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A B S T R A C T

The novelty here comes from not only the perfect nonlinear three-dimensional (3D) electro- 
elasticity investigation but also the mixed material itself. The literature widely showed me-
chanical assessments on the piezoelectric structures; however, a lack of nonlinear three- 
dimensional elasticity studies has been witnessed on these kinds of smart materials. Therefore, 
a nonlinear 3D elasticity-piezoelectricity coupling is considered in this study. What is more, this 
research brings about an era in the field of sensing manufacturing such as sensors and actuators 
by proposing the construction of these devices in an advanced composite framework. The 
piezoelectric medium can be electro-mechanically improved with the aggregation of graphene 
platelets/nanoplatelets (GPLs/GNPs) based on the functionally graded (FG) composition. The 
assumption for such a smart composite has been made to provide higher flexibility smart tools 
while their elastic strength can also get further. To accomplish this, the derivation of a rigorous 
mathematical model has come out for a transversely isotropic inhomogeneous FG-piezoelectric 
beam-like sensor/actuator using 3D kinematic displacements, geometrically nonlinear strains, 
Lagrange technique, 3D stress-strains tensors, linear elastic material, and in particular Halpin-Tsai 
micro-mechanic model. Numerical modeling has been built by the generalized differential 
quadrature (GDQ) technique. A comprehensive parametric study has also been established for 
intelligent FG beams.

1. Introduction

The term “piezoelectric” means electricity that is caused by pressure. This word is derived from two Greek words; “piezo” which 
means ‘to press’, and “electron”. In fact, piezoelectric structures are materials that, when pressure or tension is applied to them, an 
electric charge appears on their certain levels. This phenomenon is called the “Direct Piezoelectric Effect”, which is a reversible 
process. That is, conversely, when a material with this property is placed in an electric field, its dimensions will change (Reverse 
Piezoelectric Effect). If it is inverted to apply tension or pressure, the direction of polarization of electric charges is also reversed (Arnau 
and Soares, 2009; Cady, 1964; Curie and Curie, 1880).
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All piezoelectric structures are generally non-conductive and can be divided into two groups: crystals and ceramics. Barium 
titanate, Lead zirconate titanate (PZT), and lithium niobate can be examples of piezoelectric structures. These synthetic materials have 
a more impressive effect than quartz (the first known piezoelectric material) and other natural piezoelectric substances. Compared to 
quartz (Wudy et al., 2009), PZT produces a greater potential difference for the same amount of applied mechanical stress. Also, 
applying an electric potential difference to PZT provides more mobility (ABC 2021). Lead zirconate titanate was produced in 1952 by 
the Tokyo Institute of Technology (Tanaka, 1982). This material is made and produced from two chemical elements; lead and zir-
conium, and a chemical compound called titanate at high temperatures. PZT is usually used to make ultrasonic transducers, data 
storage, structural health monitoring, ceramic capacitors, sensors and actuators, sonars, piezoelectric patches, naval hydrophones, 
acoustic applications, and resonators in electronic equipment (Bell and Deubzer, 2018; Chróścielewski et al., 2019; Fan et al., 2022; He 
et al., 2024; Karami and Shahsavari, 2019; Kędra and Rucka, 2017; Manbachi and Cobbold, 2011; Markov et al., 2023; Moreno-Mateos 
et al., 2024; Partovi Shabestari et al., 2019; Silva et al., 2023; Singh et al., 2022).

A piezoelectric sensor can produce an output signal when it experiences strain without needing an external source or voltage and 
vice versa for a piezoelectric actuator. This makes them a popular choice in many applications. The use of these sensors/actuators in 
several industries is growing remarkably. The piezoelectric sensor does not require any power to continuously monitor an environ-
ment. This type of sensor is the most sensitive pressure gauge technology that provides accurate, stable, and repeatable electrical 
output (Du et al., 2024; Gautschi, 2002; Steinem and Janshoff, 2005).

Heretofore, researchers know that ceramic materials possess a fatal flaw concerning their inherent brittleness (Aoki et al., 2024; 
Deforming brittle, 2023). The inherent characteristics of ceramic structures including chemical bonds and microstructures affect the 
brittleness. Notably, such frangibility influences the efficiency of workability of piezoelectric ceramics. Many scientists are working to 
propose effectual solutions to overcome the brittleness of these structures. To confront this challenge, it requires to focus on the 

Nomenclature

agnp Average length of GNPs
hgnp Average thickness of GNPs
bgnp Average width of GNPs
u and w Axial and lateral displacements
V Domain’s volume
ℵ Displacement vectors
ui (i = 1,3) Displacement in the x- and z- directions
εij Elastic strains
σij Elastic stresses
Dj Electric displacements
di Electric fields
Φ Electric potential function
ϕ Electric potential’s magnitude in the mid-plane
V0 External electric voltage
F External mass loads
Cijkl 4th-order pure elasticity tensor
ℜ Free energy density
h Initial thickness of the beam
L Initial effective length of the beam
b Initial width of the beam
N0

xx In-plane electric force
NL Number of layers in FGMs
νij Poisson’s ratio
κij 2nd-order dielectric tensor
eijk 3rd-order piezoelectric tensor
Gij Shear elastic modulus
U Strain energy
z Thickness coordinate
ψ 3D electric potential’s magnitude
∇ 3D nabla operator
q Transverse static load
V(k)

gnp Volume fractions of GNPs in each layer
g∗gnp Volume fractions of GNPs in medium
W Work done by external forces
Ei Young’s modulus
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chemical aspects (Yamada et al., 1998). Nevertheless, on the contrary, this task can be accomplished by utilizing composite sciences.
In engineering up-to-date science, functionally graded materials (FGMs) are those with advanced heterogeneous structures. Such 

materials possess excellent properties not only mechanical but electrical and thermal as well, making FGMs to be widely used. In the 
group of FGM structures, all material properties vary continuously from one point to another depending on a predefined law. The 
variation is caused by a gradual change in the volume ratio of the constituent materials (Argatov and Sabina, 2022; Dastjerdi and 
Akgöz, 2018; Dastjerdi et al., 2022; Dastjerdi et al., 2021,; Dastjerdi et al., 2023,; Golmakani et al., 2023; Jena et al., 2021; Kaplunov 
et al., 2022; Karami and Ghayesh, 2023; Malikan and Eremeyev, 2020; Malikan et al., 2022; Shahriar Dastjerdi et al., 2023; Vaccaro, 
2022).

Of the strengths of FGMs compared to laminated composites, one can say that these materials have high resistance to mechanical 
loads, high-temperature capacity, less crack prospect, and less possibility of separating the layers (delamination). In light of the 
competencies of the FGMs, numerous scientists and engineers have manufactured various kinds of materials in the guise of FGMs 
(Saleh et al., 2020; Takagi et al., 2003). Takagi et al. (2003) fabricated a piezoelectric composite based on the PZT matrix and Platinum 
reinforcer in the form of FGMs via a sintering process. The FGM actuator has been evaluated mechanically and electrically. It was found 
that the mechanical properties of the piezocomposite will improve if Pt material is added to the PZT matrix. As a result, dielectric 
constant values become larger specifically with an increase in Pt powder, while the amounts of piezoelectric constants get smaller 
uniformly. However, the FGM actuator is not poor in the property of electrical induction compared to the PZT ceramic (PZTC) actuator. 
It can be concluded that the idea of producing sensors and actuators by FGMs is worth choosing.

Piezoelectric structures can be synthesized with several materials which normally lead to novel smart composites, named piezo-
composites. This combination provides fundamental merits over standard piezoceramic structures. Many researchers and scientists 
have already shown the excellence of the concept of functionally graded composition while applying it to various materials (Saleh 
et al., 2020; Takagi et al., 2003). Upon dynamic as well as static conditions, the literature demonstrated that by such the composition, 
the superiorities could be the increase of the bonding strength (and fatigue-life), maximization of output displacement, enhancement 
of the stress redistribution, and decrease in the elastic stress (Samadhiya and Mukherjee, 2006; Taya et al., 2003; Wang and Noda, 
2001). Moreover, having a higher flexible piezoelectric ceramic with consistent dielectric and piezoelectric features is a serious need 
for high-tech industries. In terms of energy harvesting, the further flexible piezoelectric sensor results in a more efficient energy 
harvester if the piezoceramic possesses a good electric permeability. Accordingly, the smart composite that will be assumed under this 
work can be a higher efficient sensor, actuator, transducer, energy harvester, etc., and the structure could be of interest to high-tech 
markets.

Thus, this research has given particular attention to proposing a piezocomposite by dint of the concept of functionally graded 
materials (FGMs). To fulfill this job, we replace the common piezoelectric structure with an FG-piezoelectric matrix. Consequently, this 
issue results in the alteration of all material constants (piezoelectric, elastic, and dielectric) through a determined dimension. At last, a 
computational model will be derived to perform this piece of research.

At this point, let us trace back to explore the research done close to this title. The background can be divided into two sections; first, 
three-dimensional analyzes can be surveyed in detail. Then, two-dimensional studies will be reviewed. It must be emphasized that due 
to the vast literature, we are not going to look into the small-scale sensors and actuators and the published works on the macro 
intelligent composite sensing elements will be expressed only. In terms of 3D studies of piezoelectric composite beam/plate/shell-like 
structures, Chen et al. (2004) examined 3D linear natural frequencies of FG piezoelectric hollow cylinders. Meanwhile, a compressible 
fluid flow has also filled the cylinder. The material constants of two piezoelectric materials, namely PZT4 and Ba2NaNb5O15, have been 
taken into analysis by grading along thickness based on the two arbitrary functions. Zhong and Shang (2003) studied FG-piezoelectric 
laminates using exact linear 3D simply-supported boundary conditions. However, no specified reinforcer was considered and the 
material properties of the PZT4 laminated plate were supposed to vary exponentially in each layer along the thickness. Hosseini--
Hashemi et al. (2010) used a 3D Ritz solution to extract linear natural frequencies for an annular/circular FG plate assembled with 
PZT4 layers. The study by Alibeigloo and Nouri (2010) inspected a static response of FG cylindrical shells with exponential distribution 
of material constants in the thickness direction which was integrated with non-FGM sensor and actuator layers. Akbari Alashti and 
Khorsand (2011) carried out linear thermo-elastic models of FG cylindrical shells integrating piezoelectric layers by the use of 
three-dimensional elasticity. Their model obviously did not consider a piezoelectric matrix and any micro reinforcers. They took the 
advantage of differential quadrature method (DQM) to provide numerical results. Li et al. (2011) evaluated the bending and tension 
behaviors of FG piezoelectric circular plates assuming material isotropy with the help of 3D analytical models. However, their 
equations indicate that they have used stress resultants in the thickness domain which cannot be true for a 3D model due to the fact that 
membrane forces can appear for 2D plane stress/strain problems only. And a factual 3D medium does experience thickness defor-
mation. Javanbakht et al. (2012) by the ground of 3D elasticity, analysed linear dynamics of an FG piezoelectric panel using power-law 
distribution for all constants. Their FGM model was assumed to be made of ceramic and metal in a powder mixing. Jodaei et al. (2013)
investigated the linear natural frequencies of an FG piezoelectric annular plate via a modified version of DQM. It was postulated that 
the material properties of PZT4 ceramic change through the thickness on the basis of an exponent-law variation. Kulikov and Plot-
nikova (2013) proposed a new approach by the use of the sampling surfaces method to implement a 3D exact model of FG 
piezo-laminated plates. The FGM has been developed by PZT4 and 5A and their material constants have been varied exponentially and 
linear governing equations have been given. Wang et al. (2016) derived 3D analytical models to study the linear bending of FGM 
annular piezocomposite plates vertically graded by an exponential variation. Liang et al. (2019) explored linear 3D dynamical 
characteristics of FG cylindrical piezo panels by introducing Durbin’s inversion, space state approach, Laplace transform, and DQM in 
3D spaces. The electro-elastic properties of PZT4 and PZT5H were changed by both power-law and exponential functions. Zenkour and 
Aljadani (2020) presented a linear quasi-3D model to investigate the stability of an FG piezocomposite plate with PZT4 and PZT5H 
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material that their properties vertically differ by the power-law mixture rule. Howbeit, the quasi-3D models and higher-order shear 
deformation theories can effectively predict large deflections and complicated models (Karami and Ghayesh, 2024; Karami et al., 
2024), but they do not possess thickness deformations and can be a simplification for 3D domains only. They commonly provide 
information about mid-plane displacements. That means, in comparison with the fully 3D elasticity, 3D elasticity enables having 
information about deformations through the whole points of the domain except the mid-plane. What is more, 3D elasticity has no 
assumptions in the kinematic displacement field, which is typically inside the quasi-3D models. Xia and Gu (2021) attempted to obtain 
a linear 3D solution based on the finite difference method (FDM) for piezoelectric problems. No FGM assumption has been reported 
and simply a PZT4 material has been taken in hand. Singh et al. (2023) merged and connected FGM viscoelastic polymer layers with 
PZT5A ones to establish an FG-laminated rectangular plate and estimated time-dependent results. A merit of their work can be the 
representation and consideration of several viscoelastic models. Alshenawy et al. (2023) extended the 3D elasticity studies of FG 
piezoelectric shells employing strain gradient formulations. A nonlinear stability model has been calculated, though the stress re-
sultants have also been involved. Two-dimensional elasticity studies can also be quoted here (Arefi et al., 2018; Ashoori and Sadough 
Vanini, 2017; Atai and Lak, 2016; Attar et al., 2021; Gerstner, 2010; Komijani et al., 2014; Le, 2017; Lin and Muliana, 2015,; Lu et al., 
2021,; Rafiee et al., 2014; Shen and Yang, 2015; Wang and Xu, 2010; Yang et al., 2023; Yiqi and Yiming, 2010). Nonetheless, for the 
generality and not losing the main scope, the 2D literature is not embraced to be discussed.

Last but not least, FEM-based commercial codes are widely available for various mechanical analyzes, such as nonlinearity, 
complex geometries, etc. (Moghadasi et al., 2024). However, not to mention that a piezoelectric FGM cannot be precisely modelled 

Fig. 1. The smart beam reinforced with GNPs based on random distributions (Scaling is not real; the pictures are original and have been designed in 
SolidWorks 2023).
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with these tools and a mathematical model can handle such problems more methodically. The mathematical model can be an 
all-inclusive analysis in which a detailed model can be granted compared with the FEM-based software where the basic computer 
calculations behind the visualized model are unclear. FEM-based software is highly element-dependent, and the accuracy of the result 
is directly contingent on the mesh algorithm, kind of employed element, size of the element, etc., but mathematical models rely on the 
exact elasticity and analytical processes where everything can be controlled explicitly. Additionally, in contrast to commercial soft-
ware, mathematical models meet a fast-doing operation . All in all, pertaining to intricate geometries, FEM-based software is preferred, 
but other side, in the matter of difficult physics, theoretical models can be a priority.

Based on what we have faced above, there are no research and study for when the PZT can play the role of matrix being enriched 
with GNPs/GPLs powder, and all the above studies have discussed a piezoelectric layer in interconnection with other materials or an 
exponential variation of PZT material properties in line with the thickness. In addition to these, no nonlinear 3D study has been seen 
and all the above-mentioned literature utilized linear 3D models or nonlinear utilizing membrane forces. Nonlinear 3D elasticity with 
thickness variation is a quite complicated problem that will be studied in the present paper.

The organization of the paper is with respect to some sections. The 1st section, as it has already been evident, collected and probed 
the linked research background to represent the objective of the current research. The 2nd section is adjusted to gather all the essential 
mathematical theories and expressions to bring us to the point where the constitutive bending equations can be provided. The 3rd 
section will give the set of vital operations for the numerical solution. The solving method will be validated through Section 4. In 
continuation, the numerical results are depicted in the 5th section. Ultimately, the 6th section shortly describes the paper and renders 
the significant results achieved by this research.

2. Mathematical modeling

Let us position the continuum specimen in the Cartesian coordinate system (x, y, z) where the volume occupies a space of [0, L] ×
[0, b] × [0, h] each in order for the effective length, width, and thickness of the beam-like samples pictured in Fig. 1.

Fig. 2. Microscopic images for GNPs/GPLs (a) and PZT (b).
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Graphene nanoplatelets/platelets (GNPs/GPLs) are termed as a kind of nanomaterial that comes from the basic graphene. Primary 
graphene comprises a monolayer carbon sheet that is the thinnest and strongest material ever discovered (Hassanzadeh-Aghdam, 
2021; Yee and Ghayesh, 2023), although GNPs/GPLs incorporate multilayer graphene layers and encompass platelets-shaped carbon 
sheets (Fig. 2). Despite the outstanding properties of GNPs and their use in reinforcing polymeric nanocomposites, they have been 
negligibly used in smart matrices-based nanocomposites. Much research proved that GNPs have a better strengthening effect on the 
composites than carbon nanotubes (CNTs) due to the noticeable surface effect of GNPs that can play a key role in transferring the shear 
load between two phases of the nanocomposite. Moreover, GNPs are cheaper than CNTs in terms of production (Li et al., 2004). This 
fact persuades us that when it comes to nano-additives, GNPs can suggestively be utilized. By preparing Fig. 2, the microscopic images 
for GNPs and PZT can be seen that have been taken using Keyence VHX-7000 digital optical microscope at the Gdańsk University of 
Technology. The pictured materials belong to the next parts of the research grant on the experiments. Note that the used backgrounds 
are white and black sheets, respectively.

2.1. 3D elasticity-piezoelectricity

At this stage, a three-dimensional elasticity-piezoelectricity approach is adopted to possibly provide the electro-elastic coupling 
constitutive equations for the mechanics of the PZTC structure. The assumptions are diminished to isothermal conditions, and small 
deformations but large displacements. In order to state the first-order electric field (d) and the displacement vectors (ℵ), one writes 

ℵ = ℵ(α),d=d(α) (1) 

where α stands as a position vector; ℵis the displacement vector; and dshows electric fields.
It is the turn to demonstrate the electric enthalpy density (ℜ) of piezoelectric elastic structures in the general quadratic repre-

sentation as 

ℜ =
1
2
Cijklεijεkl − eijkdiεij −

1
2

κijdidj (2) 

where the introduced tensors are given by 

C: 4th order elasticity tensor
ε: 2nd order strain tensor
e: 3rd order piezoelectric tensor
d: Electric field vector
κ: 2nd order dielectric tensor

The 3D constitutive equations for stress and electric displacement are shown below (Malikan and Eremeyev, 2020) 

σij = ℜ,ε = Cijklεkl − ekijdk (3a) 

Dj = − ℜ,d = ejklεkl + κjkdk (3b) 

where σij denotes elastic stresses; Dj displays the electric displacements.
It necessities to note that the thermal and pyroelectric effects have been crossed off from the analysis as the present problem does 

not intend to estimate heat. The tensors and vectors demonstrated by Eq. (3) are available as 

σ =
[

σxx σyy σzz τyz τxz τxy
]T (4) 

ε =
[

εxx εyy εzz γyz γxz γxy
]T (5) 

D =
[
Dx Dy Dz

]T (6) 

d = −
[
dx dy dz

]T (7) 

Given the Hamilton’s principle, the constitutive equations can be extracted (Malikan et al., 2023) 

δ
⃒
⃒
⃒
⃒t

(

−

∫

V
UdV +W

)

= 0 (8) 

in which V is the domain’s volume; U shows the strain energy; and W is the work done by external forces.
The following expression defines the work resulting from the external forces 

δW =

∫

V

F ⋅ δu +

∫

∂V

t ⋅ δuds (9) 
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where F is external mass loads; t is the time variable.
Keeping up the relations, a three-dimensional elasticity beam will be investigated by eliminating the y-axis changes. The 3D ki-

nematic field of displacements can be expressed as (Malikan, 2024) 
[

u1(x , y, z)
u3(x, y, z)

]

=

[
u(x , z)
w(x, z)

]

(10) 

where ui (i = 1,3) are displacement in the x- and z- directions; u and w show axial and lateral displacements.
The usual geometrical approximations are discluded in the above kinematic displacements, which indicate the robustness of 3D 

elasticity analyzes.
The pure elastic strains can be easily obtained by manipulating with Lagrangian strains as (Nguyen et al., 2019) 

ε =
1
2
(
∇u+∇uT +∇u.∇uT) (11) 

where 

⎧
⎨

⎩

εxx
εzz
εxz

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u,x +
1
2
(
w,x
)2

w,z +
1
2
(
w,z
)2

1
2
[
u,z + w,x

(
1 + w,z

)]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(12) 

where it is presumed that the strain tensor follows symmetrical rules as εij = εji.
Maxwell’s equation can be fulfilled by treating the combination of a cosine and a linear function to reach us with the distribution of 

the electric potential as (Malikan, 2018; Malikan, 2019; Malikan, 2017; Su et al., 2018) 

Φ(x, y, z) = − cos(βz)ϕ(x, y) +
2zV0

h
(13) 

where β = π /h; V0 is external electric voltage; ϕ is the electric potential’s magnitude in the mid-plane; Φis the electric potential 
function.

The components of the electric field can be written as 
[
dx dy dz

]T
= −

[
Φ,x Φ,y Φ,z

]T (14) 

Eq. (8) can be re-shown in the simpler status as (Stempin et al., 2023). 

δW − δU = 0 (15) 

The variations of the strain energy can be categorized into mechanical and electrical forms for the present study as 

δU = δUMechanical + δUElectrical (16) 

Further, the non-zero tensors can be collected to derive both aforementioned parts as (Wang and Xu, 2010) 

δU =
1
2

∫

V

[σδε − Dδd]dV = 0 (17) 

The work done by external loads includes the influence of the lateral static load and the electric field (Nguyen et al., 2019) 

δW =
1
2

∫L

0

[
N0

xx(δw),xw,x
]
dx (18) 

where N0
xx = 2e31V0 /h is an in-plane electric force.

It should be noted that the energy of body forces is neglected in this study. Then, we establish the nonlinear dynamic governing 
equations by operating the variational technique on Eqs. (17) and (18), supposing a 3D beam-like structure neglecting the changes in 
the y-axis. In this regard, one attains 

σxx ,x + τxz,z = 0 (19a) 

σxx,xw,x + σzz,z
(
1 + w,z

)
+ σxxw,xx + σzzw,zz + τxz,x

(
1 + w,z

)
+ τxz,zw,x

+2τxzw,xz + N0
xxw,xx = 0

(19b) 
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D̂x,x + D̂z = 0 (19c) 

where 

D̂x =

∫h/2

− h/2

Dxcos(βz)dz, D̂z =

∫h/2

− h/2

Dzβsin(βz)dz.

The analytical boundary conditions derived from the variational technique become arranged as 

δUMechanical = −

∫
[
σxxδu + τxzδw + σxxw,xδw + τxzw,zδw

]
dz

−

∫
[
σzzδw + τxzδu + σzzw,zδw + τxzw,xδw

]
dx

(20a) 

δUElectrical =

∫

[D̂x]δϕdz (20b) 

Evidently, Eq. (19c) causes a problem in the 3D studies due to the inclusion of the definite integral through the thickness. In the 3D 
mechanical analyzes, the thickness is supposed to be variable after deformation. This is the fact that the undertook process cannot be 
put to use for 3D evaluations. Therefore, let us comply with Eq. (10) and deal with the 3D piezoelectricity to deduce the following 
electric potential 

Φ(x, y, z) = ψ(x, y, z) (21) 

in which ψis the 3D electric potential’s magnitude.
It means that there is no premise similar to Eq. (13) for electric potential distribution.
The comprisal of the electric potential leads to 

δψ = 0;Dx,x + Dz,z = 0 (22) 

where this equation is free of the obstacle that we faced earlier by Eq. (19c).
From this point forward, there are two ways to obtain a solution. One can solve three equations, Eqs. (19a), (19b), and (22) with 

three unknown variables (u,w, and ψ). However, defining any shape function for ψ cannot provide us with accurate results as the 
electric surface conditions must be satisfied. The other way could be finding an expression for electric potential achieved by Eq. (22) as 

Φ =

(
h2

8
−

z2

2

)[
e15

κ33

(
u,xz + w,xx + w,xxw,z + w,xw,xz

)
+

e31

κ33

(
u,xz + w,xw,xz

)

+
e33

κ33

(
w,zz + w,zw,zz

)
]

+ V0

(
z
h
+

1
2

) (23) 

The surface conditions (Φ(+ h /2, − h /2) = {V0,0}) regarding the electric voltage can be contented using Eq. (23) as well.
The analytic electrical boundary conditions can be presented by Eq. (24) in a replacement of Eq. (20b). 

δUElectrical = −

[ ∫

Dxδψdz+
∫

Dzδψdx
]

(24) 

Eventually, in order to encounter electro-elastic deflections, Eq. (19a) and (19b) are sufficient to be taken in the solving process.
The stress and strain tensors have been given symmetrical; however, it has nothing to do with the elastic stiffness matrix being 

symmetrical or non-symmetrical. Nevertheless, it helped to decrease the needed constants. To access the symmetrical elastic stiffness 
matrix (Cijkl =Cjikl =Cijlk =Cklij), there exists a reduced number of independent constants on the basis of the Voigt notation and con-
verted into Cαβ (α, β ∈ {1, 2, …, 6}). On this condition, the material is supposed to possess a plane of linear elastic symmetry consisting 
of transversely isotropic behavior (however, the electro-mechanical constants are being defined in a fully orthotropic form) (Zhou 
et al., 2021) 

[C] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1111 C1122 C1133 0 0 0
C1122 C2222 C2233 0 0 0
C1133 C2233 C3333 0 0 0

0 0 0 C2323 0 0
0 0 0 0 C1313 0
0 0 0 0 0 C1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25) 

The piezoelectric tensor can be presented for hexagonal perovskite piezoelectric crystalline materials using the Voigt notation as (Li 
et al., 2020) 
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[e] =

⎡

⎣
0 0 0 0 e113 0
0 0 0 e223 0 0

e311 e322 e333 0 0 0

⎤

⎦ (26) 

where the piezoelectric constants were transformed from eijk into eiα (α ∈ {1, 2, …, 6}).
The fully 3D electro-elastic stress-strain constitutive relations (Eq. (3)) can be evolved as follows 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
τyz
τxz
τxy
Dx
Dy
Dz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1111 C1122 C1133 0 0 0
C2211 C2222 C2233 0 0 0
C3311 C3322 C3333 0 0 0

0 0 0 C2323 0 0
0 0 0 0 C1313 0
0 0 0 0 0 C1212
0 0 0 0 e113 0
0 0 0 e223 0 0

e311 e322 e333 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 e311
0 0 e322
0 0 e333
0 e223 0

e113 0 0
0 0 0

− κ11 0 0
0 − κ22 0
0 0 − κ33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎨

⎩

Φ,x
Φ,y
Φ,z

⎫
⎬

⎭
(27) 

The reduced coupling components of the symmetric stiffness matrix for a 3D linear elastic material can be defined as (Affdl and 
Kardos, 1976; Dastjerdi and Akgöz, 2018; Komijani et al., 2014)

Elastic constants: 

C1111 = C1111 −
C1133C3311

C3333
,C1122 = C1122 −

C1133C3322

C3333
,

C1133 = C1122 −
C1133C1133

C3333
,C2222 = C2222 −

C2233C3322

C3333
,

C2211 = C1122,C1133 = C3311,C2323 = C2323,C1313 = C1313,

C1212 = C1212,C3333 = C1111

(28a) 

Piezoelectric constants: 

e311 = e311 −
C1133e333

C3333
, e322 = e322 −

C2233e333

C3333
,

e333 = e333, e113 = e113, e223 = e223

(28b) 

Dielectric constants: 

κ11 = κ11, κ22 = κ22, κ33 = κ33 +
e333e333

C3333
(28c) 

where the pure elastic constants can be given for an orthotropic material as (Affdl and Kardos, 1976) 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1111
C1122
C2222
C2233
C3333
C3311

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ηEx
(
1 − νyzνzy

)

ηEy
(
νxy + νxzνzy

)

ηEy(1 − νxzνzx)

ηEz
(
νyz + νyxνxz

)

ηEz
(
1 − νxyνyx

)

ηEx
(
νzx + νzyνyx

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29a) 

⎡

⎣
C2323
C1313
C1212

⎤

⎦ =

⎡

⎣
Gyz
Gxz
Gxy

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EyEz

Ey + Ez + 2Ezνyz

ExEz

Ex + Ez + 2Ezνxz

ExEy

Ex + Ey + 2Eyνxy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29b) 

in which 

η =
1

1 − νxyνyx − νyzνzy − νzxνxz − νxyνyzνzx − νyxνxzνzy
.

We must ensure that the following symmetry rules will not be violated when the 3D material properties are input. 

νyzEz = νzyEy
νxzEz = νzxEx
νxyEy = νyxEx

(30) 
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2.2. FGMs-based nanocomposites

In order to model functionally graded nanocomposite structures enriched with nanoparticles such as graphene nanoplatelets, 2D 
nanofillers, etc., there are several well-used micro-mechanic mixtures (Eyvazian et al., 2020; Karami and Ghayesh, 2024) where the 
Halpin-Tsai is here taken into formulations to calculate the elasticity and electrical features of the nanocomposite. Nevertheless, 
despite of accuracy of the model, the dispersed GNPs wt% shall not exceed the specific value of 1%. The reason is if the composite 
contains bigger values of GNPs wt%, its fracture toughness becomes lower (Shokrieh et al., 2014).

The patterns of GNPs used within this study are limited to U (UD), X (FG-X), and O (FG-O) shown in Fig. 3 in which the detailed 
distributions of the GNPs in each layer for the X and O patterns can be witnessed. The construction of Fig. 3 is in a way that the darker 
the color, the more the GNPs vol.%. Thus, for the X pattern, the highest richness of the GNPs is regarding the top and bottom layers. The 
average of the GNPs vol.% for the FG-X is the same as the UD (0.3%). For the U pattern, the GNPs wt% keeps the same amount in each 
layer through the entire layers which means the UD is just a uniform nanocomposite with a lack of FGM concept.

The graphene nanoplatelets’ volume fractions (g∗gnp) in the k-th layers (g(k)gnp) can be expressed as the following items for the U, O, and 
X composition patterns (Ebrahimi and Dabbagh, 2019; Malekzadeh et al., 2018; Malikan et al., 2017; Nguyen and Lee, 2021; Ninh 
et al., 2022; Rafiee et al., 2014; Saidi et al., 2019; Tabatabaei-Nejhad et al., 2020)

UD: 

g(k)gnp = g∗gnp (31) 

FG-X: 

g(k)gnp = 4g∗gnp

(
1
2
+

⃒
⃒
⃒
⃒k −

NL + 1
2

⃒
⃒
⃒
⃒

)/

(2+NL) (32) 

FG-O: 

g(k)gnp = 4g∗gnp

(
NL + 1

2
−

⃒
⃒
⃒
⃒k −

NL + 1
2

⃒
⃒
⃒
⃒

)/

(2+NL) (33) 

where NLis the number of layers in FGM.
The effective elasticity modulus of the k-th layer of the FGM can be expressed as 

E(k)
j =

3
8

(
1 + ξLηLV(k)

gnp

1 − ηLV
(k)
gnp

)

× Ej +
5
8

(
1 + ξTηTV(k)

gnp

1 − ηTV(k)
gnp

)

× Ej; j = x, z (34) 

in which 

V(k)
gnp =

g(k)gnp

g(k)gnp +
(
ρgnp
/

ρm
)(

1 − g(k)gnp

) (35) 

Fig. 3. The distribution patterns of graphene nanoplatelets in line with the z-axis for 0.3wt%; (a) O-type FGM, (b) X-type FGM.
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ηL =

(
Egnp
/
Ej
)
− 1

(
Egnp
/
Ej
)
+ ξL

, ηT =

(
Egnp
/
Ej
)
− 1

(
Egnp
/
Ej
)
+ ξT

(36) 

and 

ξL = 2
(

agnp

hgnp

)

, ξT = 2
(

bgnp

hgnp

)

(37) 

where the average length, thickness and width of GNPs can be defined by agnp, hgnp and bgnp, respectively.
Eq. (34) generates elasticity modulus for x and z directions for each virtual layer only. All the layers of the FGM should be 

substituted by one solid layer according to the laminate theory.
The rule of mixture can determine the dielectric and piezoelectric constants, the Poisson’s ratio, and the mass density as follows 

(Komijani et al., 2014) 

ρ(k) = ρgnpV(k)
gnp + ρMV(k)

M (38a) 

ν(k)
ij = νgnpV(k)

gnp + νijV(k)
M ; i, j = x, y (38b) 

e(k)km = ekm,gnpV(k)
gnp + ekm,MV(k)

M (38c) 

κ(k)km = κkm,gnpV(k)
gnp + κkm,MV(k)

M (38d) 

where V(k)
M =

(
1 − V(k)

gnp

)
.

3. GDQ numerical technique

The Generalized Differential Quadrature (GDQ) method is a highly efficient numerical technique that has been successfully used to 
solve mechanical problems based on ordinary and partial differential equations (Dastjerdi and Jabbarzadeh, 2017; Dastjerdi and 
Jabbarzadeh, 2016; Dastjerdi et al., 2016; Jena et al., 2021; Malikan and Sadraee Far, 2018). GDQ has several advantages over other 
solution procedures. It can provide mechanical information on any point of a domain, ranging from displacements to stresses, in light 
of the grid point. Moreover, because of taking on the polynomial terms, GDQ permits a fast convergence. In addition to this, GDQ owns 
a non-uniform grid point that causes more precise results at the boundaries. Such benefits cannot be seen in available solution 
techniques (Barretta et al., 2024; Farokhi and Ghayesh, 2018; Farokhi et al., 2017; Ghayesh, 2011; Mirfatah et al., 2024; Shariff and 
Bustamante, 2024; Malikan and Eremeyev, 2023), although they are accurate, error-free, and well-established. We here carry out the 
GDQ and apply it to the obtained governing equations to indicate a parametric study providing the numerical results.

The satisfaction of the corresponding boundary conditions (BCs) must be ensured to fix the problem. Herein, various types of the 
BCs can be achieved. 

• Clamped/fixed edges (C): 

u
⃒
⃒x=0,L = w

⃒
⃒x=0,L = 0 

• Simply-supported edges (S): 

w
⃒
⃒x=0,L = σxx

⃒
⃒x=0,L = 0 

• Free edges (F): 

σxx
⃒
⃒x=0,L = τxz

⃒
⃒z=− h/2,+h/2 = 0 

Since the study grants a 3D domain, the topmost and lowermost surfaces of the thickness are involved with the following conditions
Top: σzz

⃒
⃒z=+h/2 = q /b, τxz

⃒
⃒z=+h/2 = 0; where q defines the transverse static load.

Bottom: σzz
⃒
⃒z=− h/2 = τxz

⃒
⃒z=− h/2 = 0

The electric BCs are categorized into two cases (Wankhade and Bajoria, 2013) 

Open − circuit (sensor) : Φ = 0 at z = − h/2,+h/2 (39a) 
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Closed − circuit (actuator) :

{
Φ = V0 at z = +h/2

Φ = 0 at z = − h/2
(39b) 

where the closed-circuit is investigated in this paper only. Briefly, in order to fabricate actuators and ultrasonic motors, the close- 
circuit piezoelectric structures are mostly used. Also, in order to design frequency sensors, an open-circuit piezoelectric structure is 
employed.

With respect to the satisfied types of BCs and the applied function, several subsets can be the subdivision of the GDQM. To this end, 
in this work, direct substitution techniques together with the polynomial function are utilized. Therefore, the derivatives of a function 
F0 in the first-order forms in the rectangular coordinate can be defined as 

∂F0
(
xi, zj

)

∂x
=
∑Mx

k=1

ax
iku
(
xk, zj

)
i= 1, 2,...,Mx (40a) 

∂F0
(
xi, zj

)

∂z
=
∑Mz

r=1
az

jku(xi, zr)j= 1,2,...,Mz (40b) 

where ax and az can be obtained as 
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

ax
ij =

R(xi)
(
xi − xj

)
R
(
xj
) fori ∕= j

ax
ii = −

∑Mx

j=1,∕=i
ax

ij, i, j= 1, 2,...,Mx

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

az
ij =

R(zi)(
zi − zj

)
R
(
zj
) fori ∕= j

az
ii = −

∑Mz

j=1,∕=i
az

ij, i, j= 1,2,...,Mz

(41a,b) 

in whichR(xi) and then P(xi) become 
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

R(xi) =
∏Mx

j=1,∕=i

(
xi − xj

)

P(zi) =
∏Mz

j=1,∕=i

(
zi − zj

)
(42) 

The higher-order partial derivatives are also calculated by 

∂(n)F0
(
xi, zj

)

∂x(n) =
∑Mx

k=1

C(n)
ik F0

(
xk, zj

)
(43a) 

∂(m)F0
(
xi, zj

)

∂x(m)
=
∑Mz

r=1
C(m)

jr F0(xi, zr) (43b) 

∂(l+s)F0
(
xi, zj

)

∂x(l)∂z(s)
=
∑Mx

k=1

∑Mz

r=1
C(l)

ik C(s)
jr F0(xk, zr) (43c) 

in which the C and C parameters denote the weighting coefficients in line with the z and x axes. Also, the order of derivatives is shown 
by the superscripts (m, n, l, and s). Then 

C(1) = ax,C(1)
= az (44) 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

C(n)
ij = n

[

ax
ijC

(n− 1)
ii −

C(n− 1)
ij

xi − xj

]

fori ∕= j

C(n)
ii = −

∑Mx

j=1,∕=i
C(n)

ij i, j= 1, 2,...,Mx

,

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

C(m)

ij = m

[

az
ijC

(m− 1)
ii −

C(m− 1)
ij

zi − zj

]

fori ∕= j

C(m)

ii = −
∑Mz

j=1,∕=i
C(m)

ij i, j= 1, 2,...,Mz

(45a,b) 

In what follows, the well-known Chebyshev-Gauss-Lobatto grid point is taken for the domain throughout the x and z-axes (Malikan, 
2024) 

xi =
1
2

L
[

1 − cos
(

i − 1
Mx − 1

π
)]

, i= 1, 2,...,Mx (46a) 
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zk =
1
2

hcos
(

k − 1
Mz − 1

π
)

, k= 1, 2,...,Mz (46b) 

in which Mx and Mz are the maximum number of points in each direction.
Fig. 4 is a schematic representation of grid points on the domain on which the 3D deformation properties such as thickness 

stretching can be obtained as far as the points move separately but dependently. The colors associated with each point mean different 
situations, namely the boundaries of the domain are defined by solid black points and the solid blue points obey governing equations.

4. Validation

The above-developed methodologies can be verified in this section. Initially, it is germane to note that the GDQ numerical results 
converge at 9 × 9 points, leading to the most precise results. As far as the commercial FEM codes are unable to model smart and 
multifunctional composites properly and meticulously (to the best of the authors’ knowledge), a 3D thick beam built from a steel alloy 
with the below properties has been taken into validation in Abaqus software: 

E = 190GPa, ν = 0.29, h = 8cm, b/h = 1, L/h = 2.5, q = 0.1GPa, CC.

Respectively, Fig. 5 calculated the path of deformations through the thickness of the beam in FEM and GDQM. In addition to this, by 
presenting Fig. 6, maximum deflections have been computed for the beam in the present method in comparison with the Abaqus. It 
should be borne in mind that the maximum deflection here and beyond is not the same as mid-plane deflection and the meaning of the 
maximum deflection is the transverse displacement of the topmost surface as a result of thickness change, plus mid-span displacement 
which is peculiar for 3D analyzes. As observed, an excellent agreement between the results of both methods can be identified. This 
approval lets us create a parametric study and discuss it in detail in the next section.

5. Results and discussions

The main discussion of this section relates to a smart composite which is made in different modes. The main structure and desired 
matrix of PZT-5H piezoelectric material are considered, which is due to its excellent electrical properties compared to PZT-5A, PZT-5J, 
and PZT-4 piezoelectric structures. Generally, PZT-5A suits a vast varying temperature and extreme heat but does not have desirable 
electrical features. In addition, PZT-5H consists of the best piezo characteristics. On the other side, PZT-5J could be in between 5A and 
5H. Further, although PZT-4′s electrical properties are comparable with PZT-5H, it is a little less sensitive (Ke et al., 2015; Prolongo 
et al., 2014).

The smart composite is in the forms of FGM with X composition (FG-X), FGM with O composition (FG-O), uniform composite (UD), 
and PZTC pure structure, in which graphene nanoplatelets (GNPs) are used in the first to third structure to strengthen the matrix. GNPs 
are supposed as square plates with a perfect geometry. Considering the thickness of graphene sheets (0.34 nm), the thickness of GNPs is 
considered to be 20 layers for almost all results. The length and width of graphene platelets are considered to be 100 nanometers. Since 
the volumetric percentage of graphene nanoplatelets plays an essential role in the behavior of the designed smart composite, its value 
is 0.3 percent in most results. Moreover, the transverse static load is also assumed to be 0.1GPa in order to extract the results. Also, the 
dimensions of the medium are considered as 8 × 8 × 20 cm3. This size is associated to the parametric study and is not related to a 
specific sensor or actuator. Furthermore, the height of layers is assumed identical in undeformed beams. More importantly, the me-
chanical properties of the piezoelectric matrix have to be tabulated by the elastic modulus and Poisson’s ratio, not via components of 
the stiffness elastic matrix. The reason is their necessity in the micro-mechanic model. Plus to this, the density of PZT-5H is also 7500 
kg/m3 for documentation purposes. The full material properties of the PZT-5H and GNPs can be seen by Table 1.

First, we present a comparison for the mechanical response of the four structures set here, namely, FG-X, FG-O, UD, and PZTC by 
making visual data as prepared in Fig. 7a and b. The principle difference is that in Fig. 7a, the transverse load is eliminated and the 
composite beams are located in an electrical field influenced by an external electric voltage. Contrasting between the two figures 

Fig. 4. GDQ grid points of the symmetrical beam for two directions (Mx = 9, Mz = 5).
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Fig. 5. The path of transverse displacements in line with the thickness.

Fig. 6. Deflections by GDQM drawn in Maple.

Table 1 
Full material properties of the smart nanocomposite beam (ABC n.d.; Alshenawy et al., 2023; Prolongo et al., 2014; Zhou et al., 2021).

PZT-5H

Mechanical constants:
Ex = 60.61 GPa, Ey = 60.61 GPa, Ez = 48.31 GPa, 

νxy = 0.289, νxz = 0.512, νyz = 0.512
Piezoelectric constants:
e15 = 17 C/m2, e24 = e15, 

e31 = − 6.5 C/m2, e32 = e31, e33 = 23.3 C/m2

Dielectric constants:
κ11 = 1.505 × 10− 8 C/V.m, 

κ22 = 1.505 × 10− 8 C/V.m, 
κ33 = 1.302 × 10− 8 C/V.m

GNPs

Egnp = 1010 GPa, νgnp = 0.186, ρgnp = 1920 kg/m3, 
a = 100nm, b = 100nm, h = 6.8nm (20Layers)
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indicates that the FG-X type has the highest mechanical properties and the most strength structure among the aforementioned ones due 
to its least static deflections in both figures. In the first figure, because of the lack of transverse static load, when the external electric 
voltage is neglected (V0 = 0), the deflections are equal to zero; however, the figure shows deflections at V0∕=0 that are caused by the 
electric field. The deflections in Fig. 7b belong to both lateral static force and the electric voltage. This achievement pertains to the 
three-dimensional electro-elastic analysis. If one uses beam theories (1D), the absence of mechanical loads leads to w = 0 even if an 
electrical field surrounds the matrix. Based on these results, it is also demonstrated that making FGM cannot assure us with the best 
results and UD gives a better mechanical performance than FG-O. So, the layout of the FGM layers is decisive not the FGM itself.

In order to warrant a comparison of results, Table 2 is prepared to supply numeric data based on the results of Fig. 7a and b.
One of the initial and at the same time the most influential factors in investigating the present issue is the volume percentage of 

GNPs (wt%) in the three designed composite structures considered in Fig. 8. This volume percentage, as explained in the previous 
sections, according to scientific research background, is better to do not exceed 1%. Because graphene is a relatively brittle material, an 
amount greater than this value leads to easier fragility of the final composite structure. The zero value indicates the absence of gra-
phene in all the structures and therefore the results are the same at zero value for wt%. The pure structure of PZTC is also not affected 
by the amount of GNPs, and hence the results of the mechanical behavior of PZTC can be seen as a straight line. One can see that the 
greatest effect of graphene is on X-type composite and this kind of FGM is greatly influenced by the increase in GNPs’ volume per-
centage. The result could be on the ground of the outer layers. Upon the further GNPs’ percentage in the outmost layers, these layers 
will have more material stiffness then enable the beam to carry higher bending moments. From the classic strength of material, it has 
been known that a hollow pipe with the same mass of a solid pipe, could have more stiffness. Its mass is concentrated on the outside, 
leading to larger moment of inertia which results in further bending stiffness. This is the fundamental reason for such an achievement 
in X-type FGM.

Among the parameters that affect the mechanical behavior of the analyzed structures, especially for the two modes of FGM namely 
X and O, the number of virtual layers is here considered for the design of FGM intelligent composite material. This fact is the purpose of 
presenting Fig. 9. On the horizontal axis of this figure, it is quite clear that the number of layers is postulated to be varied from 4 to 20. 

Fig. 7. a External electric voltage vs. various beam mixtures (q = 0). b External electric voltage vs. various beam mixtures (q = 0.1 GPa).

Table 2 
External electric voltage vs. various compositions of the beam-like nanocomposite.

q (GPa) V0 (V) Maximum deflections (mm)

FG-X FG-O UD PZT

0 0 0 0 0 0
50 0.1640047 0.1865247 0.1803922 0.1930458
100 0.3273885 0.3722470 0.3600336 0.3852325
150 0.4901577 0.5571763 0.5389328 0.5765706
200 0.6523180 0.7413220 0.7170981 0.7670704
250 0.8138781 0.9246934 0.8945381 0.9567423

0.1 0 4.5527843 6.0313012 5.6272566 6.3500854
50 4.6926560 6.2239391 5.8702493 6.6055489
100 4.8585649 6.5284000 6.1416815 6.9098712
150 5.0377225 6.7823032 6.3770290 7.2153112
200 5.2111600 7.0701030 6.7023224 7.5545156
250 5.3823437 7.3559271 6.9672257 7.9372336
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Fig. 8. GNPs’ volume fraction vs. various beam mixtures.

Fig. 9. FGM’s number of layers vs. electric voltage.

Fig. 10. Lateral load vs. geometrical nonlinearity.
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Although here the increase or decrease in the number of layers has very little impact on the electro-elastic behavior of FGM structures, 
it is necessary to note that the effect of changing the number of layers could be more prominent in the values of the elastic modulus 
than the deflection results.

The effect of the amount of the mechanical load should be evaluated and it has an important and vital role in the values of de-
flections and mechanical behavior of assumed composite materials. As a matter of fact, the value of this load relatively determines 
whether the behavior of the structure is linear or nonlinear. Accurately, even if the nonlinear elastic strains are calculated, the relative 
small amount of static bending load causes a linear mechanical response. Therefore, both linear and nonlinear modes for two different 
materials are shown with the aid of Fig. 10. It should be noted that since we are dealing with the three-dimensional analysis of the 
beam, the unit of mechanical load is Newton per meter. With the help of this figure, it has been shown that after q = 1GPa, the results of 
linear and nonlinear deflections start to extremely diverge from each other.

Figs. 11, 12, 13, and 14 are represented to show the deformation and deflection values along the thickness. These four figures 
express the three-dimensional solution of the problem. Otherwise, in the one-dimensional solution of beams by means of beam the-
ories, it is not possible to calculate the deformation of the thickness and the deflection has the same value at all points of the thickness. 
Exact three-dimensional electro-elastic analysis has opened this path for us to obtain valuable results in the field of mechanics of 
intelligent composite structures by examining the real and different values of deflections at each point along the thickness of the beam. 
In the next figures, the variable of the problem is, respectively, for Fig. 11 electric voltage, for Fig. 12 different beam structures, for 
Fig. 13 the number of different layers for GNPs and thus different thicknesses, and finally for Fig. 14 different volume percentage for 
GNPs have been taken into analyzes.

Fig. 11 illustrates various values of the external electric voltage. As seen, these values influence not only the maximum deflections 
but also the way that the thickness deforms. The literature widely confirms that the amount of external electric voltage impresses the 
maximum deflections. Nevertheless, here, through a full 3D analysis, we recognized that the voltage also genesis the thickness 
deformation. This finding helps us to realize that a 3D elasticity-piezoelectricity study could provide more real-life physics.

Furthermore, Fig. 12 continues the achievements of the previous figure, but here several structures have been proposed, ranging 
from FGM-X and O, UD composite, and the pure piezoelectric beam. An interesting result observed here is that each beam has a 
different thickness deformation algorithm. The curves in this figure display that fabricating the smart structure on the basis of FGM and 
UD concepts although can create further material stiffness for the PZT matrix, the way that the beams deform is not also similar in these 
cases. This fact proves the significance of 3D elasticity evaluation as well. The deformations in line with the thickness show paradoxical 
behavior with concave and convex curves, specifying that the GNPs as a reinforcer could change the deformation pattern.

Fig. 9 revealed that the number of layers for the FGM does not fundamentally impact the maximum deflections of the different 
beams. Yet here via Fig. 13, where various thickness amounts are considered for GNPs, it is vivid that the GNPs’ number of layers is 
very effectual for the thickness deformations and the displacements along with the thickness have a dissimilar path, authenticating the 
result attained earlier for the effect of GNPs on the orientation of deformations. An increase in the number of layers for GNPs enlarges 
the values of the deflections which means the stiffness of the nanocomposite decreased. This is clear from the results belonging to the 
GNPs with a thickness of 68nm compared to that of 6.8nm. According to Eq. (34), just after increasing the value of GNPs’ thickness, the 
value of elasticity modulus diminishes. Consequently, the deflections look bigger. From an engineering point of view, when the GNPs 
are thinner, their strength is further. That is why a one-layerred GNPs (graphene sheet) could be the strongest material. As a physical 
supposition, this behavior could relate the homogenization rate between matrix and the filler in the nanocomposite. The thinner and 
smaller reinforcers could cause better homogeneity and thus the more stiffness due to the homogenized composite. However, such a 
practical reason should be detected in the experiments.

Examining the volume fraction of GNPs should not be restricted to the previous figures and it can be fascinating if one prepares the 

Fig. 11. Thickness deformation vs. electric voltage (FG-X).
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thickness deformations utilizing different values for wt%. Thus, for this reason, Fig. 14 has been plotted. Again here it is clear that 
graphene volume fraction is also another effective factor that can affect the pattern of deformations in line with the thickness of the 
beam. The difference between results of volume fraction equivalent to zero versus those of volume fraction in the amount to one shows 
about twice more deflection values. It can be concluded that the presence of GNPs inside the matrix is effectual on both deflections and 
deformations of the 3D piezocomposite beams.

A cutting-edge 3D investigation in terms of piezoelectric composites is displayed in Fig. 15a, b, and c where the direct effect of 
piezoelectric constant (e) is assessed. The blue surfaces in the three figures are dedicated to the given value of e, but the other surfaces 
are correlated to 0.6e, 0.8e, and 1.2e respectively. The goal is to inquire into different values for the piezoelectric constant to see if it 
can exert influence on the elastic deformations. Interestingly, as clear, both decrease and increase in the value of the piezoelectric 
constant shift the forms of the surfaces. While the larger value and the lower one have resulted in entirely dissimilar results, showing 
that the correct value of the piezoelectric constant is worth noticing for numerical analyzes of piezoelectric structures. From the 
interpretation of the result and from a mathematical point of view, it can be said that because the value of piezoelectric constants is 
directly determinative in the relation to the electric potential (Eq. (23)), and the electric potential could then affect the function of the 
internal electric field along with the thickness (Eq. (14)). Afterwards, the different values of piezoelectric constants could change the 
form of the internal electric field’s function, resulting in the alteration in the shape of the deformations through the thickness as seen in 
these figures. From a physical point of view, the value of piezoelectric constants stems from the piezo property of the material and such 
property also causes an internal electric field along with the thickness. Thus, the different forms of the internal electric field could lead 
to different thickness deformation patterns. One may assume that the rest of the electrical parameters that appeared in Eq. (23) should 

Fig. 12. Thickness deformation vs. different mixtures (V0 = 250 V).

Fig. 13. Thickness deformation vs. graphene nanoplatelets thickness (V0 = 250 V, FG-X).
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give such a result likewise; however, the comparison of amounts of the piezoelectric constants with those of the dielectric ones in-
dicates that the piezoelectric constants are much more fruitful.

The discussion on the results can be ended by manifesting Fig. 16a and b. These two figures perfectly exhibit the 3D analysis by 
virtue of displacements through the coordinates of the length (x) and the thickness (z) of the beams simultaneously. The conflicting 
item in these diagrams is the absence of lateral static load for the first figure. The reason is to check out the pure effect of the electric 
voltage parameter on the mechanical behavior of the intelligent beams. It can be identified that while the q is excluded, there are 
negative/positive deflections and deformations along with the thickness, indicating that the beam twists because of the electric field. 
Nonetheless, the second figure denotes that the inclusion of the static load brings about different behavior and there is no rotation for 
the beam. It may be due to the fact that when the transverse load is imposed which is uniform and symmetrical, it causes vertical 
durability and the beam resists against twirling.

6. Conclusion

This paper dealt with the computational mechanical analysis of the three-dimensional elasticity-piezoelectricity of beam-like 
sensors/actuators made of functionally graded compositions. The motivation concerned an intelligent composite appropriate for 
sensing and actuating industries. The PZT-5H was supposed to be the matrix and graphene nanoplatelets have been mixed as a filler 
with the piezoelectric substrate in several patterns, leading to smart composites. The analysis also involved geometrical nonlinearity 
for the investigation of large deflections. The derived governing equations have been implemented into the generalized differential 
quadrature numerical technique, transferring to simpler formats for the solution possibility. To report the numerical results and un-
derline a case study, the Newton-Raphson method has been executed. Special cases have been comprehensively discussed using 
reciprocal parametric studies. This study was also the first attempt to predict the mechanical behavior of piezoelectric composite 
structures via 3D analysis. We believe that this theoretical research adequately extends the studies on smart materials. Many results 
have been gained through the medium of this research summarized below, 

• The beams underlying the maximum deflections are usually faced with numeric values that are unable to exemplify the thickness 
deformity template. Anyway, this study detected that a variety of elements could be efficacious to show by what means the 
thickness deforms, such as the merge of a nano-additive inside the composite, external electric voltage, FGM mixture schemes, and 
even the volume fraction of GNPs.

• The intelligent materials, for instance, piezoelectric ceramics, are normally brittle structures that are incapable of a desirable 
flexibility. To tackle this issue and build higher flexible smart sensors/actuators, graphene nanoplatelets in FGM compositions 
could be an advisable kind of aggregation/filler.

• The 3D electro-elastic assessment corroborated that when a smart beam undergoes an external electric field with no outer static 
load imposed on the structure, the beam could twist as a consequence of the electric voltage.

• The performed parametric study showed that the GNPs’ volume fraction is much more determinative than the FGM’s number of 
layers to obtain a higher efficient composite.

Fig. 14. Thickness deformation vs. graphene nanoplatelets’ percentage (V0 = 250 V, FG-X).
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• The piezoelectric constant can be an outstanding parameter with regard to electro-mechanical analyzes. This factor not only gets 
involved in the values of deflections but also varies the thickness deformation path.

• It was acquired that the smart composite subject to an external electric field will lose its mechanical strength gradually due to an 
increase in the value of the electric voltage. This stiffness reduction seemed with a less steep slope in FG-X results in comparison 
with the rest.
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