version [29, 33] the input geometric
shape is searched by using line segments or curves (that form a barrier separating
contaminated and clear area) instead of searchers. The corresponding optimization
criterion is then the total length of this barrier. It can be observed that comput-
ing optimal strategies even for some simple shapes turns out to be quite non-trivial
[33].

The class of graphs we have selected to study in this work is motivated by the
following arguments. First, on-line (monotone) searching turns out to be difficult in
terms of achievable upper bound on the number of searchers even in simple topolo-
gies like trees. This suggest that some additional information is needed to perform
on-line search efficiently and our work shows that, informally speaking, a two-
dimensional sense of direction is enough to search a graph in asymptotically almost
optimal way. Our second motivation comes from approaching the problem of geomet-
ric search by considering its discrete analogues, i.e., by modeling via graph theory.
We give a short sketch to give an overview as the problem of modeling is out of scope
of this work and we only refer to some recent works on the subject [1, 4, 29, 33]. Con-
sider a continuous search problem in which k searchers initially placed at the same
location need to capture the fugitive hiding in an arbitrary polygon that possibly has
holes. The polygon is not known a priori to the searchers. The fugitive is considered
captured in time t when it is located at distance at most r from some searcher at time
point t . (The distance r can be related to physical dimensions of searchers and/or
their visibility range, etc.)

Consider the following transition from the above continuous searching problem of
a polygon to a discrete one. Overlap the coordinate system with the polygon in such
a way that the origin coincides with the original placement of the searchers. Then,
place nodes on all points with coordinates, which are multiples of r and lie in the
polygon. Connect two nodes with an edge if the edge is contained in the polygon.
In this way we obtain a partial grid network. In this brief sketch we omit potential
problems that may arise in such modeling, like obtaining disconnected networks or
having ‘blind spots’, i.e., points in the polygon that cannot be cleared by using the
above nodes and edges only. We say that a partial grid network G covers the polygon

Fig. 9 An example of the
construction of a partial grid
network

Theory of Computing Systems (2019) 63:1819–1848 1845

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

if G is connected and for each point p in the polygon there exist a node of G in
distance at most r from p.

See Fig. 9 for an example.
Note that any search strategy S ′ for a polygon P can be used to obtain a search

strategy S for underlying partial grid network G as follows. For each searcher s

used in S ′ introduce four searchers s1, . . . , s4 that will ‘mimic’ its movements by
going along edges of G. More precisely, the searchers s1, . . . , s4 will ensure that at
any point, if s is located at a point (x, y), then s1, . . . , s4 will reside on nodes with
coordinates (�x/r�, �y/r�), (�x/r�, �y/r�), (�x/r�, �y/r�), (�x/r�, �y/r�). In this
way, area protected by s in S ′ is always protected by four searchers in S. This allows
us to state the following.

Observation 1 Let P be a polygon and let G by an underlying partial grid network
that covers P . Then, there exists a search strategy for G using k searchers such that
its execution in G results in clearing P and k = O(p), where p is the minimum
number of searchers required for clearing P (in a continuous way).

7.2 Open problems

In view of the lower bound shown in [28] that even in such simple networks as trees
each distributed or on-line algorithm may be forced to use Ω(n/ log n) times more
searchers than the connected search number of the underlying network, one possi-
ble line of research is to restrict attention to specific topologies that allow to obtain
algorithms with good provable upper bounds. This work gives one such an example.
An interesting research direction is to find other non-trivial settings in which dis-
tributed or on-line search can be conducted efficiently. Also, we leave a logarithmic
gap in our approximation ratio. Since there exist grids that require Ω(

√
n) searchers

the gap can be possibly closed by analyzing the grids that require few (e.g. O(log n))
searchers.

The above questions related to network topologies can be stated more generally:
what properties of the on-line model are crucial for such a search for fast and invisible
fugitive to be efficient? This work and also a recent one [7] suggest that a ‘sense of
direction’ may be one such a factor. Possibly interesting directions may be to analyze
the influence of visibility on search scenarios.

We finally note that the only optimization criterion that was of interest in this work
is the number of searchers. This coincides with the research done in off-line search
problems where this was the most important criterion giving nice ties between graph
searching theory and structural graph theory. However, one may consider adding
different optimization criteria like time (defined as the maximum number of syn-
chronized steps) or the total distance (the total number of moves performed by all
searchers).

Acknowledgments Research partially supported by National Science Centre (Poland) grant number
2015/17/B/ST6/01887. An extended abstract of this work appeared in Proceedings of The 15th Workshop
on Approximation and Online Algorithms (WAOA 2017).

Theory of Computing Systems (2019) 63:1819–18481846

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Altshuler, Y., Yanovski, V., Wagner, I.A., Bruckstein, A.M.: Multi-agent cooperative cleaning of
expanding domains. I. J. Robot. Res. 30(8), 1037–1071 (2011)

2. Barrière, L., Flocchini, P., Fomin, F.V., Fraigniaud, P., Nisse, N., Santoro, N., Thilikos, D.M.:
Connected graph searching. Inf. Comput. 219, 1–16 (2012)

3. Best, M.J., Gupta, A., Thilikos, D.M., Zoros, D.: Contraction obstructions for connected graph
searching. Discrete Applied Mathematics. https://doi.org/10.1016/j.dam.2015.07.036 (2015)

4. Bhadauria, D., Klein, K., Isler, V., Suri, S.: Capturing an evader in polygonal environments with
obstacles The full visibility case. I. J. Robot. Res. 31(10), 1176–1189 (2012)

5. Blin, L., Burman, J., Nisse, N.: Perpetual graph searching. Technical report INRIA 〈hal-00675233〉
(2012)

6. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders. Theor Comput.
Sci. 399(1-2), 12–37 (2008)

7. Borowiecki, P., Dereniowski, D., Kuszner, L.: Distributed graph searching with a sense of direction.
Distrib. Comput. 28(3), 155–170 (2015)

8. Cai, J., Flocchini, P., Santoro, N.: Decontaminating a network from a black virus. IJNC 4(1), 151–173
(2014)

9. Chrobak, M., Kenyon-Mathieu, C.: Sigact news online algorithms column 10: competitiveness via
doubling. ACM SIGACT News 37(4), 115–126 (2006)

10. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics - A survey.
Auton. Robot. 31(4), 299–316 (2011)

11. Daadaa, Y.: Network Decontamination with Temporal immunity, Master Thesis. Master Thesis.
University of Ottawa, Ottawa (2012)

12. Daadaa, Y., Flocchini, P., Zaguia, N.: Network decontamination with temporal immunity by cellular
automata. In: ACRI’10: Proceedings of the 9th International Conference on Cellular Automata for
Research and Industry, Ascoli Piceno, pp. 287–299 (2010)

13. D’Angelo, G., Navarra, A., Nisse, N.: Gathering and exclusive searching on rings under minimal
assumptions. In: ICDCN ’14: Proc. of the 15th International Conference on Distributed Computing
and Networking, Coimbatore, pp. 149–164 (2014)

14. Dereniowski, D.: Connected searching of weighted trees. Theor. Comp. Sci. 412, 5700–5713 (2011)
15. Dereniowski, D.: Approximate search strategies for weighted trees. Theor. Comput. Sci. 463, 96–113

(2012)
16. Dereniowski, D.: From pathwidth to connected pathwidth. SIAM J. Discret. Math. 26(4), 1709–1732

(2012)
17. Durham, J.W., Franchi, A., Bullo, F.: Distributed pursuit-evasion without mapping or global localiza-

tion via local frontiers. Auton. Robot. 32(1), 81–95 (2012)
18. Ellis, J., Warren, R.: Lower bounds on the pathwidth of some grid-like graphs. Discret. Appl. Math.

156(5), 545–555 (2008)
19. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontaminating chordal rings and tori using mobile agents.

Int. J. Found. Comput. Sci. 18(3), 547–563 (2007)
20. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks

52(3), 167–178 (2008)
21. Flocchini, P., Luccio, F., Pagli, L., Santoro, N.: Optimal network decontamination with threshold

immunity. In: CIAC’13: Proc. of the 8th International Conference on Algorithms and Complexity,
Barcelona, pp. 234–245 (2013)

22. Flocchini, P., Luccio, F., Pagli, L., Santoro, N.: Network decontamination under m-immunity. Discret.
Appl. Math. 201, 114–129 (2016)

Theory of Computing Systems (2019) 63:1819–1848 1847

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dam.2015.07.036
http://mostwiedzy.pl

23. Flocchini, P., Mans, B., Santoro, N.: Tree decontamination with temporary immunity. In: Algorithms
and Computation, 19th International Symposium, ISAAC, 2008, Gold Coast, Australia, pp. 330–341.
Proceedings (2008)

24. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor.
Comput. Sci. 399(3), 236–245 (2008)

25. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication
tasks. In: PODC’06: Proc. of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, pp. 179–187 (2006)

26. Gonċalves, V.C.F., Lima, P.M.V., Maculan, N., Franċa, F.M.G.: A distributed dynamics for web-
graph decontamination. In: ISoLA ’10 Proceedings of the 4th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, Heraklion, Crete, pp. 462–472 (2010)

27. Hollinger, G.A., Singh, S., Djugash, J., Kehagias, A.: Efficient multi-robot search for a moving target.
I. J. Robot. Res. 28(2), 201–219 (2009)

28. Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph searching. Distrib.
Comput. 22(2), 117–127 (2009)

29. Karaivanov, B., Markov, M., Snoeyink, J., Vassilev, T.S.: Decontaminating planar regions by
sweeping with barrier curves. In: CCCG ’14: Proceedings of the 26th Canadian Conference on
Computational Geometry (2014)

30. Kolling, A., Carpin, S.: Multi-robot pursuit-evasion without maps. In: ICRA’10: Proceedings of IEEE
International Conference on Robotics and Automation, pp. 3045–3051 (2010)

31. LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40(2), 224–245 (1993)
32. Luccio, F., Pagli, L., Santoro, N.: Network decontamination in presence of local immunity. Int. J.

Found Comput. Sci. 18(3), 457–474 (2007)
33. Markov, M., Haralampiev, V., Georgiev, G.: Lower bounds on the directed sweepwidth of planar

shapes. Serdica J. Comput. 9(2), 151–166 (2015)
34. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of

searching a graph. J. ACM 35(1), 18–44 (1988)
35. Moraveji, R., Sarbazi-azad, H., Zomaya, A.Y..: Performance modeling of cartesian product networks.

J. Parallel Distrib. Comput. 71(1), 105–113 (2011)
36. Nisse, N., Soguet, D.: Graph searching with advice. Theor. Comput. Sci. 410(14), 1307–1318 (2009)
37. Parsons, T.D.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs, Lecture Notes in

Mathematics, vol. 642, pp. 426–441. Springer (1978)
38. Petrov, N.N.: A problem of pursuit in the absence of information on the pursued. Differ. Uravneniya

18, 1345–1352 (1982)
39. Raboin, E., Kuter, U., Nau, D.S.: Generating strategies for multi-agent pursuit-evasion games in par-

tially observable euclidean space. In: AAMAS ’12 Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, Valencia, Spain, pp. 1201–1202 (2012)

40. Robin, C., Lacroix, S.: Multi-robot target detection and tracking: taxonomy and survey. Auton. Robot.
40(4), 729–760 (2016)

41. Rodrı́guez, S., Denny, J., Burgos, J., Mahadevan, A., Manavi, K., Murray, L., Kodochygov, A., Zourn-
tos, T., Amato, N.M.: Toward realistic pursuit-evasion using a roadmap-based approach. In: ICRA
’11: Proceedings of the IEEE international conference on robotics and automation, Shanghai, China,
pp. 1738–1745 (2011)

42. Sachs, S., LaValle, S.M., Rajko, S.: Visibility-based pursuit-evasion in an unknown planar environ-
ment. I. J Robot. Res. 23(1), 3–26 (2004)

43. Stiffler, N.M., O’Kane, J.M.: A complete algorithm for visibility-based pursuit-evasion with mul-
tiple pursuers. In: ICRA ’14: Proceedings of the IEEE International Conference on Robotics and
Automation, Hong Kong, China, pp. 1660–1667 (2014)

44. Yang, B., Dyer, D., Alspach, B.: Sweeping graphs with large clique number. Discret. Math. 309(18),
5770–5780 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Theory of Computing Systems (2019) 63:1819–18481848

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	On-line Search in Two-Dimensional Environment
	Abstract
	Introduction
	Off-line searching
	On-line searching

	Related Work
	Off-line problems
	On-line searching
	Applications in robotics

	Outline of This Work

	Definitions and Terminology
	Problem Statement
	Partial Grid Notation

	Lower Bound
	The Algorithm
	Initialization
	Procedures
	Procedure ClearExpansion
	Procedure UpdateCheckpoints

	Procedure GridSearching

	Analysis of the Algorithm
	Single Phase Analysis — How Weights of Checkpoints Evolve
	How Many Nodes are Explored by a Checkpoint?
	The Algorithm Uses O(n) Searchers in Total

	Unknown Size of the Graph
	Conclusions
	Motivation
	Open problems

	References

