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Abstract—We consider DoA estimation in a monopulse radar
system employing a tilted rotating array. We investigate the case
of nonzero steering angles, in which case the mapping between
the target’s azimuth and elevation in the global coordinate system
and their counterparts in the array local coordinate system
becomes increasingly nonlinear and coupled. Since estimating
the azimuth using coherently integrated signals might be difficult
because of strong modulation in the difference signal induced by
the rotation of the antenna, we develop an iterative approach
that alternates between estimating the elevation using coherently
integrated signals and estimating the azimuth using unfiltered
signals. We also develop a simplified version of the scheme,
which employs only one iteration and forms the final estimates
by applying simple corrections to results of the first iteration.

Index Terms—direction of arrival, estimation, radar

I. INTRODUCTION

In applications where very high update rates are not needed,

but full azimuth coverage is required, radars employing a

rotating array are usually preferred over considerably more

costly systems that employ multiple stationary (fixed) arrays.

Owing to the progress in the active electronic scan array

(AESA) and digital beamforming (DBF) technologies, such

radars can nearly simultaneously perform multiple functions,

among others the volume and the horizon scan, tracking, or

the classification of non-cooperative targets, all within tightly

restricted time budget imposed by the rotation of the array [1].

A somewhat overlooked disadvantage of using a rotating

electronically scanned array is that accurate estimation of

target azimuth and elevation coordinates becomes more dif-

ficult than with a fixed array. This increased difficulty stems

from several reasons, which we will explain here briefly. To

detect targets, a radar emits a trail of pulses and processes

the returning echo. The processing typically includes some

form of coherent integration (Doppler filtering) whose aim

is to improve the signal to noise ration and to reject clutter.

Ideally, the signal that is integrated should be stationary, which

is difficult to satisfy with a rotating array. Consider as an

example a so-called monopulse system, which is a classical

method employed by radar engineers to solve the target angle

estimation problem [2]. In this approach, to estimate one angle

two beams, called sum and difference (or sigma and delta),

are required. The sum beam has typical beampattern with a

narrow mainlobe and a number of low sidelobes, while the

difference beam has a sharp null at the peak of the sum

beam. The rotation of the array results in modulation of the

azimuth difference signal, which might cause estimation bias

if coherent integration is employed prior to the monopulse.

In this situation one might attempt to estimate the azimuth

angle using by applying the monopulse to each echo pulse

separately and averaging the partial estimates. Such approach,

however, is well known to be considerably suboptimal due

to poor behavior of the monopulse at low signal to noise

ratios. More sophisticated approaches, that process all echo

pulses jointly, were proposed in, e.g., [3], [4]. Even though the

authors employed the maximum likelihood (ML) approach in

both cases, the schemes differ because of different assumptions

made. The scheme from [3] assumes a coherent system and

a nonfluctuating target, which leads to the so-called deter-

ministic ML estimator, while the scheme from [4] makes no

assumption on the coherence and assumes a fluctuating target,

which results in the stochastic ML estimator [5].

The second difficulty in estimating the angular coordinates

is the consequence of the electronic scan capability. Steering

a beam causes a distortion of the array beampattern that

increases with the beam steering angles. The mainlobe of

the beampattern widens, and the entire beampattern flexes

in a “banana-like” shape (see Fig. 1), which means that the

problems of estimating the azimuth and elevation coordinates

can no longer be treated as separate – for example, since the

azimuth angle of the center of the beam is a function of the

elevation, any error in estimating the elevation will affect the

azimuth as well. Note that the deformation of the beampattern

that occurs for high steering angles exacerbates when the array

is tilted backwards, which is commonly done to improve the

array coverage.

With a fixed array, these deformations are not a difficult

issue. It is well known that if a beampattern is represented

in the uv coordinates, steering has no impact on its shape,

apart from shifting the peak of the beam. One may therefore

estimate the u and v coordinates of a target separately and

convert them to the azimuth and elevation. However, when

the array rotates the u and v coordinates of the target change

continuously in a nontrivial way, and for best results one

should take this effect into account in the estimation process.

Our paper contributes in the following areas: 1. We describe

the motion of a target in the coordinate system local to the

array that is induced by the rotation of the array. 2. We propose

Postprint of: Meller M., Stawiarski K., On Radar DoA Estimation and Tilted Rotating Electronically Scanned Arrays (2020), 21st International 
Radar Symposium (IRS), 05-08.10.2020, Warsaw, Poland, DOI: 10.23919/IRS48640.2020.9253871
© 2020 IEEE. Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/9253871


Figure 1. An example of beampattern deformations that occur for high
steering angles with an array tilted backwards.

a computationally attractive estimator of azimuth and elevation

that is designed to avoid excessive performance degradation at

high steering angles. 3. We investigate the proposed method’s

performance using computer simulations.

The organization of the manuscript follows the pattern set

by its contributions. Sections II and III develop the formulas

that describe the target motion in the coordinate system local to

the array. Section IV contains the description of the proposed

approach. Section V presents results of computer simulations.

Section VI concludes.

II. DEFINITIONS OF COORDINATE SYSTEMS

Consider a planar array tilted backwards by an angle P . We

introduce two array coordinate systems, shown in Fig. 2. The

X and Z axes of the array local coordinate system (LCS) match

the array face, that is, this system neglects the tilt of the array.

The LCS represents how the array “sees” the world around

it. It is also the system that is used often by array engineers

for array design and measurements. The array global system

is obtained from the local array system by rotation about the

X axis by an angle −P .

Let us also introduce the base-frame coordinate system,

which corresponds to the East-North-Up (ENU) system of a

radar. The relation between the base frame and the array global

coordinate system corresponds to the straightforward rotation

about the Z axis by φa – see Fig. 3.

The relation between the azimuth and elevation angles

(A,E) and the Cartesian coordinates (X,Y, Z) is given by

X = R sinA cosE

Y = R cosA cosE

Z = R sinE (1)

where R denotes the range and A, E, X , Y , and Z are all

assumed to be in the same coordinate system (e.g. LCS or

Figure 2. The definition of the local and the global coordinate systems.

Figure 3. The relation between the base-frame and the array global coordinate
systems.

GCS). To obtain the uv coordinates, set

u = sinA cosE

v = sinE (2)

Then

X = Ru

Y = Rw

Z = Rv (3)

where w =
√
1− u2 − v2 = cosA cosE.

We also introduce the (α,E) coordinate system, which

is a counterpart of the uv system in which the angles are

expressed in degrees (or radians), rather than millisines, which

might be preferable when one is not used to the (u, v)
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system. The angles in the (α,E) have simple interpretation

of specifying two perpendicular cones whose intersection is

the point of interest and are related to the (u, v) coordinates

in the following way

u = sinα

v = sinE (4)

Note that, when E = 0, it holds that α = A.

III. DESCRIPTION OF THE TARGET MOTION IN THE LCS

Using (1)-(4) and the rotation matrix that transforms the

GCS to the LCS, one may obtain the transformation between

the azimuth and the elevation in the GCS (denoted AG and

EG, respectively) and their counterparts in the LCS

EL = arcsin [− cosAG cosEG sinP + sinEG cosP ]

AL = arcsin

[

sinAG
cosEG

cosEL

]

(5)

The transformation between the (AG, EG) and the (αL, EL)
coordinates can be obtained in a similar way. It reads

EL = arcsin [− cosAG cosEG sinP + sinEG cosP ]

αL = arcsin [sinAG cosEG] (6)

Finally, in Section IV we will also employ the following result:

EG = arcsin

[

sinP

√

cos2 αL − sin2 EL + cosP sinEL

]

αG = αL

AG = arcsin

[

sinαL

cosEG

]

(7)

Observe that the transformations (5)-(7) are nonlinear, and

that their nonlinearity grows with the antenna tilt and the

angles. To illustrate the importance of this fact, consider a

target whose base frame azimuth and elevation angles are AB

and EB. Suppose that the array azimuth angle is φa. The

GCS azimuth and elevation of the target are AG = AB − φa

and EG = EB. Using (5) and (6) one may obtain the LCS

coordinates of the target as functions of the φa. Fig. 4 shows

the resultant trajectories for a target at AB = 0◦, EB = 50◦,

antenna tilt P = 20◦, and φa ∈ [−60◦, 0◦]. Note that AL is

not a linear function of φa (although the difference from the

linear approximation is indeed small in the case presented)

nor it is simply equal to −φa. The pattern of LCS coordinates

suggests that the nonlinearity and the interdependence of the

transformations between LCS and GCS may complicate the

estimation of target DoA, because an estimator of azimuth

will require an estimate of target elevation and vice versa.

IV. PROPOSED APPROACH

A. Basic scheme

To be practically applicable in radar, a DoA estimator

should, among others, have modest computational complexity,

behave well at low signal to noise ratios, and exhibit good

accuracy for small and high steering angles. To satisfy these
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Figure 4. Typical behavior of LCS target coordinates as a function of antenna
rotation angle.

requirements we propose a scheme that: 1. Avoids joint

estimation of azimuth and elevation to keep its computational

complexity low. 2. Employs coherent integration or processes

entire data sequence to avoid ill behavior at low signal to

noise ratio. 3. Accounts for the intrinsic coupling between

coordinates.

Our solution that is best suited to situations where the

beamwidth in the elevation plane is several times larger than

in the azimuth plane. To illustrate, consider a planar array

built on the square grid of sources (half-wavelength element

spacing is assumed, d = λ/2). The dimensions of the array

are R = 16 elements in the vertical axis (rows) and C = 48
elements in the horizonal axis (columns). Suppose that beams

are formed by applying separate weights in the horizontal and

the vertical planes,

wH = [wH,1 . . . wH,C ]
T

wV = [wV,1 . . . wV,R]
T

,

computed as follows

wH,i = tH,ie
j 2πd

λ
c sin(φα) c = 1, 2, . . . , C

wV,i = tV,ie
j 2πd

λ
r sin(φE) r = 1, 2, . . . , R

where tH,i and tV,i are the horizontal/vertical taper functions,

respectively, and φα, φE denote the beam steering angles. The

resultant beampattern in the (αL, EL) coordinate system can

be computed from

B(αL, EL) ∝
[

wH
VaV(EL)

] [

wH
HaH(αL)

]

,

where

aH(αL) =
[

ej
2πd
λ

sin(αL) . . . ej
2πd
λ

C sin(αL)
]T

aV(EL) =
[

ej
2πd
λ

sin(EL) . . . ej
2πd
λ

R sin(EL)
]T

.
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Figure 5. Typical trajectory of target coordinates (αL, EL) during the scan
of a mainlobe over a target, plotted using the thick black line. The coordinates
in the white area do not satisfy the condition sin2 αL + sin2 EL ≤ 1.

Fig. 5 overlays the array beampattern with the trajectory of

target LCS coordinates as the mainlobe of the beam sweeps

over it due to the rotation of the array. The simulated target

was placed at the base-frame azimuth and angle AB = 0◦,

EB = 50◦. The beampattern was computed using φα = 30◦,

φE = 35◦ and the uniform taper. Finally, the array tilt

was equal to P = 20◦, and its rotation covered the angles

φa ∈ [−58◦,−45◦]. Observe that, while both αL and EL of

the target change during rotation, the change in EL is much

smaller, particularly if compared with the beamwidth in the

corresponding plane. It follows that the degree of the signal

nonstationarity is lower in the elevation plane, i.e., the use

of the coherent integration of the sum and difference signals

in this plane is more permissible than in the azimuth plane

– particularly if one divides entire pulse trail into several

shorter subtrails, which should reduce the bias of the subtrail

estimates. The use of the same approach in the α plane is more

difficult, because the subtrails should be shorter to achieve

the same level of nonstationarity, which could result in an

insufficient integration gain.

Interestingly, these factors are more pronounced at small

steering angles, because in this case EL becomes almost

constant while the beamwidth in the azimuth plane decreases

which decreases and increases the signal nonstationarity, re-

spectively. Consequently, avoiding bias in the estimation of

azimuth becomes easier at high steering angles, provided that

one can properly take into account the beampattern deforma-

tions.

We summarize our approach below:

1) Collect N observations of sum and difference signals

and divide them into K subtrails.

2) Find an initial estimate of the array azimuth that corre-

sponds to the center of the beam passing over a target.

The exact method of finding this estimate is not critical.

To demonstrate this property, we deliberately use a very

poor option of finding the array position φa,max for

which the highest magnitude of the sum was observed.

3) Compute the subtrail estimates of the elevation in LCS,

preferably using coherently integrated (Doppler filtered)

signals from each subtrail. Again, which method is used

is not particularly important. To avoid complication,

we will use the monopulse method. We denote these

estimates ÊL,1, ÊL,2, . . . , ÊL,K . Recall that these es-

timates have different expectations because of the array

rotation (c.f. Fig. 5).

4) To compensate the drift of ÊL,1, ÊL,2, . . . , ÊL,K

caused by the array rotation, one may employ the

operation

ĒL,k = ÊL,k +
∂EL

∂AG

∣

∣

∣

∣

∣

αL=φα,EL=ÊL,k

(φ̄a,k − φa,max)

(8)

where φ̄a,k is the averaged position of the array during

the k-th subtrail and the derivative should be computed

from (5)

∂EL

∂AG
=

∂

∂AG
arcsin (sinEL)

=
sinAG cosEG sinP

cosEL
=

sinαL sinP

cosEL
.

5) Compute the estimate of target elevation in the GCS ĒG

using (7), αL equal to the beam steering angle φα, and

the averaged estimate of EL

ĒL =

K
∑

k=1

wkĒL,k , (9)

where wk is a weight for the k-th subtrail that should

be proportional to the SNR in this subtrail.

6) Estimate the target azimuth in the base frame coordi-

nate system. To this end we will use the approximate

stochastic maximum likelihood estimator proposed in

[4], but application of other approaches, such as the

one proposed in [3], is also possible. The estimator

from [4] processes entire sequence of observations

y1, y2, . . . ,yN , where each observation is a M = 2
element vector that consists of a pair of the sum and

azimuth difference signals. The base-frame azimuth of

the target is estimated by maximizing

ĀB = arg max
AB

l̄(AB) , (10)

where

l̄(AB) = l(AB, σ̂
2
v(φ), σ̂

2
T(φ))

is the compressed log-likelihood, obtained from

l(φ, σ2
v , σ

2
T) = C −

[

N−1
∑

n=0

log detRn + yH
nR

−1
n yn

]

Rn = σ2
vI + σ2

T b(∆n)b
H(∆n) , (11)
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and

σ̂2
v(φ) =

∑N−1
n=0 yH

nQn(φ)yn

(M − 1)N

σ̂2
1(φ) =

∑N−1
n=0 yH

nPn(φ)yn −Nσ̂2
v(φ)

∑N−1
n=0 bH(∆n)b(∆n)

(12)

where

Pn(φ) =
b(∆n)b

H(∆n)

bH(∆n)b(∆n)
Qn(φ) = I − Pn(φ) (13)

are the noise and the signal subspace projection matrices

and b(∆n) denotes the array response at the output

of the beamformer to a wavefront impinging from the

direction (AG, EG) = (AB − φa,n, ĒG), where φa,n is

the azimuth of the array at the n-th observation . Note

that, while the array response may be stored or computed

in either GCS or LCS, in both cases the estimate ĒG,

obtained in the preceding step, will be required.

7) Replace φa,max with an improved estimate obtained

from ĀB and ĒG. To this end, compute the deflection

of the center of the beam at the elevation ĒG using the

third formula in (7) and subtract this value from AB

φa,max ← φa,max − arcsin

[

sinφα

cos ĒG

]

.

8) Repeat steps 2-6 until convergence.

B. Simplified scheme

Observe that, in the second and subsequent iterations of the

proposed scheme, one can simplify steps 3-5 quite consid-

erably. For example, step 3 does not need to be performed

because the subtrail estimates ÊL,1, ÊL,2, . . . , ÊL,K are

unchanged between iterations.

Moreover, one may expect the azimuth estimate found in

the subsequent executions of step 6 are close to the azimuth

found in the first iteration. We propose to exploit this fact

by replacing the optimization performed in the second and

subsequent iterations of step 6 with a simple iterative update

AG ← AG +
∂AG

∂EG

∣

∣

∣

∣

∣

αG=φα,EG=ĒG

∆ĒG , (14)

where ∆EG is the change of ĒG between the previous and

current iteration and [c.f. (7)]

∂AG

∂EG
=

∂

∂EG
arcsin

[

sinαL

cosEG

]

=
sinαL tanEG

√

cos2 EG − sin2 αL

.

V. RESULTS OF COMPUTER SIMULATIONS

We compared the accuracy of the proposed scheme with

three other approaches.

The first one is a straightforward monopulse that is carried

out in the LCS separately for each of the N observations.

Next, we convert such partial results to the GCS and add the

position of the array to obtain N estimates of the base-frame

azimuth and elevation. Finally, we average these estimates

with weights that are proportional to the squared magnitude

of the sum signal. One can expect this approach to work

well for high SNRs but poorly for low SNR due to the fact

that the partial estimates are worked out without any form of

integration which causes a breakdown of their accuracy.

The second estimator is, again, the monopulse method, but

this time we divide all observations into subtrails of equal

length, and coherently integrate the signals in each subtrail.

This estimator should behave better at low SNR, but might

suffer from a bias that results from the process of integration.

The third solution is a stochastic maximum likelihood

estimator that works directly in the two-dimensional space

of base-frame azimuth and elevation. We implemented this

estimator using (10)-(13), but this time the observation vector

consisted of M = 3 elements, i.e., the sum, azimuth differ-

ence, and elevation difference signals. While this estimator

can achieve very high accuracy, it has high computational

complexity caused by the need to carry out the optimization

in the two-dimensional space of parameters.

The implementation of the proposed estimator was based on

its simplified variant, because our preliminary checks showed

that the difference in accuracy from the basic version was

marginal for steering angles up to 45◦, while the computation

time – noticeably shorter. We also decided to use only two

iterations, because additional ones did not bring significant

improvement.

We simulated a radar using a planar array made of R×C =
24×64 sources on a square grid, tilted by P = 20◦ and rotated

between the angles [−1.15◦,+1.15◦]. The observations were

taken every 0.1◦, which means that N = 24. The sum and two

difference beams were formed using the uniform taper. Note

that our simulation accounted for the two-way propagation.

Fig. 6 shows the dependence of mean-squared azimuth

estimation errors of all estimators on signal to noise ratio

for a target at AB = 39◦, EB = 4◦ and beam steered (in

GCS) to 40◦ and 5◦, respectively. The results were obtained

by performing 1000 Monte Carlo simulations for each value

of SNR. Not unexpectedly, the two-dimensional stochastic

maximum likelihood method performs best across all SNRs.

The monopulse without coherent integration behaves well at

high SNR, but its performance degrades at low SNR. The

second variant of the monopulse works considerably better at

low SNR. However, as SNR grows, its performance gradually

lags behind and eventually saturates. The proposed approach

in the basic variant compares favorably with all methods,

in the sense that it shows excellent balance between the

computational complexity and the accuracy, which almost

matches the two-dimensional approach.

Fig. 7 shows analogous results for a target at AB = 29◦,

EB = 29◦ and a beam steered to 30◦ and 30◦, and Fig. 8 –

results for a target at AB = 39◦, EB = 29◦ and a beam at 40◦

and 30◦. In the first case one can make the same remarks as

in the preceding paragraph. In the second case, even though

strong broadening of the beam that results from steering in

both planes makes the advantages of the proposed approach

smaller, our scheme still exhibits top performance, particularly

at low SNR. Eventually, at very high steering angles, the beam
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Figure 6. The comparison of mean-squared estimation errors of the azimuth as
functions of signal to noise ratio for beam steered to 40◦ in GCS azimuth and
5◦ in GCS elevation. Dotted line – monopulse without coherent integration;
dash-dotted line – monopulse with coherent integration; dashed line – two-
dimensional stochastic maximum likelihood; solid line – proposed method.
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Figure 7. The comparison of mean-squared estimation errors of the azimuth as
functions of signal to noise ratio for beam steered to 30◦ in GCS azimuth and
30◦ in GCS elevation. Dotted line – monopulse without coherent integration;
dash-dotted line – monopulse with coherent integration; dashed line – two-
dimensional stochastic maximum likelihood; solid line – proposed method.

broadens in the azimuth to such degree that the bias induced by

the coherent integration becomes negligible compared to the

variance under the conditions simulated and in the meaningful

range of SNRs. One can make the bias a relevant component of

the error by increasing the antenna rotation speed or increasing

L. For example, Fig. 9 compares the accuracy of all methods

for beam pointing to 45◦ in azimuth and 65◦ in elevation,

target at AB = 43◦, EB = 63◦, antenna rotation speed increase

twice and L = 12, in which case the benefits offered by

the proposed approach are again clear. Note however, that

at high SNR there occur first signs of the method’s loss of

efficiency, which are caused by the inaccuracy of the first order

corrections in (8) and (14).

VI. CONCLUSIONS

We considered the problem of estimating azimuth and

elevation coordinates using a tilted rotating-array radar system
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Figure 8. The comparison of mean-squared estimation errors of the azimuth as
functions of signal to noise ratio for beam steered to 40◦ in GCS azimuth and
30◦ in GCS elevation. Dotted line – monopulse without coherent integration;
dash-dotted line – monopulse with coherent integration; dashed line – two-
dimensional stochastic maximum likelihood; solid line – proposed method.

10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

A
zi
m
u
th

M
S
E

[◦
2

]

Figure 9. The comparison of mean-squared estimation errors of the azimuth
as functions of signal to noise ratio for beam steered to 45◦ in GCS azimuth
and 65◦ in GCS elevation with doubled antenna rotation speed and increased
L. Dotted line – monopulse without coherent integration; dash-dotted line –
monopulse with coherent integration; dashed line – two-dimensional stochastic
maximum likelihood; solid line – proposed method.

under high steering angles. We proposed an iterative approach

that mitigates the need to estimate the two angles jointly, which

reduces computational costs considerably. The method was

compared with standard monopulse and a two-dimensional

maximum likelihood estimator, and we found that it offers

performance nearly equal to the latter.
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