
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8373  | https://doi.org/10.1038/s41598-023-35470-4

www.nature.com/scientificreports

On nature‑inspired design 
optimization of antenna structures 
using variable‑resolution EM 
models
Slawomir Koziel 1,2 & Anna Pietrenko‑Dabrowska 2*

Numerical optimization has been ubiquitous in antenna design for over a decade or so. It is 
indispensable in handling of multiple geometry/material parameters, performance goals, and 
constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying 
computational model involves full‑wave electromagnetic (EM) analysis. In most practical cases, 
the latter is imperative to ensure evaluation reliability. The numerical challenges are even more 
pronounced when global search is required, which is most often carried out using nature‑inspired 
algorithms. Population‑based procedures are known for their ability to escape from local optima, yet 
their computational efficiency is poor, which makes them impractical when applied directly to EM 
models. A common workaround is the utilization of surrogate modeling techniques, typically in the 
form of iterative prediction‑correction schemes, where the accumulated EM simulation data is used 
to identify the promising regions of the parameter space and to refine the surrogate model predictive 
power at the same time. Notwithstanding, implementation of surrogate‑assisted procedures is often 
intricate, whereas their efficacy may be hampered by the dimensionality issues and considerable 
nonlinearity of antenna characteristics. This work investigates the benefits of incorporating variable‑
resolution EM simulation models into nature‑inspired algorithms for optimization of antenna 
structures, where the model resolution pertains to the level of discretization density of an antenna 
structure in the full‑wave simulation model. The considered framework utilizes EM simulation models 
which share the same physical background and are selected from a continuous spectrum of allowable 
resolutions. The early stages of the search process are carried out with the use of the lowest fidelity 
model, which is subsequently automatically increased to finally reach the high‑fidelity antenna 
representation (i.e., considered as sufficiently accurate for design purposes). Numerical validation is 
executed using several antenna structures of distinct types of characteristics, and a particle swarm 
optimizer as the optimization engine. The results demonstrate that appropriate resolution adjustment 
profiles permit considerable computational savings (reaching up to eighty percent in comparison to 
high‑fidelity‑based optimization) without noticeable degradation of the search process reliability. 
The most appealing features of the presented approach—apart from its computational efficiency—are 
straightforward implementation and versatility.

The development of modern antenna systems is a complex endeavor facing numerous challenges. The majority of 
these result from increasing performance requirements associated with the newly developed areas such as internet 
of things (IoT)1, microwave  imaging2, body area  networks3, 5G wireless  communications4,5, or remote  sensing6, 
as well as additional functionalities required by specific applications  (broadband7 and multi-band  operation8, 
MIMO  operation9,  reconfigurability10, polarization  diversity11, beam  scanning12, enhanced  gain13). An additional 
difficulty arises due to miniaturization demands: compact antennas are essential for mobile  communications14, 
 IoT15, as well as wearable and implantable  devices16,17. At the same time, downsizing generally exerts adverse 
effect on electrical and field performance of the  radiators18, and trade-off designs have to be devised that ensure 
required functionality while satisfying geometrical constraints. Meeting the aforementioned performance 
demands fosters the development of unconventional and often topologically complex antenna structures that 
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feature a variety of additional components, e.g.,  stubs19,  slots20, shorting  pins21, defected ground  structures22, 
or multi-layer  implementations23. The recent introduction of metamaterials (e.g., in the form of metasurfaces) 
enables the design of more sophisticated antenna geometries featuring improved performance with respect to 
gain, radiation properties, reduced size, or improved element isolation for multi-radiator  systems101–104. On the 
other hand, reliable evaluation of geometrically involved antenna structures can only be realized using full-wave 
electromagnetic (EM) analysis. Consequently, EM simulation has become ubiquitous as a design tool, which 
is indispensable at all stages of the design process, including topology evolution, parametric studies, as well as 
design closure (i.e., final tuning of geometry parameters).

Ensuring the best possible performance of contemporary antennas requires meticulous EM-driven adjustment 
of their parameters. Given the topological complexity, conventional enhancement methods involving equivalent 
network models or experience-driven parametric studies can only yield sub-optimal designs, and are gener-
ally unsuitable for handling multiple design goals, conditions on electrical performance figures, and multiple 
parameters. Instead, rigorous numerical optimization is  recommended24,25. Probably the most serious bottleneck 
thereof constitutes the inflated computational cost that is problematic even for local parameter adjustment (e.g., 
gradient-based26). On the other hand, global search is often necessary in many practical cases. These include 
tasks that exhibit multimodality (the existence of several local optima), such as optimization of metamateri-
als (e.g., frequency-selective  surfaces27), array pattern synthesis for minimum sidelobe  levels28,29, as well as all 
sorts of problems where decent initial designs may not be available. The last category includes the structures 
incorporating various geometrical alterations, introduced to implement additional functionalities (e.g., band 
 notches30, multiple operating  bands31) or permit size  reduction32, but also structures re-designed with respect 
to center frequencies and material parameters being distant from those at the available design. Needless to say, 
in computational terms, global optimization is considerably more expensive than local procedures.

Without a doubt, the most popular techniques for global optimization are nature-inspired 
 algorithms29,33,34,105,106. Their origin dates back to nineteen-eighties (e.g., genetic  algorithms35, genetic 
 programming36, ant  systems37, evolutionary  algorithms38), yet some early population-based methods for con-
tinuous optimization, specifically evolutionary strategies, were conceived in  1960s39. A significant progress has 
been observed in 1990s with the development of techniques such as particle swarm optimizers (PSO)40, or 
differential evolution (DE)41. Since early 2000s, nature-inspired methods have been dominating global opti-
mization. Recently, a number of new methods of this class has been growing rapidly (e.g., firefly  algorithm42, 
harmony  search43, grey wolf  optimization44, as well as many other  algorithms45–51), yet the practical differences 
between them seem to be minor. Nature-inspired algorithms act upon the sets of candidate solutions (referred 
to as a  population52,  swarm53,  pack54, etc.), the members of which (individuals, agents, particles, etc.) exchange 
information and produce new data using exploitative and exploratory  operators55. This allows for locating the 
encouraging regions of the design space and increase the likelihood of escaping from local optima. Consequently, 
the algorithms of this class exhibit global search  capability56,57. The implementation of nature-inspired methods 
is straightforward, however their cost effectiveness is far from satisfactory: depending on the difficulty of the 
problem at hand and the number of system parameters, a single search may involve anything between a few 
hundred and several thousands of merit function evaluations. Needless to say, this level of costs is prohibitive 
when the responses of the antenna under study are simulated using full-wave analysis.

Given the inferior CPU efficiency of population-based methods, their practical utility for antenna optimiza-
tion is quite limited. Possible scenarios include low evaluation cost of the objective function (e.g., pattern synthe-
sis with the use of analytical array factor  models58,59), relatively low cost of EM analysis (simple structures with the 
simulation times of seconds), or parallel implementations. The latter depends upon the availability of sufficient 
computational resources and software licensing. In other cases, i.e., expensive EM simulations are utilized for 
antenna evaluation, a workaround the high cost issue is the employment of surrogate modeling  methods60–62, 
mainly data-driven (e.g.,  kriging63, Gaussian Process Regression,  GPR64, artificial neural  networks65). The sur-
rogate model allows for accelerating the search process by replacing costly EM simulations. In practice, the 
construction of the metamodel is often an iterative process, where surrogate-assisted predictions are followed 
by model refinement, using the accumulated high-fidelity data. The infill samples are allocated to enable param-
eter space exploration (when the improvement of global accuracy of the surrogate is required) or exploitation 
(when the primary purpose is optimum identification)66. Other possible approaches include machine learning 
 methods67, often involving sequential sampling  techniques68. Surrogate-assisted pre-screening of the parameter 
space is also occasionally  employed69. Despite their potential merits, the use of surrogate modeling methods 
for global optimization of antenna structures is impeded by the curse of dimensionality but also significant 
nonlinearity of antenna frequency characteristics. In practice, utilizing general-purpose modeling techniques 
poses problems for devices featuring more than a few geometry  parameters70–72. The mitigation methods include 
domain  confinement73,74, incorporation of variable-resolution EM  simulations75, as well as the response feature 
 methodology76. The latter benefits from a weakly-nonlinear dependence of the coordinates of appositely sin-
gled out characteristic points of antenna responses on the geometry parameters (as opposed to the complete 
responses), which allows—upon reformulation of the design problem with the use of response features—for a 
faster convergence of the optimization  process77, or a reduction of the number of training samples (in the context 
of surrogate  modeling78).

The techniques outlined in the previous paragraph address certain issues of global EM-driven optimization 
of antenna systems, yet they suffer from the number of problems on their own, lack versatility, and are rela-
tively complex to implement. Perhaps the simplest speedup approach would be the incorporation of variable-
fidelity models. In the realm of local design of high-frequency components, this has been mostly done at two 
levels of fidelity (e.g., equivalent circuit models versus EM simulations, e.g.79,80) or resolution (e.g., coarse- and 
fine-discretization EM  analysis81,82). Utilization of model resolutions from a continuous spectrum constitutes 
a more attractive option. It has been applied for expediting local antenna design optimization  in107,108, also in 
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combination with various reliability enhancement  mechanisms109,110. Whereas in the context of nature-inspired 
algorithms, various fidelity adaptation schemes were investigated  in83; however, using mostly analytical objec-
tive functions. In this work, we investigate potential benefits of employing variable-resolution EM models for 
global optimization of antennas using nature-inspired algorithms. In pursuit of implementation simplicity but 
also generality, an automated procedure utilizing EM simulation models chosen from a continuous spectrum of 
resolutions is developed. In our work, model resolution is controlled by the discretization density of the antenna 
structure at hand. Starting from the lowest admissible resolution, determined as rendering all relevant features 
of the system characteristics (e.g., the resonances), the model fidelity is gradually increased to reach the high-
fidelity level at the conclusion of the algorithm run. Two research questions arise: (i) how much faster the global 
design optimization of antenna structures may be carried out using variable-resolution EM models than the 
procedure executed in a single-fidelity regime, and (ii) to what degree the design quality is going to deteriorate 
with respect to the algorithm employing solely high-resolution EM simulations. The speedup versus quality trade-
offs are investigated for various resolution adjustment profiles, and using particle swarm optimizer (PSO) (being 
a commonplace population-based algorithm). The benchmark set includes four microstrip antennas of distinct 
characteristics. The obtained results demonstrate that appropriate resolution adjustment enables considerable 
savings (up to nearly eighty percent as compared to high-fidelity-based optimization) without compromising 
reliability of the search process. The attractive features of the presented approach, as compared to alternatives 
discussed earlier in this section, include computational efficiency but also easy implementation and versatility.

The novelty and technical contributions of the paper include: (i) a conceptual development of an algorithmic 
framework which incorporates variable-resolution EM simulations into nature-inspired antenna optimization, 
(ii) development of a resolution management scheme utilized by the proposed global search procedure based 
on the algorithm convergence status, (iii) demonstrating of significant CPU savings (up to 70%) over the single-
resolution approach obtained without noticeable degradation of the solution quality. To the best knowledge of 
the authors, it is the first time that the multi-resolution simulation models have been used in conjunction with 
nature inspired algorithms for high-frequency design.

EM‑driven design of antennas variable‑resolution models
In this section, we recall the formulation of EM-driven antenna optimization task and discuss variable-resolution 
models. In particular, we explain the process of establishing a suitable range of EM simulation model fidelities 
that can be used in antenna optimization. It is illustrated using specific examples of microstrip antennas.

EM‑driven design of antenna structures. Rigorous numerical optimization has become ubiquitous in 
antenna design, although traditional parameter tuning methods, mainly parameter sweeping guided by engi-
neering experience, are still widely used by the designers. Formal optimization requires a definition of a per-
formance metric, which is normally a scalar function of adjustable parameters (typically, antenna dimensions), 
but might also be vector-valued in the case of multi-objective design. In this work, we do not consider multi-
objective  design84, therefore, at the presence of multiple objectives, they are assumed to be aggregated in some 
form (weighted sum  approach85) or cast into design constraints with the user-defined acceptance thresholds (cf. 
examples below).

Let x denote a vector of adjustable parameters of the antenna of interest, which are normally its geometry 
parameters. The parameter adjustment task is defined as

where x* denotes the optimal vector to be found, and U stands for the scalar merit function that quantifies the 
designer’s view concerning the design quality. In particular, it should be defined so that better designs correspond 
to lower values of U(x). In general, the process (1) is subject to inequality constraints gk(x) ≤ 0, k = 1, …, ng, and 
equality constraints hk(x) = 0, k = 1, …, nh. As the antenna structures are typically evaluated using full-wave elec-
tromagnetic (EM) simulations, explicit handling of constraints is usually impractical. An alternative is a penalty 
function  approach86, where the optimization task (1) is replaced by

In (2), the function UP constitutes a linear combination of the penalty terms and the original objective func-
tion U. We have

The functions ck(x) in (3) measure constraint violations, whereas βk are the proportionality factors (penalty 
coefficients) controlling the contribution of particular penalty terms.

Table 1 presents some examples of typical design scenarios which involve antenna reflection response, size, 
as well as some of field characteristics such as axial ratio or gain. Therein, f denotes the frequency, |S11(x,f)| rep-
resents the modulus of the reflection coefficient at vector x and frequency f, G(x,f) is the antenna gain, AR(x,f) is 
the axial ratio, and the size is referred to as A(x) (e.g., footprint area of the substrate the antenna is implemented 
on). Note that the penalty functions listed in the right-hand-side column represent relative violations of each 
constraint over the acceptance threshold. The second power is used as it enforces smoothness of UP as a func-
tion of constraint violation at the feasible region boundary, which is numerically advantageous as, at the optimal 
solution, at least some of the constraints are normally active.

(1)x
∗
= argmin

x
U(x)

(2)x
∗
= argmin

x
UP(x)

(3)UP(x) = U(x)+
∑ng+nh

k=1
βkck(x)
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Simulation models of variable‑resolution. Variable-resolution models have been used in high-fre-
quency electronics (including antenna engineering) for more than a decade to accelerate simulation-driven 
design  processes78,87. Usually, two levels of models are used, often named coarse (also, low-fidelity) and fine (also, 
high-fidelity). The former may be constructed in the form of an equivalent network  representation79 or coarse 
discretization EM  analysis81. It should be observed, that we use the term “model fidelity” for the level of discre-
tization density of an antenna structure under design in the full-wave simulation model (e.g., finite-difference 
time-domain, FDTD, or finite element method, FEM).

The pairs of coarse/fine model have been employed in techniques such as space  mapping88, manifold 
 mapping89, or response correction methods (e.g., shape preserving response  prediction90, adaptive response 
 scaling81). Therein, the model of low fidelity is corrected with the use of high-fidelity data accrued in the course 
of the optimization process and replaces the fine model in the search process. Other uses of the low-fidelity 
model include initial parameter space pre-screening within machine learning  frameworks69, as well as variable-
fidelity modelling (co-kriging75, two-stage Gaussian process  regression91). The accuracy and evaluation cost of 
the coarse model fidelity are both important for the efficacy of the variable-fidelity optimization process, yet the 
appropriate selection of the model is an intricate  task92.

Low-fidelity models of antenna structures are generally based on coarse-discretization EM analysis as reli-
able equivalent network or analytical models are hardly available. Reducing the structure discretization in the 
simulation process (e.g., finite differences time domain,  FDTD93, etc.) is the major mechanism to speed up the 
simulation process. Other simplifications include a reduction of the computational domain, neglecting dielectric 
losses, or considering metal as perfect conductor. In practice, the simplest approach is to control discretization 
density using a single parameter, e.g., lines per wavelength (LPW) of CST Microwave  Studio94, which is one of 
the most widely used commercial EM solvers. In this work, we utilize LPW parameter for setting model fidelity. 
Observe also, that in our numerical experiments, the number of meshing cells per wavelength and the number 
of meshing cells per model box edge in CST Microwave Studio are set to the same value (i.e., the current model 
fidelity L).

Consider the antenna structures shown in Fig. 1 along with their reflection responses |S11|, obtained for differ-
ent values of the LPW parameter. Larger LPW enlarges the mesh density and, thereby, the accuracy of evaluation, 
yet, increases simulation time. Both antennas are relatively simple, yet the typical evaluation cost is much higher 
for the monopole of Fig. 1a because its computational model incorporates the SMA  connector95. Observe that 
for some values of LPW, the model usability is questionable as the antenna characteristics it renders is to a large 
extent misaligned from that of the fine model. 

In general, the admissible range of LPW is decided upon visual inspection of antenna characteristics and 
engineering experience. Here, we will denote by Lmin the lowest value of the control parameter LPW that is 
acceptable from antenna optimization point of view, which is normally assigned for the model that renders all 
relevant features of the antenna characteristics (e.g., antenna resonances). The highest value Lmax corresponds 
to the model of the highest fidelity, which represents the accuracy level satisfactory from the point of view of the 
designer. The latter can be determined through a grid convergence study, in particular, by finding the value of 
LPW beyond which no further response changes are observed. 

Having Lmin and Lmax, for the sake of acceleration, the optimization process will employ variable-resolution 
models within the range Lmin ≤ L ≤ Lmax, where L denotes the scalar coefficient controlling the model resolution.

Nature‑inspired antenna optimization with variable‑resolution models
This section outlines the incorporation of variable-resolution EM models into population-based nature-inspired 
antenna optimization. As mentioned in “Introduction” section, perhaps the first attempt to consider multi-
fidelity nature-inspired optimization on a generic level was described in the recent  paper83. Therein, several 
fidelity adjustment schemes were considered, along with the analysis of the potential benefits of variable-fidelity 
approach, although the numerical experiments were mainly performed using analytical objective functions. The 
algorithm discussed in this section is based on a similar idea, whereas variable-resolution EM models of the 

Table 1.  Exemplary design optimization scenarios for antenna structures.

Design scenario: verbal description Objective function (1) and constraints Objective function (3)

Design for best in-band matching within the frequency range F U(x) = S(x) = max{f ∈ F : |S11(x,f)|} UP(x) = U(x)

Design for maximum average in-band gain (in frequency range F); ensuring that in-band 
matching does not exceed − 10 dB in F

U(x) = G(x) = 1
F

∫

F

G(x, f )df

Constraint:
|S11(x, f )| ≤ −10 dB for f ∈ F

UP(x) = G(x)+ β1c1(x)
2

where

c1(x) =
[
max(S(x)+10,0)

10

]2

Design for minimum in-band axial ratio (in frequency range F); ensuring that in-band match-
ing does not exceed − 10 dB in F

U(x) = AR(x) = max{f ∈ F : AR(x, f )}
Constraint:
|S11(x, f )| ≤ −10 dB for f ∈ F

UP(x) = AR(x)+ β1c1(x)
2

where

c1(x) =
[
max(S(x)+10,0)

10

]2

Design for size reduction of a circularly polarized antenna; ensuring that in-band matching (in 
frequency range F) does not exceed − 10 dB, and axial ratio does not exceed 3 dB

U(x) = A(x)
Constraints:
AR(x, f ) ≤ 3 dB for f ∈ F
and |S11(x, f )| ≤ −10 dB for f ∈ F

UP(x) = A(x)+ β1c1(x)
2
+ β2c2(x)

2

where

c1(x) =
[
max(S(x)+10,0)

10

]2

and c2(x) =
[
max(AR(x)−3,0)

3

]2
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antenna structures undergoing the optimization process are set up as discussed in “EM-driven design of anten-
nas variable-resolution models” section.

Generic structure of nature‑inspired algorithms. Consider a generic nature-inspired algorithm pre-
sented in Fig. 2. Therein, variable P(k) = [P1

(k) … PN
(k)] stands for the population (swarm, pack, etc., depending on 

the type of the algorithm) processed by the algorithm in the iteration k. The population size is N. The algorithm 
termination is conditioned by the computational budget, i.e., the prescribed number of iterations kmax. The func-
tion E(P) determines the solution quality; it is to be minimized. Ek.j will be used as a shortcut to E(Pj

(k)). In the 
pseudocode of Fig. 2 (Algorithm I), the emphasis is put on the elitism part of the procedure, where the best 
individual (particle, agent, etc.) is identified and transferred throughout the iterations.

The differences between the various nature-inspired algorithms are pertinent to a construction of a new popu-
lation P(k+1) from the current one. For example, in a genetic/evolutionary type of  algorithms55,56, a selection of a 
parent individual from the current population (using partially stochastic operators, e.g., tournament  selection36) 
is an intermediate step, followed by the recombination operators, employed to yield the new individuals. Recom-
bination operators are of two major types, exploratory (e.g.,  crossover35), and exploitative (e.g.,  mutation35). In 
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Figure 1.  Multi-resolution EM models of a wideband antenna (a), and a dual-band antenna (b); average 
simulation time versus LPW for the respective antennas, (c), (d), respectively; (e), (f) reflection responses for 
different discretization densities for the wideband and dual-band antenna, respectively. Vertical lines denote the 
values of LPW corresponding to the high-fidelity model (—) and the lowest usable low-fidelity model (---).
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the majority of modern nature-inspired algorithms  (PSO96, differential  evolution57, firefly  algorithm42, and many 
others), individuals in a population are generally not replaced but rather relocated in the design space using 
certain rules, typically involving random alterations biased towards the best local and global solutions found so 
far. For example, in PSO, each particle is associated with its velocity vector, which governs relocation to a new 
position. The velocity is updated using a linear combination of a random factor, a vector pointing towards the 
particle’s (personal) best position, and a vector pointing towards the global best. Regardless of the particular set 
of rules, a vast majority of nature-inspired algorithms can be represented as shown in Fig. 2.

Incorporating variable‑resolution simulation models. Our objective is to accelerate the generic 
nature-inspired algorithm of Fig. 2 using variable-resolution EM simulations discussed in “Simulation models 
of variable-resolution” section. Recall that the model resolution is governed using a fidelity factor L that can be 
continuously adjusted between Lmin (the lowest acceptable resolution) and Lmax (high-fidelity model that pro-
vides the target accuracy as decided upon by the designer).

As the termination condition of the algorithm of “Generic structure of nature-inspired algorithms” section 
is based on the maximum number of iterations kmax, the model resolution will be adjusted as a function of the 
iteration count k. We adopt a power-type adjustment scheme (cf.83)

where p is a control parameter. This scheme offers a sufficient level of flexibility, e.g., for p > 1, the model resolution 
is kept near Lmin for most of the optimization run, and quickly increases towards Lmax when close to convergence. 
For p < 1, only the initial iterations are executed at the low-resolution level, whereas most of the run is carried 
out close to Lmax.

Figure 3 shows a pseudocode of a generic population-based nature-inspired algorithm incorporating variable-
resolution EM models (Algorithm II). The procedure differs from that of Fig. 2 in several aspects. First, the model 
resolution equal to Lmin is adopted at the beginning of the algorithm (Step 2). Second, whenever the population 
members are evaluated (Step 4 and Step 10), it is carried out at the current resolution level L(k). Subsequently, 
the model resolution is updated in an automated decision-making procedure according to (4) in Step 9. Finally, 
the best individual Pbest is re-evaluated at the new resolution level before being compared to the best solution 
extracted from the current population. This is necessary to ensure that the comparison in Step 13 pertains to 
individuals evaluated at the same resolution level. In other words, the individual that was the best at fidelity level 
L(k–1) may not be so at L(k).

(4)L(k) = Lmin + (Lmax − Lmin)

[
k

kmax

]p

1. Set the iteration index k = 0;

2. Initialize population P(k);

3. Evaluate population P(k) to find Ek.j, j = 1, …, N;

4. Find the best individual [Pbest, Ebest] in P(k), where Ebest = min{j = 1, …, 

N : Ek.j}, and Pbest is the individual associated with Ebest;

5. while k < kmax do
6.      Set k = k + 1;

7. Generate a new population P(k) from P(k–1) using the algorithm-

specific rules;

8.      Evaluate population P(k) to find Ek.j, j = 1, …, N;

9.      Find the best individual [Pbest.tmp, Ebest.tmp] in P(k);

10.      if Ebest.tmp < Ebest then
11.           Update global best: Pbest = Pbest.tmp and Ebest = Ebest.tmp;

12. return Pbest and Ebest.

Figure 2.  A pseudocode of a generic population-based nature-inspired algorithm processing a population 
P(k) = [P1

(k) … PN
(k)] of N individuals (particles, agents) throughout a designated number of kmax generations 

(Algorithm I).
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Going back to (4), it is clear that increasing p leads to higher computational savings, which can be computed 
beforehand. Let T(L) denote the antenna evaluation time at the resolution level L. The cost of the algorithm of 
Fig. 2, executed at the high-fidelity resolution level Lmax can be then simply computed as

The computational cost of multi-fidelity Algorithm II is

which gives

This cannot be simplified further as T(L) is a nonlinear function of L, which is not given explicitly. The factor 
N + 1 appears because of the re-evaluation of the best individual (Step 11).

Let us consider the antenna examples shown in Fig. 1. Assuming the population size of N = 10, and the maxi-
mum iteration number kmax = 100, which takes into consideration the relations between the fidelity factor L, and 
the average EM simulation time (cf. Fig. 1c, d), one can compute the expected execution times of the algorithm, as 
juxtaposed in Table 2. It should be observed that both the population size and the maximum number of iterations 
are low for a typical nature-inspired algorithm, which is to ensure that the computational cost of the optimization 
process is practically acceptable. As observed in Table 2, the expected costs are still high (about five days for the 
antenna of Fig. 1a, and one day for the structure of Fig. 1b), even though the considered structures are relatively 
simple. Yet, in the realm of EM-driven optimization, working out reasonable trade-offs is a practical necessity.

The data in Table 2 also indicates the computational savings that can be achieved with respect to the high-
fidelity-based optimization (Algorithm 1), depending on the value of the power factor p. Even for p = 1, the 

(5)TI = N · kmax · T(Lmax)

(6)TII = N · T(Lmin)+ (N + 1)T(L(1))+ (N + 1)T(L(2))+ · · · + (N + 1)T(L(kmax))

(7)TII ≈ (N + 1) ·

kmax∑

k=0

T(L(k))

1. Set the iteration index k = 0;

2. Set the model resolution L(k) = Lmin;

3. Initialize population P(k);

4. Evaluate population P(k) at the resolution level L(k) to find 

Ek.j, j = 1, …, N;

5. Find the best individual [Pbest, Ebest] in P(k), where Ebest = min{j = 1, …, N : 

Ek.j}, and Pbest is the individual associated with Ebest;

6. while k < kmax do
7.      Set k = k + 1;

8.      Generate a new population P(k) from P(k–1) using the algorithm-

     specific rules;

9.      Update model resolution L(k) according to (4);

10.      Evaluate population P(k) at the resolution level L(k) to find 

Ek.j, j = 1, …, N;

11.      Evaluate Pbest at the resolution level L(k) to find updated Ebest;

12.      Find the best individual [Pbest.tmp, Ebest.tmp] in P(k);

13.      if Ebest.tmp < Ebest then
14.           Update global best: Pbest = Pbest.tmp and Ebest = Ebest.tmp;

15. return Pbest and Ebest.

Figure 3.  A pseudocode of a generic population-based nature-inspired algorithm incorporating variable-
resolution simulation models (Algorithm II). The changes as compared to Fig. 2 include initialization and 
updating of the current model resolution level (Steps 2 and 9), evaluation of the current population at the 
current resolution level L(k) (Steps 4 and 10), as well as re-evaluation of the previously found best individual at 
the new resolution level before executing Step 13.
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potential savings may be as high as 50 percent, and increase up to 70 percent for p = 3, which is equivalent to 
a reduction of the execution time by a factor of three or more. While these advantages are attractive, the main 
questions are whether variable-resolution approach is capable of maintaining reliability, and to what extent 
computational speedup will be detrimental to the quality of the solutions yielded by the accelerated procedure. 
These issues will be addressed in “Demonstration case studies” section.

Demonstration case studies
This section provides the results of numerical validation of the multi-resolution nature-inspired optimization 
algorithm considered in “Nature-inspired antenna optimization with variable-resolution models” section. The 
specific instance of the population-based technique, utilized as an optimization engine, is the particle swarm 
optimizer (PSO)96, which is perhaps one of the most popular nature-inspired methods today. The antenna 
structures employed as verification case studies include a dual-band dipole, a triple-band patch antenna, and 
two miniaturized broadband monopoles.

The major question to be addressed here is to what extent (if any) the computational speedup obtained by 
incorporating variable-resolution EM simulations is detrimental to the design quality. This is determined by 
comparing the results with the single-resolution algorithm employing high-fidelity computational models.

Test antennas. The numerical validation is based on four antenna structures that include:

Table 2.  Computational cost of a generic nature-inspired algorithm for antennas of Fig. 1.

EM model setup

Computational cost of the optimization process (N = 10, kmax = 100)

Antenna of Fig. 1a (broadband monopole) Antenna of Fig. 1b (dual-band dipole)

Execution time (h)
Savings w.r.t. high-fidelity-based 
algorithm (%) Execution time (h)

Savings w.r.t. high-fidelity-based 
algorithm (%)

High-fidelity (L = Lmax) 132.1 – 25.6 –

Variable resolution (cf. (4)) 
L(k) = Lmin + (Lmax − Lmin)

[
k

kmax

]p

p = 0.5 82.2 37.7 18.0 29.6

p = 1.0 57.0 56.8 14.5 43.5

p = 2.0 37.7 71.5 11.4 55.4

p = 3.0 29.6 77.6 10.0 60.8
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Figure 4.  Verification antenna structures: (a) Antenna  I98, (b) Antenna  II99, the light-shade grey denotes 
a ground-plane slot, (c) Antenna  III100, (d) Antenna  IV101. For Antennas III and IV, the ground-plane 
metallization is shown using light-shade grey.
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• Antenna I: a dual-band uniplanar dipole  antenna98 shown in Fig. 4a;
• Antenna II: a triple band U-slotted patch with L-slot defected ground structure (DGS)99 shown in Fig. 4b;
• Antenna III: a compact ultra-wideband (UWB) monopole antenna with L-shaped  stub100 shown in Fig. 4c;
• Antenna IV: a compact ultra-wideband (UWB) monopole antenna with radiator  slots101 shown in Fig. 4d.

It should be observed that the proposed method is suitable for handling other type of antennas than those 
presented in Fig. 4. In particular, the formulation of the optimization method is entirely independent of the device 
under optimization. The only factor that it takes into account is the analytical form of the objective function.

Table 3 provides basic information about the considered structures, including the material parameters of the 
dielectric substrates the antennas are fabricated on, geometry parameters, target operating frequencies, along 
with design spaces delimited by the lower and upper bounds for geometry parameters, l and u, respectively. 
Observe that the searching spaces are wide, also in terms of the upper-to-lower bound ratios, which are 4.2, 1.5, 
19.1, and 4.1, on the average for Antennas I through IV, respectively.

In all cases, the computational models are evaluated using time-domain solver of CST Microwave Studio 
which utilizes Finite Integration Technique (FIT) as the solver  mechanism111. The models for Antennas III and 
IV incorporate the SMA  connector95. The second row of Table 1 presents the formulation of design problems, 
i.e., we aim at minimizing the maximum in-band reflection levels.

The simulations have been executed on Intel Xeon 2.1 GHz dual-core CPU with 128 GB RAM. Whereas the 
code of the proposed optimization algorithm has been written in MATLAB. The particle swarm optimizer and 
CST simulation software communicate through a Matlab-CST socket, which allows for conveying the design vari-
ables found out by PSO to CST and the current value of the discretization parameter L, which sets discretization 
density using in CST Microwave  Studio94, as well as transferring the simulation results back from CST to PSO.

Table 4 shows the variable-resolution EM model setup for all considered antennas, including the discretiza-
tion parameter L corresponding to the lowest usable resolution (Lmin) and the high-fidelity model (Lmax), along 
with the simulation times. Figure 5 shows the relationships between the model resolution and the average EM 
simulation time for all considered structures. For the considered structures, the time evaluation ratio between 
the models of resolutions Lmax and Lmin varies from 3.1 for Antenna I to 11.5 for Antenna IV. Clearly, higher ratio 
implies higher computational savings that may be obtained through the incorporation of variable-resolution 
models (cf. Table 2).

Experimental setup and results. Optimization of all verification structures has been performed using 
the PSO algorithm with the swarm size of N = 10, the maximum number of iterations kmax = 100, and the stand-
ard setup of other control parameters, χ = 0.73, c1 = c2 = 2.05, cf.96. The optimization process has been executed 
using five different scenarios, including the single-resolution version (Algorithm 1) and four variable-resolution 
versions (Algorithm 2) with the power factor p = 1, 2, 3, and 4.

Tables 5, 6, 7 and 8 gather the numerical results obtained based on fifteen independent runs of each algorithm. 
In terms of the design quality, we consider the average value of the objective function, which is the maximum in-
band reflection level expressed in decibels, as well as its standard deviation as a measure of solution repeatability. 

Table 3.  Verification case studies.

Case study

Antenna I Antenna II Antenna III Antenna IV

Substrate εr = 3.5 h = 0.76 mm εr = 3.2 h = 3.1 mm εr = 3.5 h = 0.762 mm εr = 4.3 h = 1.55 mm

Design parameters x = [l1 l2 l3 w1 w2 w3]T x = [L1 Ls Lu W W1 dL dW g ls1 ls2 wu]T x = [l0 g a l1 l2 w1 o]T x = [Lg L0 Ls Ws d dL ds dWs dW a b]T

Other parameters l0 = 30, w0 = 3, s0 = 0.15, o = 5 b = 1, wf = 7.4, s = 0.5, w = 0.5, dL2 = L1, 
L = Ls + g + L1 + dL2

w0 = 2o + a wf = 1.7 W0 = 3.0

Operating bands
8-percent fractional bandwidth w.r.t. 
center frequencies 3.0 GHz and 
5.5 GHz

80 MHz bandwidth centered at oper-
ating frequencies 3.5 GHz, 5.8 GHz, 
and 7.5 GHz

UWB frequency band from 3.1 GHz 
to 10.6 GHz

UWB frequency band from 3.1 GHz 
to 10.6 GHz

Parameter space l = [15.0 3.0 0.35 0.2 1.8 0.5]T

u = [50.0 12.0 0.85 1.5 4.3 2.7]T
l = [10 17 5 45 8 15 9 0.2 4 20  2]T

u = [16 25 8 55 12 20 12 0.4 6 24  3]T
l = [10 10 5 5 2 0.1 0.2]T

u = [35 20 15 12 15 10  3]T

l = [5 5 5 0.2 0.2 5 0.3 0.5 1.0 0.1 0.2]T

u = [15 15 15 1.2 8 15 1.5 2.5 5 0.5 
0.5]T

Table 4.  Variable-fidelity EM model setup for verification antennas of Fig. 4.

Antenna

Lowest-fidelity model High-fidelity model

Lmin Simulation time [s] Lmax Simulation time [s]

I 8 20 35 92

II 8 32 25 114

III 6 28 25 182

IV 6 33 25 378
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Computational efficiency is measured in terms of the overall execution time and the percentage savings with 
respect to Algorithm 1. Figures 6, 7, 8 and 9 show the antenna responses at the final design yielded in the repre-
sentative runs of the respective algorithms.

In addition to the data reported in the tables, a Kolmogorov–Smirnov test has been performed for the objec-
tive function values obtained during the performed runs of the algorithm to verify the sample normality. In all 
cases, the null hypothesis that the provided data comes from a normal distribution with the mean and standard 
deviation as reported in the tables was not rejected at the 5% significance level. The typical p-values obtained 
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Figure 5.  Simulation time vs. EM model fidelity for verification structures of Fig. 4: (a) Antenna I, (b) Antenna 
II, (c) Antenna III, (d) Antenna IV. The minimum usable (---) and the maximum (high-fidelity) (—) values of 
the resolution parameter L are indicated using vertical lines.

Table 5.  Optimization results for Antenna I.

Algorithm setup Execution time [hours]
Savings w.r.t. high-fidelity-based 
algorithm (%)

Average objective function value 
[dB]

Standard deviation of objective 
function [dB]

High-fidelity (L = Lmax) 25.7 – − 13.0 2.5

Variable resolution (cf. (4))

p = 1.0 14.3 44.4 − 14.7 4.0

p = 2.0 11.2 56.4 − 14.1 3.5

p = 3.0 10.3 59.9 − 15.0 3.2

p = 4.0 9.1 64.5 − 13.6 3.8

Table 6.  Optimization results for Antenna II.

Algorithm setup Execution time [hours]
Savings w.r.t. high-fidelity-based 
algorithm (%)

Average objective function value 
[dB]

Standard deviation of objective 
function [dB]

High-fidelity (L = Lmax) 31.7 – − 15.7 2.5

Variable resolution (cf. (4))

p = 1.0 19.6 38.2 − 18.4 2.1

p = 2.0 16.5 47.9 − 17.9 1.5

p = 3.0 14.5 54.3 − 15.8 2.2

p = 4.0 13.4 57.7 − 14.0 3.0
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Table 7.  Optimization results for Antenna III.

Algorithm setup Execution time [hours]
Savings w.r.t. high-fidelity-based 
algorithm (%)

Average objective function value 
[dB]

Standard deviation of objective 
function [dB]

High-fidelity (L = Lmax) 50.9 – − 10.2 1.2

Variable resolution (cf. (4))

p = 1.0 25.4 50.1 − 10.5 1.0

p = 2.0 19.5 61.7 − 10.1 1.2

p = 3.0 17.0 66.6 − 10.3 1.4

p = 4.0 15.4 69.7 − 10.5 1.7

Table 8.  Optimization results for Antenna IV.

Algorithm setup Execution time [hours]
Savings w.r.t. high-fidelity-based 
algorithm (%)

Average objective function value 
[dB]

Standard deviation of objective 
function [dB]

High-fidelity (L = Lmax) 105.1 – − 13.1 1.6

Variable resolution (cf. (4))

p = 1.0 45.6 56.6 − 13.2 1.5

p = 2.0 32.1 69.5 − 13.0 1.6

p = 3.0 26.3 75.0 − 12.9 1.6

p = 4.0 22.5 78.6 − 12.5 1.7
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Figure 6.  Antenna I: final designs obtained using high-fidelity-based optimization (Algorithm 1) and variable-
resolution optimization (Algorithm 2) for representative runs the respective procedures: (—) high-fidelity 
model, (---) variable-fidelity with p = 1, (⋅⋅⋅⋅) variable-fidelity with p = 2, (- o -) variable-fidelity with p = 3, and 
(- x -) variable-fidelity with p = 4. Target operating frequencies are marked using vertical lines.
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Figure 7.  Antenna II: final designs obtained using high-fidelity-based optimization (Algorithm 1) and variable-
resolution optimization (Algorithm 2) for representative runs the respective procedures: (—) high-fidelity 
model, (---) variable-fidelity with p = 1, (⋅⋅⋅⋅) variable-fidelity with p = 2, (- o -) variable-fidelity with p = 3, and 
(- x -) variable-fidelity with p = 4. Target operating frequencies are marked using vertical lines.
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from the test varies between 0.4 and 0.9. These figures corroborate that the (normalized) distribution of the 
objective function values between the algorithm runs more or less follows the normal one. On the one hand, 
this is indicative of the adequacy of the mean and standard deviation as reliable performance indicators. On the 
other hand, from engineering perspective, this information is of minor significance. What really matters, is that 
the expected performance of the algorithms under various model resolution adjustment strategies is similar. The 
detailed analysis will be provided in “Discussion” section.

Discussion. The results gathered in Tables 5 through 8 allow us to draw several conclusions concerning the 
efficacy of nature-inspired antenna optimization using multi-fidelity EM models. These can be synopsized as 
follows:

• The involvement of variable-resolution EM simulations enable significant computational savings. As discussed 
in “Incorporating variable-resolution simulation models” section, the cost of the optimization process can 
be controlled using the power factor p (cf. (4)). For the antenna cases considered in this work, the reduction 
of the CPU time ranges from almost 40 percent (for p = 1) to over 70 percent (for p = 4), with respect to the 
single-resolution algorithm using the high-fidelity EM model. The average savings across the benchmark set 
of four antenna structures range from 45 percent (p = 1), to 65 percent (p = 4).

• Reliability of the optimization process is maintained for variable-resolution algorithm for the power fac-
tors of up to p = 3; beyond that, one can observe an increase of the standard deviation of the merit function 
value (indicating degraded repeatability of solutions), or worsening of the average objective function value 
(Antennas II and IV). An exception is Antenna I, where the average merit function values is better than for 
single-resolution version even for p = 4, whereas repeatability of solution is comparable to all considered 
values of p (while still being slightly worse than for single-resolution algorithm).
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Figure 8.  Antenna III: final designs obtained using high-fidelity-based optimization (Algorithm 1) and 
variable-resolution optimization (Algorithm 2) for representative runs the respective procedures: (—) high-
fidelity model, (---) variable-fidelity with p = 1, (⋅⋅⋅⋅) variable-fidelity with p = 2, (- o -) variable-fidelity with 
p = 3, and (- x -) variable-fidelity with p = 4. Target operating bandwidth (3.1 GHz to 10.6 GHz) is marked using 
horizontal line.
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Figure 9.  Antenna IV: final designs obtained using high-fidelity-based optimization (Algorithm 1) and 
variable-resolution optimization (Algorithm 2) for representative runs the respective procedures: (—) high-
fidelity model, (---) variable-fidelity with p = 1, (⋅⋅⋅⋅) variable-fidelity with p = 2, (- o -) variable-fidelity with 
p = 3, and (- x -) variable-fidelity with p = 4. Target operating bandwidth (3.1 GHz to 10.6 GHz) is marked using 
horizontal line.
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• In general, the quality differences between single- and variable-resolution algorithms are relatively small 
from practical standpoint, which indicates that the incorporation of variable-resolution simulations is indeed 
advantageous. Assuming—based on the previous observations—the power coefficient p = 3, the running 
time of the optimization process is reduced by a (multiplicative) factor of three as compared to the single-
resolution (high-fidelity) approach.

• It should be noted that the PSO algorithm in our experiments has been setup up with a relatively low com-
putational budget of 1,000 objective function evaluations, despite the fact that the considered problems are 
quite challenging. This is mainly to make the CPU costs of the optimization procedure practically acceptable, 
which may still be questioned, especially for Antennas III and I. It is expected that increasing the number of 
algorithm iterations would likely lead to the improvement of solution repeatability.

Overall, it can be concluded that utilization of variable-resolution models enables a significant increase in 
the computational efficacy of the nature-inspired search without degrading the solution quality, assuming that 
the model management scheme is selected to allow sufficient time for processing higher-fidelity simulations 
(here, when using the power factor of up to p = 3). Consequently, the presented procedure may be considered 
a viable alternative to straightforward application of population-based methods in antenna design. Apart from 
the reduced costs, its advantage is simple implementation, and immunity to both dimensionality and parameter 
range issues, as opposed, to, e.g., surrogate-assisted frameworks.

Conclusion
This paper investigated accelerated nature-inspired design optimization of antenna structures using variable-
resolution computational models. The analysis of the properties of lower-fidelity EM simulations in terms of 
the simulation time versus accuracy trade-offs, has been followed by a formulation of a specific optimization 
framework, involving convergence-driven model management scheme. In particular, the model fidelity has 
been selected from a continuous spectrum of acceptable resolutions in an automatic manner, with low-fidelity 
simulations employed at the early stages, and monotonically increasing to the highest assumed fidelity upon 
algorithm termination.

Numerical validation has been carried out using particle swarm optimizer as a representative population-
based routine, and four antenna structures of distinct characteristics (dual-band, triple-band, broadband). The 
obtained results indicate that sizeable computational speedup of up to almost eighty percent can be obtained 
without or (for some cases) only slight degradation of the design quality. At the same time, the optimum model 
resolution management scheme seems to be problem independent. Apart from bolstering the performance, the 
proposed approach is straightforward to implement and may open new possibilities in terms of making popula-
tion-based search methods more practical in the context of EM-driven design optimization of antenna systems. 
Notwithstanding, it should be emphasized that for many real-world antenna systems, individual EM simulation 
times may be considerably longer than those reported in “Demonstration case studies” section. Thus, despite 
significant acceleration factors achieved using the proposed approach, the CPU costs of the nature-inspired 
optimization processes may still be unmanageable. Consequently, the development of even faster methods is 
a matter of practical necessity. The model management scheme presented in this paper can be viewed as a step 
towards this direction.

It is also important to emphasize that the presented approach is generic and can be integrated with essen-
tially any population-based optimization engine, including a broad range of nature-inspired algorithms. The 
results demonstrated based on incorporating the model management scheme into PSO should be viewed as a 
demonstration example of the concept. The future work will be focused on enabling additional computational 
savings by extending the model management scheme to differentiate the resolution of the simulation process 
with respect to other factors, such as the quality of the design.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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