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Abstract: Among various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined
as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain
and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the
magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect
is significant and could be even dominant. In this article, we develop a model of a simultaneously
coupled piezomagnetic–flexomagnetic nanosized Euler–Bernoulli beam and solve the corresponding
problems. In order to evaluate the FM on the nanoscale, the well-known nonlocal model of strain
gradient (NSGT) is implemented, by which the nanosize beam can be transferred into a continuum
framework. To access the equations of nonlinear bending, we use the variational formulation.
Converting the nonlinear system of differential equations into algebraic ones makes the solution
simpler. This is performed by the Galerkin weighted residual method (GWRM) for three conditions
of ends, that is to say clamp, free, and pinned (simply supported). Then, the system of nonlinear
algebraic equations is solved on the basis of the Newton–Raphson iteration technique (NRT) which
brings about numerical values of nonlinear deflections. We discovered that the FM effect causes the
reduction in deflections in the piezo-flexomagnetic nanobeam.

Keywords: flexomagnetic; nanobeam; large deflection; NSGT; Galerkin method; Newton–Raphson
method

1. Introduction

To study the flexomagnetic (FM) effect and to better identify it, one can use the family close to it,
that is, the piezomagnetic effect. In piezomagnetic, simply by compressing or stretching materials, an
internal magnetic field is created in them. The piezomagnetic effect and its application can be seen
in many materials and structures. However, in addition to these very useful applications, there is
an important drawback that this effect can only exist in about 20 crystal structures with a specific
symmetrical classification. However, there is no such limit to the FM effect, and materials with wider
classes of symmetry can cause such a phenomenon. The flexomagnetic effect can be very strong and
effective, so that it may one day be used in nanosensors or nanometer actuators. As a brief explanation
of the FM effect, it can be noted that by bending an ionic crystal, the atomic layers are drawn inside
it, and it is clear that the outermost layer will have the most tension. This difference in traction in
different layers can cause ions to transfer to the crystal so much that they eventually create a magnetic
field. In other words, bending some materials creates a magnetic field, a corresponding phenomenon
called flexomagnetic effect. The effect of strain gradients shows that the importance of the FM effect
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in micro and nano systems is comparable to that of piezomagnetic and even beyond. Additionally,
flexomagnetic, unlike piezomagnetic, can be found in a wider class of materials. This means that
compared to piezomagnetic, which is invalid and inefficient in materials with central symmetry, there
is an FM effect in all biological materials and systems. These traits have led to a growing interest in
and research into the flexomagnetic effect in recent years [1,2]. Currently, the role of the flexomagnetic
effect in the physics of dielectrics has been investigated in some studies and has shown promising
practical applications [3–7]. On the other hand, the difference between theoretical and experimental
results shows a limited understanding in this field. This study examines current knowledge of FM
in engineering.

The flexomagnetic effect exists in many solid dielectrics, soft membranes, and biological filaments.
The flexomagnetic effect is introduced as the effect of size-dependent electromagnetic coupling due to
the presence of strain gradients and magnetic fields, and promises many applications in nano-electronic
devices (with strong strain gradients). Just as the piezomagnetic effect is expected to have important
applications in nano-engines and particles [8–12], so the FM effect can play this role as well. Different
fields of science are used to study nanodielectrics by considering the FM effect. These significant parts
can be examined from a chemistry and physics point of view, or they can be put under a magnifier in
the engineering and industrial aspects. In the engineering aspects, the study of external factors on
dielectrics and their mechanical and physical behavioral responses will naturally be the criterion for
evaluation. The purpose of this study is to evaluate this aspect in static large deflection analysis of a
nano actuator beam. A close look at the history of the study of the mechanical behavior of dielectrics
by including the FM effect does not show many studies [13–15]. These studies have generally looked
at small deformations (linear strains), which, while important, cannot be the criterion for designing
dielectric nanobeams. Definitely, the deformations should be considered as large as possible to obtain a
reasonable and reliable safety factor for optimizing these significant nano-electro-magneto-mechanical
systems’ components.

The present work accounts for the large deflections by adding the nonlinear terms of Lagrangian
strain using the von Kármán approach. The constitutive equations are expanded in line with the
classical beam theory. It is worth mentioning that the small scale is fulfilled conforming to the second
stress and strain gradients. These extra terms should result in two conflict responses, that is softening
and hardening in the nanoscale structure based on the literature. We perform the solution of acquired
equations, which govern the nonlinear bending of the nanobeam, on the basis of two step solution
techniques. The first one is the Galerkin weighted residual method (GWRM) which converts the
equations into nonlinear algebraic ones, then the Newton–Raphson technique (NRT), which solves
the nonlinear system of algebraic equations and gives the numerical values of displacements into x
and z directions. At last, pictorial results are evaluated to show the disagreements and dissimilarities
betwixt linear deflection and nonlinear one for the piezo-flexomagnetic nanosize beam.

2. Mathematical Model

Let us consider a piezomagnetic-flexomagnetic nanobeam (PF-NB) with squared cross section
of length and thickness L and h; see Figure 1. A uniform vertical static loading acts above the beam.
A magnetic potential is joint to the beam to simulate and act as a magnetic field. Moreover, the z-axis is
related to the transverse direction, whereas the neutral plane of the beam is coincident with the x-axis.
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Figure 1. A square (b = h) PF-NB clamped at both ends and exposed to a lateral uniform static loading 
beside an external magnetic potential. 

Follow up, the kinematic displacement for each node of the beam is utilized with the aid of the 
Euler–Bernoulli hypothesis [16,17]. Furthermore, the model is restricted with in-plane deformations. 
The rectangular displacements correspond with u1 and u3, respectively, for axial and transverse 
directions. However, such displacements for neutral plane are, respectively, regarded with u and w. 
Thus, one can give accordingly 
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The Von Kármán assumption tells us that the nonlinear terms related to the u can be excluded 
from the Lagrangian strain formula because these terms are sufficiently small compared to the other 
terms [18–24]. The general Lagrangian strain can be mentioned as 
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derived as follows 
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where Equations (4) and (5) calculate, respectively, the longitudinal strain and its gradient. 
The stress-strain magneto-mechanical coupling relations in the one-dimensional framework can 

be given owing to [13,14]. 
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where x xσ  is the static stress field component, zH  is the magnetic field component, zB  is the 

magnetic flux (induction) component, 11C  is the elastic modulus, 31f  is the component of the 

fourth-order flexomagnetic coefficients tensor, 33a is the component of the second-order magnetic 

permeability tensor, 31q  is the component of the third-order piezomagnetic tensor, 31g  is the 

Figure 1. A square (b = h) PF-NB clamped at both ends and exposed to a lateral uniform static loading
beside an external magnetic potential.

Follow up, the kinematic displacement for each node of the beam is utilized with the aid of the
Euler–Bernoulli hypothesis [16,17]. Furthermore, the model is restricted with in-plane deformations.
The rectangular displacements correspond with u1 and u3, respectively, for axial and transverse
directions. However, such displacements for neutral plane are, respectively, regarded with u and w.
Thus, one can give accordingly

u1(x , z) = u(x) − z
dw(x)

dx
(1)

u3(x, z) = w(x) (2)

The Von Kármán assumption tells us that the nonlinear terms related to the u can be excluded
from the Lagrangian strain formula because these terms are sufficiently small compared to the other
terms [18–24]. The general Lagrangian strain can be mentioned as

εi j =
1
2

(
∂ui
∂x j

+
∂u j

∂xi
+
∂uk
∂xi

∂uk
∂x j

)
(3)

In regard to this approach, the nonzero nonlinear strain-displacement components can be derived
as follows

εxx =
du
dx
− z

d2w
dx2 +

1
2

(
dw
dx

)2

(4)

ηxxz =
dεxx

dz
= −

d2w
dx2 (5)

where Equations (4) and (5) calculate, respectively, the longitudinal strain and its gradient.
The stress-strain magneto-mechanical coupling relations in the one-dimensional framework can

be given owing to [13,14].
σxx = C11εxx − q31Hz (6)

ξxxz = g31ηxxz − f31Hz (7)

Bz = a33Hz + q31εxx + f31ηxxz (8)

where σxx is the static stress field component, Hz is the magnetic field component, Bz is the magnetic
flux (induction) component, C11 is the elastic modulus, f31 is the component of the fourth-order
flexomagnetic coefficients tensor, a33 is the component of the second-order magnetic permeability
tensor, q31 is the component of the third-order piezomagnetic tensor, g31 is the component of the
sixth-order gradient elasticity tensor, and ξxxz is the component of higher-order moment stress tensor.

The variational formulation accurately develops the characteristics relation of PF-NB, thusly

δU − δW = 0 (9)
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where δ is the symbol of variation, U is the strain energies, and W is created works by outer objects. In
such a way, the entire inner energy of the specimen is in the first variation which is equal to zero as
well. The strain energy respecting magneto-mechanical composition can be variated just like this (the
first variation)

δU =

∫
V

(σxxδεxx + ξxxzδηxxz − BzδHz)dV (10)

Equation (10) can be transformed with integration by parts on the basis of the one-dimensional
displacement field previously assumed as follows

δU = δΠMech
U1

+ δΠMag
U1

+ δΠMech
U2

+ δΠMag
U2

(11)

where

δΠMech
U1

= −

L∫
0

{
dNx
dx

δu +

[
d2Mx

dx2 +
d

dx

(
Nx

dw
dx

)
+

d2Txxz

dx2

]
δw

}
dx (12)

δΠMag
U1

= −

L∫
0

h/2∫
−h/2

dBz

dz
δΨdzdx (13)

δΠMech
U2

=

{
Nxδu− [Mx + Txxz]

dδw
dx

+

[
Nx

dw
dx

+
dMx
dx

+
dTxxz

dx

]
δw

}∣∣∣∣∣∣L
0

(14)

δΠMag
U2

=

L∫
0

(BzδΨ)

∣∣∣∣∣∣∣∣
h/2

−h/2

dx (15)

where Ψ is the variable of magnetic potential. The resultants of the stress field can be introduced along
the following lines

Nx =

h/2∫
−h/2

σxxdz (16)

Mx =

h/2∫
−h/2

σxxzdz (17)

Txxz =

h/2∫
−h/2

ξxxzdz (18)

In addition, the magnetic potential was introduced through the relation

dΨ
dz

= −Hz (19)

External forces (axial force as a result of the longitudinal magnetic field and the lateral loading)
create work thermodynamically in the particles so that the mathematical relation in the first variation
becomes [25].

δW =

L∫
0

[
N0

x

(
dδw
dx

dw
dx

)
+ p(x)δw

]
dx (20)
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in which N0
x is the in-plane longitudinal axial force, and p is the lateral load per unit length. Taking into

account the closed circuit in conjunction with the inverse piezo case, the electrical boundary conditions
can be attributed as below

Ψ
(
+

h
2

)
= ψ (21)

Ψ
(
−

h
2

)
= 0 (22)

in which ψ is the external magnetic potential on the upper surface. Making in hand Equations (8), (13),
(15), (21) and (22) practicably expresses the magnetic field component and thereupon the magnetic
potential function in line with thickness as follows [13,14]

Ψ = −
q31

2a33

(
z2
−

h2

4

)
d2w
dx2 +

ψ

h

(
z +

h
2

)
(23)

Hz = z
q31

a33

d2w
dx2 −

ψ

h
(24)

On the basis of Equations (23) and (24), Equations (6)–(8) can be developed as

σxx = C11

du
dx

+
1
2

(
dw
dx

)2− z

C11 +
q2

31

a33

d2w
dx2 +

q31ψ

h
(25)

ξxxz = −

(
g31 +

q31 f31z
a33

)
d2w
dx2 +

f31ψ

h
(26)

Bz = q31

du
dx

+
1
2

(
dw
dx

)2− f31
d2w
dx2 −

a33ψ

h
(27)

Subsequently, Equations (16)–(18) can be rewritten in detail as

Nx = C11A

du
dx

+
1
2

(
dw
dx

)2+ q31ψ (28)

Mx = −Iz

C11 +
q2

31

a33

d2w
dx2 (29)

Txxz = −g31h
d2w
dx2 + f31ψ (30)

in which Nx, Mx, Txxz show the axial, moment, and hyper stress resultants, and Iz =
∫

A z2dA is the
area moment of inertia.

The resultant magnetic axial stress, which is achieved due to the longitudinal magnetic field,
based on Equation (28) can be determined as

NMag = q31ψ (31)

This force is supposed to act at both ends of the beam, thus

N0
x = NMag (32)

Eventually, imposing Equation (9), one can write the governing equations in a combination of
mechanical and magnetic conditions as

dNx
dx

= 0 (33)
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d2Mx

dx2 +
d2Txxz

dx2 +
(
N0

x + Nx

)d2w
dx2 +

dNx
dx

dw
dx
− p = 0 (34)

Due to being the nanobeam a size-dependent particle, the scale-dependent property should
be substituted in Equations (33) and (34). In [26], the second strain gradient of Mindlin merged
successfully with the nonlocal theory of Eringen. This model (NSGT) was incorporated in a lot of
research performed on the nanoparticles in recent years—see e.g., [27–38] and many others—and can
be a proper item at the nanoscale.

The model proposed by [26] can be compatible in our case as(
1− µ

d2

dx2

)
σNonLocal

xx =

(
1− l2

d2

dx2

)
σLocal

xx

or as (
1− µ

d2

dx2

)
σNonLocal

xx =

(
1− l2

d2

dx2

)C11

du
dx

+
1
2

(
dw
dx

)2− z

C11 +
q2

31

a33

d2w
dx2 +

q31ψ

h

 (35)

in which µ
(
nm2

)
is the nonlocal parameter, and l(nm) is the strain gradient parameter. Thus, l > 0

establishes a nonzero strain gradient into the model, and µ = (e0a)2 is the parameter defining
nonlocality. It is germane to note that both scale parameters are dependent on the physics of the
model and cannot be material constants [39,40]. This means the parameters are not constant values,
something like an elasticity modulus for each material.

To implement the influence of size effects into the equations, Equation (35) is plugged to Equations
(28)–(30) as

Nx − µ
d2Nx

dx2 =

(
1− l2

d2

dx2

)C11A

du
dx

+
1
2

(
dw
dx

)2
 (36)

Mx − µ
d2Mx

dx2 =

(
1− l2

d2

dx2

)−Iz

C11 +
q2

31

a33

d2w
dx2

 (37)

Txxz − µ
d2Txxz

dx2 =

(
1− l2

d2

dx2

){
−g31h

d2w
dx2 + f31ψ

}
(38)

Equations (33) and (34) by means of Equations (36)–(38) can be derived in the framework of
displacements, respectively, as series of models.

1.1. Piezo-flexomagnetic nanobeam (PF-NB)—Nonlinear case:

C11A
[

d2u
dx2 +

d2w
dx2

dw
dx
− l2

(
d4u
dx4

+
d4w
dx4

dw
dx

+ 3
d3w
dx3

d2w
dx2

)]
= 0 (39)

−g31h d4w
dx4 + q31ψ

d2w
dx2 − p− µ

(
−g31h d6w

dx6 + q31ψ
d4w
dx4 −

d2p
dx2

)
−µC11A

[
du
dx + 1

2

(
dw
dx

)2
]

d4w
dx4 + C11Aµl2

[
d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d4w
dx4

−µC11A
(

d2u
dx2 + dw

dx
d2w
dx2

)
d3w
dx3 + C11Aµl2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
d3w
dx3

−µC11A
(

d4u
dx4 + dw

dx
d4w
dx4 + 3 d3w

dx3
d2w
dx2

)
dw
dx + C11A

[
du
dx + 1

2

(
dw
dx

)2
]

d2w
dx2

+C11Aµl2
(

d6u
dx6 + dw

dx
d6w
dx6 + 5 d5w

dx5
d2w
dx2 + 10 d4w

dx4
d3w
dx3

)
dw
dx

−C11Al2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d2w
dx2 + C11A

(
d2u
dx2 + dw

dx
d2w
dx2

)
dw
dx

−Iz

(
C11 +

q2
31

a33

)(
d4w
dx4 − l2 d6w

dx6

)
−C11Al2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
dw
dx = 0

(40)
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1.2. Piezo-flexomagnetic nanobeam (PF-NB)—Linear case:

−g31h d4w
dx4 + q31ψ

d2w
dx2 − p− µ

(
−g31h d6w

dx6 + q31ψ
d4w
dx4 −

d2p
dx2

)
−Iz

(
C11 +

q2
31

a33

)(
d4w
dx4 − l2 d6w

dx6

)
= 0

(41)

2.1. Piezomagnetic nanobeam (P-NB)—Nonlinear case:

C11A
[

d2u
dx2 +

d2w
dx2

dw
dx
− l2

(
d4u
dx4

+
d4w
dx4

dw
dx

+ 3
d3w
dx3

d2w
dx2

)]
= 0 (42)

q31ψ
d2w
dx2 − p− µ

(
q31ψ

d4w
dx4 −

d2p
dx2

)
− µC11A

[
du
dx + 1

2

(
dw
dx

)2
]

d4w
dx4

+C11Aµl2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d4w
dx4

−µC11A
(

d2u
dx2 + dw

dx
d2w
dx2

)
d3w
dx3 + C11Aµl2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
d3w
dx3

−µC11A
(

d4u
dx4 + dw

dx
d4w
dx4 + 3 d3w

dx3
d2w
dx2

)
dw
dx + C11A

[
du
dx + 1

2

(
dw
dx

)2
]

d2w
dx2

+C11Aµl2
(

d6u
dx6 + dw

dx
d6w
dx6 + 5 d5w

dx5
d2w
dx2 + 10 d4w

dx4
d3w
dx3

)
dw
dx

−C11Al2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d2w
dx2 + C11A

(
d2u
dx2 + dw

dx
d2w
dx2

)
dw
dx

−Iz

(
C11 +

q2
31

a33

)(
d4w
dx4 − l2 d6w

dx6

)
−C11Al2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
dw
dx = 0

(43)

2.2. Piezomagnetic nanobeam (P-NB)—Linear case:

q31ψ
d2w
dx2 − p− µ

(
q31ψ

d4w
dx4
−

d2p
dx2

)
− Iz

C11 +
q2

31

a33

(d4w
dx4
− l2

d6w
dx6

)
= 0 (44)

3.1. Nanobeam (NB)—Nonlinear case:

C11A
[

d2u
dx2 +

d2w
dx2

dw
dx
− l2

(
d4u
dx4

+
d4w
dx4

dw
dx

+ 3
d3w
dx3

d2w
dx2

)]
= 0 (45)

−p + µ
d2p
dx2 − µC11A

[
du
dx + 1

2

(
dw
dx

)2
]

d4w
dx4

+C11Aµl2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d4w
dx4

−µC11A
(

d2u
dx2 + dw

dx
d2w
dx2

)
d3w
dx3

+C11Aµl2
(

d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
d3w
dx3

−µC11A
(

d4u
dx4 + dw

dx
d4w
dx4 + 3 d3w

dx3
d2w
dx2

)
dw
dx + C11A

[
du
dx + 1

2

(
dw
dx

)2
]

d2w
dx2

+C11Aµl2
(

d6u
dx6 + dw

dx
d6w
dx6 + 5 d5w

dx5
d2w
dx2 + 10 d4w

dx4
d3w
dx3

)
dw
dx

−C11Al2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d2w
dx2 + C11A

(
d2u
dx2 + dw

dx
d2w
dx2

)
dw
dx

−IzC11
(

d4w
dx4 − l2 d6w

dx6

)
−C11Al2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
dw
dx = 0

(46)

3.2. Nanobeam (NB)—Linear case:

− p + µ
d2p
dx2 −C11Iz

(
d4w
dx4
− l2

d6w
dx6

)
= 0 (47)

4.1. Classic beam—Nonlinear case:

C11A
(

d2u
dx2 +

d2w
dx2

dw
dx

)
= 0 (48)
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− p + C11A

du
dx

+
1
2

(
dw
dx

)2d2w
dx2 + C11A

(
d2u
dx2 +

dw
dx

d2w
dx2

)
dw
dx
−C11Iz

d4w
dx4

= 0 (49)

4.2. Classic beam—Linear case:

−C11Iz
d4w
dx4

= p (50)

In what follows, we consider these cases in more details.

3. Solution Approach

The solution process here has two steps. The first step comes with the Galerkin weighted residual
method (GWRM) on the basis of the admissible shape functions which satisfy boundary conditions. The
second step is imposing the Newton–Raphson technique (NRT) in order to solve the system of nonlinear
algebraic equations originated from GWRM. The following displacements were employed [41].

u(x) =
∞∑

m=1

Um
dXm(x)

dx
(51)

w(x) =
∞∑

m=1

WmXm(x) (52)

where Um and Wm are unknown variables that determine displacements through two axes and should
be computed, whereas Xm(x) are shape functions, m is the axial half-wave number, and becomes
m = 1, 2, . . .∞. The allowable shape functions given below satisfy end conditions as [41].

S− S : Xm(x) = sin
(mπ

L
x
)

(53)

C−C : Xm(x) = sin2
(mπ

L
x
)

(54)

C− F : Xm(x) = sin
(mπ

4L
x
)

cos
(mπ

4L
x
)

(55)

in which S, C, and F mark one by one the simply-supported, clamped, and free end conditions. Here,
e.g., C-F means a side of the beam is inserted in a clamping fixture and the opposite side is free
and hanging.

Based on the Fourier sine series, the transverse load can uniformly behave on the nanobeam as
the following form [42,43].

p(x) =
∞∑

m=1

4p0

mπ
sin

(mπ
L

x
)

(56)

in which p0 is density of the lateral load. Inserting Equations (51), (52), and (56) into Equations (39)–(50),
and integrating over the axial domain based on the GWRM approach, one can obtain

L∫
0

[η(x)Ym]dx = 0 (57)

L∫
0

[ξ(x)Zm]dx = 0 (58)

in which η and ξ are the first and second equations, respectively, and Ym and Zm show the residuals.
Then, with ordering and arranging the aforesaid equations, one can receive the nonlinear algebraic
system of two equations and two unknown variables (when considering m = 1). To solve such a system,
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there are several methods. As long as the NRT converged the results very quickly and accurately, this
technique was employed here. A primary guess (U0 and W0) was required for results in this approach.
We can express the first iteration as [44].

U1 = U0 − J−1
×A0 (59)

W1 = W0 − J−1
×A0 (60)

where J denotes the Jacobian matrix 2 × 2 and A is a vector 2 × 1.

J =
∂A0

∂x
, (61)

A0 = e
(

U0

W0

)
(62)

where e is the governing equations with placing the first guesses. As a matter of fact, Equations (59)
and (60) are iterative equations that are

Un+1 = Un+1 − J−1
×An+1, (63)

Wn+1 = Wn+1 − J−1
×An+1 (64)

where n is the number of iterations to receive the convergence. A few iterations are enough to obtain
the desired accuracy. It is worth mentioning that the convergence and the expected accuracy were
completely dependent on the value of the primary guesses. Consequently, the solution led to numerical
values of displacements along axial and transverse axes. To plot the results for large deflections, we
needed to obtain the vertical displacement only, and the other will not be drawn.

4. Numerical Results and Discussion

4.1. Results’ Validity

Based on performing some comparative studies, the credit of the present results can be checked.
In so doing, in Table 1 a pinned–pinned nanobeam under a distributed uniform force is compared
with the linear schema. The maximum deflection which occurred at the center of the beam was in
a nondimensional state as proposed by [21,45]. A good harmony among the deflections’ values is
obviously seen from the Table. It is noteworthy that the classical dimensionless deflection is indicated
by e0a/L = 0. From the Table, it is found that the nondimensional maximum deflection increased as the
value of the nonlocal parameter increased.

Table 1. Dimensionless maximum deflection for a simply-supported nanobeam exposed to transverse
uniform loading.

L/h e0a/L EBT, Linear [21] EBT, Linear [45] EBT, Linear [Present]

10

0 0.013021 0.013021 0.013021
0.05 0.013333 0.013333 0.013333
0.1 0.014271 0.014271 0.014271

0.15 0.015833 0.015833 0.015833

For an explicit understanding, another comparison is tabulated by Table 2, for which a typical
macroscale beam was utilized under both fixed ends. The present results are validated with those of
the finite element method (FEM). Both the current and FEM approach are on the basis of linear analysis.
As FEM benefits from shear deformations, it gives higher deflections. It is notable in the Table that
enlarging the volume of the load resulted in the discrepancy of deflections. The FEM outcomes can be
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changeable due to many conditions in its process such as the number of elements, the kind of element,
the number of nodes, and the algorithm of meshing, etc.

Table 2. Maximum deflection (mm) for a clamped–clamped macro beam exposed to transverse uniform
loading (E = 210 GPa, h = 5 mm).

L/h p (kN/mm) EBT, Linear [Present] FEM, Linear [ABAQUS]

10

0.01 0.0792 0.0824
0.02 0.1585 0.1648
0.03 0.2377 0.2472
0.04 0.3170 0.3297

4.2. Discussion of the Problem

Here, just employing n = 4 gave the convergence in numerical results of the Newton–Raphson
solving technique. To the best of the authors’ knowledge, no paper exists that has studied large
deflections of a piezomagnetic nanosize beam with apparent flexomagneticity, unless otherwise stated.
Estimations hereon take the necessary properties for a piezomagnetic nanoparticle accorded by Table 3
as [13,14].

Table 3. Engineering necessary features of a piezomagnetic nanobeam with apparent flexomagneticity.

CoFe2O4

C11 = 286 GPa
q31 = 580.3 N/Ampere.m

a33 = 1.57 × 10−4 N/Ampere2

L = 10 h

In light of the lack of sufficient study on FM, we took f 31 = 10−9 N/Ampere, f 31 = 10−10 N/Ampere
as [13,14]. These two values were also theoretically obtained based on some simple assumptions and
cannot be the exact numeric values of the flexomagnetic parameter of the aforesaid material presented
in Table 3.

An NSGT case was chosen to consider nanoscale impacts. In this model, as can be observed
by Equation (31), there were two small scale factors. In point of fact, to determine the results of the
bending of the nanoparticle, the amounts of these two parameters are vital. Thus, by exploring within
the literature, one can find the 0.5 nm < e0a < 0.8 nm [46], and 0 < e0a ≤ 2 nm [47,48], unless otherwise
stated. The amount of strain gradient parameter was obtained in a similar size to the lattice parameter
of the crystalline structure [49]. This factor for the aforementioned material in Table 3 was obtained
in an experiment to change between 0.8 and 0.9 nanometers at a set temperature [50]. Hence, the
averaged value of the strain gradient parameter is selected as l = 1 nm.

4.2.1. Effect of Nonlinearity

To probe the numerical results, we first show the difference between the results of the linear and
nonlinear analyses. Figure 2 is provided for the fixed support, Figure 3 is produced for the hinge
support, and lastly, Figure 4 is presented for the cantilever nanobeam. It should be noted that all figures
in the results section were plotted in both linear and nonlinear modes for the piezomagnetic nanobeam
(P-NB), piezomagnetic-flexomagnetic nanobeam (PF-NB), and common nanobeam (NB). Let us come
back to Figures 2–4. First, a comparison of the figures shows a much smaller deflection which resulted
from the boundary condition of the fix versus the other ones. For this reason, a larger load amplitude
was selected to evaluate the results of the fixed–fixed support to better distinguish between linear and
nonlinear analyses. In the first figure, as can be seen, the results of the linear analysis were valid as
long as the deflection value did not reach 15% of the thickness, i.e., w < 0.15 h. Of course, it is important
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to note that according to the second figure and in the boundary condition of the hinge, this value was
w ≤ 0.1 h for NB and w ≤ 0.08 h for PF-NB. This means that if the deflections exceed these values, the
linear analysis is no longer valid, and we must use nonlinear analysis to examine the nanobeam’s
deflections. Considering Figure 4 for a more flexible beam with clamped-free end conditions represents
that the allowable value for NB was about w ≤ 0.2 h and for PF-NB, about w ≤ 0.1 h. It is relevant
to state that due to the C-F case, a very small lateral load was chosen because of the high deflection
capacity of the nanobeam in free conditions. Comparing the three figures, it is interesting to note that
the difference between the results of the linear and nonlinear analyses was greater in, respectively, C-F
> S-S > C-C boundary conditions, and the C-F boundary condition was more sensitive. It may be
concluded that nanobeams with end conditions with higher degrees of freedom require a more urgent
nonlinear analysis. Another result of these diagrams is that the deflections of magnetic nanobeam in
both linear and nonlinear analyses were smaller than that of the conventional nanobeam. In addition,
the difference between the results of the linear analysis was greater than that of the nonlinear analysis.
These results strongly suggest that nonlinear strains must be used for static deflection analysis in
materials, unless the loads are selected so that the deflections are within the range obtained for linear
analysis. By carefully examining the results in [14], which is based on linear analysis and a thickness
of 10 nm, it can be seen that the deflections in some diagrams of this reference (see Figure 3 of the
reference) were within the range, and in some others exceeded the obtained range (see Figure 4 of the
reference). Therefore, the linear analysis cannot always be valid, and certainly, nonlinear analysis is a
matter of need.

Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 22 

 

of the conventional nanobeam. In addition, the difference between the results of the linear analysis 
was greater than that of the nonlinear analysis. These results strongly suggest that nonlinear strains 
must be used for static deflection analysis in materials, unless the loads are selected so that the 
deflections are within the range obtained for linear analysis. By carefully examining the results in 
[14], which is based on linear analysis and a thickness of 10 nm, it can be seen that the deflections in 
some diagrams of this reference (see Figure 3 of the reference) were within the range, and in some 
others exceeded the obtained range (see Figure 4 of the reference). Therefore, the linear analysis 
cannot always be valid, and certainly, nonlinear analysis is a matter of need. 

 
Figure 2. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, C-C). 

 

Figure 3. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, S-S). 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-Nonlinear

NB-Linear

NB-Nonlinear

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-Nonlinear

NB-Linear

NB-Nonlinear

Figure 2. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, C-C).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2020, 10, 1762 12 of 22

Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 22 

 

of the conventional nanobeam. In addition, the difference between the results of the linear analysis 
was greater than that of the nonlinear analysis. These results strongly suggest that nonlinear strains 
must be used for static deflection analysis in materials, unless the loads are selected so that the 
deflections are within the range obtained for linear analysis. By carefully examining the results in 
[14], which is based on linear analysis and a thickness of 10 nm, it can be seen that the deflections in 
some diagrams of this reference (see Figure 3 of the reference) were within the range, and in some 
others exceeded the obtained range (see Figure 4 of the reference). Therefore, the linear analysis 
cannot always be valid, and certainly, nonlinear analysis is a matter of need. 

 
Figure 2. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, C-C). 

 

Figure 3. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, S-S). 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-Nonlinear

NB-Linear

NB-Nonlinear

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-Nonlinear

NB-Linear

NB-Nonlinear

Figure 3. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, S-S).
Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 22 

 

 

Figure 4. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, C-F). 

4.2.2. Effect of Small Scale 

In this section, the effect of small-scale parameters is examined, i.e., nonlocal and strain gradient 
parameters. Figures 5 and 6 show the effect of variations in the value of the nonlocal parameter, 
respectively, for S-S and C-F, and Figures 7 and 8 exhibit the effect of changes in the value of the 
strain gradient parameter, respectively, for C-C and S-S. The first and second figure show that as the 
nonlocal parameters increased, the deflections increased in all four cases examined. As a result, it can 
be stated that the increase in the nonlocal parameter had a softening effect on the nanobeam material. 
On the other hand, it is worth noting that as the numerical value of the nonlocal parameter increased, 
this caused the difference between the linear and nonlinear analyses results. In fact, in the nonlocal 
analysis of nanobeams, the effect of nonlinear analysis will be greater, and this requires that nonlinear 
analysis be used to investigate nonlocal deflections. It is important to note that the effect of the 
nonlocal parameter on the results of magnetic nanobeam was greater than that of the conventional 
nanobeam. This result is due to the steeper slope of the results of this nanobeam with the increasing 
nonlocal parameter. It is also interesting to say that the difference between the results of nonlinear 
and linear analyses in NB was much more than in PF-NB. From the third and fourth figures, which 
show the effect of changes in the strain gradient parameter in two different boundary conditions, it 
is clear that increasing this parameter led to a decrease in deflections of all cases and means that the 
increase in the strain gradient parameter is a tightening effect inside the material. However, it is 
important to bear in mind that this tightening effect will be greater in the case of a boundary with 
lower degrees of freedom. As can be observed, in a nanobeam with a double-sided fixed boundary 
condition, the slope of the reduction in the deflection’s results was much faster than in the case of the 
boundary conditions of the double-sided hinged. It is also interesting to note that increasing the 
numerical value of the strain gradient parameter will reduce the difference between the results of 
linear and nonlinear analyses, and in very large values of this parameter, it can be explicitly stated 
that nonlinear analysis can be ignored provided that small loads are applied. 

0

0.5

1

1.5

2

2.5

3

0 0.005 0.01 0.015 0.02

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-Nonlinear

NB-Linear

NB-Nonlinear

Figure 4. Transverse load vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 nm, C-F).

4.2.2. Effect of Small Scale

In this section, the effect of small-scale parameters is examined, i.e., nonlocal and strain gradient
parameters. Figures 5 and 6 show the effect of variations in the value of the nonlocal parameter,
respectively, for S-S and C-F, and Figures 7 and 8 exhibit the effect of changes in the value of the
strain gradient parameter, respectively, for C-C and S-S. The first and second figure show that as the
nonlocal parameters increased, the deflections increased in all four cases examined. As a result, it can
be stated that the increase in the nonlocal parameter had a softening effect on the nanobeam material.
On the other hand, it is worth noting that as the numerical value of the nonlocal parameter increased,
this caused the difference between the linear and nonlinear analyses results. In fact, in the nonlocal
analysis of nanobeams, the effect of nonlinear analysis will be greater, and this requires that nonlinear
analysis be used to investigate nonlocal deflections. It is important to note that the effect of the nonlocal
parameter on the results of magnetic nanobeam was greater than that of the conventional nanobeam.
This result is due to the steeper slope of the results of this nanobeam with the increasing nonlocal
parameter. It is also interesting to say that the difference between the results of nonlinear and linear
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analyses in NB was much more than in PF-NB. From the third and fourth figures, which show the
effect of changes in the strain gradient parameter in two different boundary conditions, it is clear that
increasing this parameter led to a decrease in deflections of all cases and means that the increase in the
strain gradient parameter is a tightening effect inside the material. However, it is important to bear in
mind that this tightening effect will be greater in the case of a boundary with lower degrees of freedom.
As can be observed, in a nanobeam with a double-sided fixed boundary condition, the slope of the
reduction in the deflection’s results was much faster than in the case of the boundary conditions of the
double-sided hinged. It is also interesting to note that increasing the numerical value of the strain
gradient parameter will reduce the difference between the results of linear and nonlinear analyses, and
in very large values of this parameter, it can be explicitly stated that nonlinear analysis can be ignored
provided that small loads are applied.Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 22 

 

 
Figure 5. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.4 N/m, S-S). 

 
Figure 6. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.02 N/m, C-F). 

 
Figure 7. Strain gradient parameter vs. different cases of nanobeams (Ψ = 1 mA, e0a = 1 nm, p0 = 0.4 
N/m, C-C). 

0.5

0.8

1.1

1.4

1.7

2

2.3

2.6

2.9

0 0.5 1 1.5 2

w
(n

m
)

e0a (nm)

PF-NB, Linear PF-NB, Nonlinear

NB, Linear NB, Nonlinear

0.6

1.1

1.6

2.1

2.6

3.1

3.6

4.1

0 0.5 1 1.5 2

w
(n

m
)

e0a (nm)

PF-NB, Linear
PF-NB, Nonlinear
NB, Linear

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.5 1 1.5 2

w
(n

m
)

l (nm)

PF-NB, Linear

PF-NB,
Nonlinear
NB, Linear

NB, Nonlinear

Figure 5. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.4 N/m, S-S).

Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 22 

 

 
Figure 5. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.4 N/m, S-S). 

 
Figure 6. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.02 N/m, C-F). 

 
Figure 7. Strain gradient parameter vs. different cases of nanobeams (Ψ = 1 mA, e0a = 1 nm, p0 = 0.4 
N/m, C-C). 

0.5

0.8

1.1

1.4

1.7

2

2.3

2.6

2.9

0 0.5 1 1.5 2

w
(n

m
)

e0a (nm)

PF-NB, Linear PF-NB, Nonlinear

NB, Linear NB, Nonlinear

0.6

1.1

1.6

2.1

2.6

3.1

3.6

4.1

0 0.5 1 1.5 2

w
(n

m
)

e0a (nm)

PF-NB, Linear
PF-NB, Nonlinear
NB, Linear

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.5 1 1.5 2

w
(n

m
)

l (nm)

PF-NB, Linear

PF-NB,
Nonlinear
NB, Linear

NB, Nonlinear

Figure 6. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.02 N/m, C-F).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2020, 10, 1762 14 of 22

Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 22 

 

 
Figure 5. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.4 N/m, S-S). 

 
Figure 6. Nonlocal parameter vs. different cases of nanobeams (Ψ = 1 mA, l = 1 nm, p0 = 0.02 N/m, C-F). 

 
Figure 7. Strain gradient parameter vs. different cases of nanobeams (Ψ = 1 mA, e0a = 1 nm, p0 = 0.4 
N/m, C-C). 

0.5

0.8

1.1

1.4

1.7

2

2.3

2.6

2.9

0 0.5 1 1.5 2

w
(n

m
)

e0a (nm)

PF-NB, Linear PF-NB, Nonlinear

NB, Linear NB, Nonlinear

0.6

1.1

1.6

2.1

2.6

3.1

3.6

4.1

0 0.5 1 1.5 2

w
(n

m
)

e0a (nm)

PF-NB, Linear
PF-NB, Nonlinear
NB, Linear

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.5 1 1.5 2

w
(n

m
)

l (nm)

PF-NB, Linear

PF-NB,
Nonlinear
NB, Linear

NB, Nonlinear

Figure 7. Strain gradient parameter vs. different cases of nanobeams (Ψ = 1 mA, e0a = 1 nm, p0 =

0.4 N/m, C-C).
Nanomaterials 2020, 10, x FOR PEER REVIEW 15 of 22 

 

 
Figure 8. Strain gradient parameter vs. different cases of nanobeams (Ψ = 1 mA, e0a = 1 nm, p0 = 0.1 
N/m, S-S). 

4.2.3. Effect of Magnetic Field 

The effect of the external magnetic field was dominant in the mechanical analysis of materials 
with flexomagnetic capability, while the magnetic effect was inverse. For this purpose, based on 
Figures 9 and 10, the effect of increasing the magnetic potential in the positive magnetic field is 
presented in two boundary condition states. Naturally, since the ordinary nanobeam does not have 
piezomagnetic properties, increasing the magnetic potential will have no effect on this material 
model. For this reason, the deflections of NB in different values of the external magnetic potential are 
constant. However, in piezo-flexo nanobeams, with increasing external magnetic potential, the 
deflections decreased in both linear and nonlinear states in both boundary conditions. Perhaps it can 
be interpreted that the effect of the magnetic field shrinks the material, and eventually, the material 
became stiffer and in the case of contraction, most of the deflections became smaller. As can be seen, 
in the linear analysis case, the difference in results of the conventional and magnetic nanobeams was 
more visible. In fact, linear analysis showed external effects with a slight exaggeration. Another 
interesting point is that increasing the potential of external magnetic led to convergence of the results 
of linear and nonlinear analyses in the piezo-flexomagnetic nanobeam, but this convergence occurred 
faster in the boundary condition of the hinge, so much so that in small amounts of external magnetic 
potential, the results of the linear and nonlinear analyses were perfectly matched to each other. Figure 
11 is also displayed to show the impact of a negative magnetic field. The general conclusion that can 
be drawn from these three figures is that in a positive magnetic field the effect of nonlinear analysis 
decreases and in contrast in a negative magnetic field the influence of nonlinear analysis will be very 
prominent. 

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2

w
(n

m
)

l (nm)

PF-NB, Linear

PF-NB, Nonlinear

NB, Linear

NB, Nonlinear

Figure 8. Strain gradient parameter vs. different cases of nanobeams (Ψ = 1 mA, e0a = 1 nm, p0 =

0.1 N/m, S-S).

4.2.3. Effect of Magnetic Field

The effect of the external magnetic field was dominant in the mechanical analysis of materials with
flexomagnetic capability, while the magnetic effect was inverse. For this purpose, based on Figures 9
and 10, the effect of increasing the magnetic potential in the positive magnetic field is presented in
two boundary condition states. Naturally, since the ordinary nanobeam does not have piezomagnetic
properties, increasing the magnetic potential will have no effect on this material model. For this reason,
the deflections of NB in different values of the external magnetic potential are constant. However, in
piezo-flexo nanobeams, with increasing external magnetic potential, the deflections decreased in both
linear and nonlinear states in both boundary conditions. Perhaps it can be interpreted that the effect of
the magnetic field shrinks the material, and eventually, the material became stiffer and in the case of
contraction, most of the deflections became smaller. As can be seen, in the linear analysis case, the
difference in results of the conventional and magnetic nanobeams was more visible. In fact, linear
analysis showed external effects with a slight exaggeration. Another interesting point is that increasing
the potential of external magnetic led to convergence of the results of linear and nonlinear analyses in
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the piezo-flexomagnetic nanobeam, but this convergence occurred faster in the boundary condition of
the hinge, so much so that in small amounts of external magnetic potential, the results of the linear
and nonlinear analyses were perfectly matched to each other. Figure 11 is also displayed to show
the impact of a negative magnetic field. The general conclusion that can be drawn from these three
figures is that in a positive magnetic field the effect of nonlinear analysis decreases and in contrast in a
negative magnetic field the influence of nonlinear analysis will be very prominent.Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 22 
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4.2.4. Effect of Slenderness Ratio

Figures 12 and 13 are drawn by defining the ratio of length to thickness as a slenderness coefficient
in the nanobeam. The first figure is reported for the boundary condition of the two heads of fix and the
second figure is plotted for the two heads of the hinge. As can be easily seen, increasing the slenderness
ratio led to an increase in static deflections in both linear and nonlinear states. Additionally, with
increasing this coefficient of the nanobeam, the difference between the results of linear and nonlinear
analyses increased significantly. In fact, this suggests that in large quantities of length, the linear
analysis presented completely erroneous results. On the other hand, in large quantities of slenderness
coefficient, the difference between the results of the magnetic nanobeam and common nanobeam in
linear mode were greater than in the nonlinear one, which proves that in large values of length, the
linear results showed, with magnification, the mechanical behavior of the magnetic nanobeam versus
the conventional nanobeam, and it cannot be true. It should be emphasized that this difference was
much greater in the results of the hinge boundary condition even with smaller loads, than in the results
of the clamp boundary condition.
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4.2.5. Effect of FM

In this subsection, the aim is to compare the difference in results when the substance has only a
piezomagnetic effect when the flexomagnetic effect is added to it. Figure 14 shows the results of the
nanobeam with two side clamps; in Figure 15, the nanobeam with two ends of the hinge is presented;
finally, Figure 16 shows the cantilever nanobeam. First, as can be seen, the nonlinear analysis reduced
the flexomagnetic effect. This result was obtained from the difference between the results of the P-NB
and PF-NB in both nonlinear and linear analyses of the figures. On the other hand, as is clear, the results
associated with the PF-NB were smaller than those of the P-NB. This finding can be interpreted in such
a way that the flexomagnetic effect will lead to more material stiffness, and as a result, the deflections
will be smaller while considering this effect. It has to be noted that the slight difference in the results
of P-NB versus those of the PF-NB was directly related to the values of the flexomagnetic modulus.
According to the references, the value of the parameter was almost based on the assumptions, and due
to the novelty, of the discovery of the flexomagnetic effect; the exact values of this parameter have not
yet been calculated. For this reason, it is not possible to say why the difference in results between P-NB
and PF-NB was high or low. Nevertheless, such a difference was also adequately large on a nanoscale.
It should be pointed out that the FM was more remarkable in C-C end conditions. This means that the
lower degree of freedom boundary condition increased the impact of FM.

In this study, we end the discussion with Figure 17, in which different values of the flexomagnetic
parameter were investigated. To carry out this, the w * was introduced which was the deflections of the
PF-NB divided by the deflections of the P-NB. As seen, there was no appreciable change in deflections
originated from FM in lower amounts of the FM parameter. The effect of FM on the P-NB became
outstanding for large values of FM, and the assumed value f 31 = 10−10 N/Ampere can affect to some
extent the behavior of the PF-NB.
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0.5 nm, C-C).

Nanomaterials 2020, 10, x FOR PEER REVIEW 18 of 22 

 

4.2.5. Effect of FM 

In this subsection, the aim is to compare the difference in results when the substance has only a 
piezomagnetic effect when the flexomagnetic effect is added to it. Figure 14 shows the results of the 
nanobeam with two side clamps; in Figure 15, the nanobeam with two ends of the hinge is presented; 
finally, Figure 16 shows the cantilever nanobeam. First, as can be seen, the nonlinear analysis reduced 
the flexomagnetic effect. This result was obtained from the difference between the results of the P-
NB and PF-NB in both nonlinear and linear analyses of the figures. On the other hand, as is clear, the 
results associated with the PF-NB were smaller than those of the P-NB. This finding can be interpreted 
in such a way that the flexomagnetic effect will lead to more material stiffness, and as a result, the 
deflections will be smaller while considering this effect. It has to be noted that the slight difference in 
the results of P-NB versus those of the PF-NB was directly related to the values of the flexomagnetic 
modulus. According to the references, the value of the parameter was almost based on the 
assumptions, and due to the novelty, of the discovery of the flexomagnetic effect; the exact values of 
this parameter have not yet been calculated. For this reason, it is not possible to say why the difference 
in results between P-NB and PF-NB was high or low. Nevertheless, such a difference was also 
adequately large on a nanoscale. It should be pointed out that the FM was more remarkable in C-C 
end conditions. This means that the lower degree of freedom boundary condition increased the 
impact of FM. 

 
Figure 14. Transverse load vs. deflection for different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 
nm, C-C). 

 
Figure 15. Transverse load vs. deflection for different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 
nm, S-S). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

w
(n

m
)

p0(N/m)

PF-NB, Linear

PF-NB,
Nonlinear
P-NB, Linear

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

0 0.05 0.1 0.15 0.2 0.25 0.3

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-
Nonlinear
P-NB-Linear

Figure 15. Transverse load vs. deflection for different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a =

0.5 nm, S-S).
Nanomaterials 2020, 10, x FOR PEER REVIEW 19 of 22 

 

 
Figure 16. Transverse load vs. deflection for different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 
nm, C-F). 

In this study, we end the discussion with Figure 17, in which different values of the 
flexomagnetic parameter were investigated. To carry out this, the w * was introduced which was the 
deflections of the PF-NB divided by the deflections of the P-NB. As seen, there was no appreciable 
change in deflections originated from FM in lower amounts of the FM parameter. The effect of FM 
on the P-NB became outstanding for large values of FM, and the assumed value f31 = 10−10 N/Ampere 
can affect to some extent the behavior of the PF-NB. 

 
Figure 17. Presence and absence of flexomagnetic modulus for linear bending of a PF-NB (Ψ = 1 mA, 
l = 1 nm, e0a = 0.5 nm, p0 = 0.5 N/m, S-S). 

5. Conclusions 

Due to the FM influence being new and interesting, we took into account both piezomagnetic 
and flexomagnetic effects together for a reduced scale thin beam. The geometrical nonlinearity which 
induces the large deformations was also assessed. Applying the variational formulation derived the 
favourable governing equations. To capture the consistent nanoscale effect, the NSGT was inserted 
into the mathematical model. Transmuting the acquired relations based on the NSGT into the 

0

1

2

3

4

5

6

7

8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-Nonlinear

P-NB-Linear

P-NB-Nonlinear

0.998

0.999

1

1.001

0 0.005 0.01

w
*

f31(nN/A)

FM≠0

FM=0

Figure 16. Transverse load vs. deflection for different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a =

0.5 nm, C-F).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2020, 10, 1762 19 of 22

Nanomaterials 2020, 10, x FOR PEER REVIEW 19 of 22 

 

 
Figure 16. Transverse load vs. deflection for different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a = 0.5 
nm, C-F). 

In this study, we end the discussion with Figure 17, in which different values of the 
flexomagnetic parameter were investigated. To carry out this, the w * was introduced which was the 
deflections of the PF-NB divided by the deflections of the P-NB. As seen, there was no appreciable 
change in deflections originated from FM in lower amounts of the FM parameter. The effect of FM 
on the P-NB became outstanding for large values of FM, and the assumed value f31 = 10−10 N/Ampere 
can affect to some extent the behavior of the PF-NB. 

 
Figure 17. Presence and absence of flexomagnetic modulus for linear bending of a PF-NB (Ψ = 1 mA, 
l = 1 nm, e0a = 0.5 nm, p0 = 0.5 N/m, S-S). 

5. Conclusions 

Due to the FM influence being new and interesting, we took into account both piezomagnetic 
and flexomagnetic effects together for a reduced scale thin beam. The geometrical nonlinearity which 
induces the large deformations was also assessed. Applying the variational formulation derived the 
favourable governing equations. To capture the consistent nanoscale effect, the NSGT was inserted 
into the mathematical model. Transmuting the acquired relations based on the NSGT into the 

0

1

2

3

4

5

6

7

8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

w
(n

m
)

p0 (N/m)

PF-NB-Linear

PF-NB-Nonlinear

P-NB-Linear

P-NB-Nonlinear

0.998

0.999

1

1.001

0 0.005 0.01

w
*

f31(nN/A)

FM≠0

FM=0

Figure 17. Presence and absence of flexomagnetic modulus for linear bending of a PF-NB (Ψ = 1 mA,
l = 1 nm, e0a = 0.5 nm, p0 = 0.5 N/m, S-S).

5. Conclusions

Due to the FM influence being new and interesting, we took into account both piezomagnetic
and flexomagnetic effects together for a reduced scale thin beam. The geometrical nonlinearity which
induces the large deformations was also assessed. Applying the variational formulation derived the
favourable governing equations. To capture the consistent nanoscale effect, the NSGT was inserted into
the mathematical model. Transmuting the acquired relations based on the NSGT into the displacement
relationship gives an eligible equation, which stands to compute large deflections. The translation
and shifting of the nonlinear system of ordinary differential equations into the algebraic ones were
performed based on the GRWM. The GRWM concerning an analytical flow estimated clamped,
simply-supported, and free end conditions. Afterward, the numerical solution regarding NRT was
investigated. From the obtained results, one can briefly write

• In hinged–hinged nanobeams, linear deflections for a NB can be used in the range w ≤ 0.1 h, and
for a PF-NB, about w ≤ 0.08 h. This value in a double-fixed NB and PF-NB is in the range w <

0.15 h. However, for a cantilever case in NB, it is w ≤ 0.2 h and in PF-NB, it is w ≤ 0.1 h.
• The difference between the nonlinear analysis and the linear one will be more pronounced in the

boundary condition with higher degrees of freedom.
• Increasing the numerical value of the nonlocal parameter leads to a softening effect on the material,

and in contrast, increasing the numerical value of the strain gradient parameter leads to the
appearance of stiffness in the material.

• The effect of nonlinear analysis is greater in large values of nonlocal parameters and small values
of strain gradient parameters.

• The effect of nonlinear analysis on a nonlocal study is greater than a local one.
• The effect of nonlinear analysis in the positive magnetic field decreases. However, the opposite is

true in the case of a negative magnetic field.
• For nanobeams with very large lengths, linear analysis gives entirely erroneous results even if the

values of lateral loads are not large.
• The flexomagnetic effect leads to more material stiffness, and thus reduces the numerical values of

deflections in static analysis.
• The less flexible the boundary condition, the higher the flexomagneticity effect.
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