
TASK QUARTERLY 14 No 3, 227–235

ON SOME EXTENSIONS

OF MURRAY’S LAW

KRZYSZTOF TESCH

Turbomachinery and Fluid Mechanics Department,

Gdansk University of Technology,

Narutowicza 11/12, 80-233 Gdansk, Poland

krzyte@pg.gda.pl

(Received 14 June 2010)

Abstract: This paper cites the original Murray’s law about optimal radii. Extensions to some

class of non-Newtonian flows that are described by the Ostwald-de Waele model and the

Newtonian flows for elliptical cross-sections. A generalisation of Murray’s law for multi-objective

formulation is also given. It is shown that the original formulation of the optimal condition is

a particular case of the multi-objective formulation.
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Notation

a, b – ellipse semi-axes,

A, B, C – constants,

f , f , fi – functions,

g – target vector,

H – Hessian,

k – consistency constant,

L – length of an artery,

n – rheological parameter, number of objective functions,

m – metabolic coefficient, space dimension,

N , Nd, Nm – total, dissipation and metabolic power,

N+ – dimensionless power,

N – vector of objective functions,

IN – natural number set,

N – natural number subset,

P – Pareto set front,

IR – real number set,

R – radius,

V – artery volume,

V̇ – volume flow rate,

wi, w ,W – weights, vector and matrix of weights,

x , xi – points (solutions),
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228 K. Tesch

γ – shear rate, second invariant,

δ – Kronecker delta,

∆p – pressure drop,

λ – weight,

µ – molecular viscosity coefficient,

Π – Pareto set,

Ω – admissible solutions set.

1. Introduction

The two Murray’s laws [1, 2] describe the pattern of large to small

or conversely small to large artery bifurcation. This is due to the optimal

configuration of arteries that allows for fastest transport with minimal work

involved. Murray’s laws are valid for the tree structure of arteries, see Figure 1.

Figure 1. Tree structure

One of Murray’s laws gives a formula for the radii, whereas the second

law specifies the angles of bifurcation. Both laws were formulated for arteries

but they are not limited to this venue. Some technical applications also exist [3].

The original Murray’s law about radii [2] was derived only for Newtonian fluids,

for circular cross-sections of arteries. Single criterion minimisation methods were

also used for the derivation. A generalisation of Murray’s law for multi-objective

formulation is given here to some non-Newtonian and Newtonian fluids within

elliptical cross-sections. It is shown that the original formulation of the optimal

condition is a particular case of multi-objective formulation.

2. Murray’s law about optimal radii

The original Murray’s reasoning [2] takes into consideration two energy

terms that contribute to maintaining the blood flow. These are the energy

necessary for overcoming the viscous drag (dissipation energy) and the metabolic

power necessary for maintaining the volume of blood within an artery. For steady

state flows it is more convenient to use dissipation power N instead of energy E.

These quantities are explicitly related as E=
∫ t

0
N dt=N t. The dissipation power

is given by Nd= V̇∆p. By means of Hagen-Poiseuille’s law [4] and the definition

of constant A := 8µLπ−1 it is possible to express this power as Nd =AV̇
2R−4.
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On Some Extensions of Murray’s Law 229

The metabolic power is expressed as Nm=mV where m is a metabolic coefficient

and volume V is given by V =πR2L. Introducing another constant B :=πLm we

can rewrite the metabolic power Nm in the following form Nm=BR
2.

The equation for Nd suggests that dissipation power Nd is related inversely,

and metabolic power Nm directly, to radius R. It suggests that there exists an

intermediate radius which minimises the total power N =Nd+Nm. This total

power may be expressed as N =AV̇ 2R−4+BR2. For a given V̇ the total power N

is a function of R. The stationary point can be found from the conditionN ′(R)= 0

which gives R= V̇ 1/3C−1/3 or

V̇ =CR3 (1)

where constant C is combined of A and B as C := 2−1/2A−1/2B1/2. The sign of

the second derivative is N ′′(V̇ 1/3C−1/3)= 12B≥ 0. This is because A and B are

positive. The solution (1) represents a constant relation between the volumetric

flow rate and the radius in every cross-section of an artery. This is also a condition

for minimal energy requirement.

The mass conservation equation gives us information that the flow rate

before any bifurcation equals the sum of individual flow rates after that bifur-

cation V̇0 =
∑

i V̇i =CR
3
0. This is true for incompressible and steady state flows.

Equation (1) allows us to write
∑

i V̇i=C
∑

iR
3
i . This is true because before and

after bifurcation we deal with the same fluid which means that we have the same

constant C. The above two equations give us Murray’s law which states that the

cube of the radius of the parent artery equals the sum of the cubes of the radii of

the daughter arteries. This is written as:

R30=
∑

i

R3i (2)

In the case of bifurcation this simplifies to R30=R
3
1+R

3
2. It is the most widespread

form of Murray’s law and it is known that a large part of the branching of the

mammalian circulatory and respiratory systems obeys it [3]. Some experimental

comparisons are given [3, 5].

Assuming that Murray’s law is valid it is possible to evaluate the metabolic

coefficientm. Using the definitions of A, B and C one can show that this coefficient

may be written as m= 16π−2µC2. Since Equation (1) is valid for every branch

it allows us to determine the value of constant C. Eventually, the metabolic

coefficient is given by means of the following equation:

m=
16µV̇ 2

π2R6
(3)

3. Non-Newtonian flow

3.1. The Ostwald-de Waele model

In the Ostwald-de Waele model (power law) [6] molecular viscosity is

a function of shear rate γ. For simple shear flows it is:

µ= k|γ|n−1 (4)
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230 K. Tesch

For three dimensional flows γ is related to the second invariant of strain rate

tensor [7]. The mechanical constitutive equation that expresses viscosity as

a function of γ belongs to the generalised Newtonian constitutive equation. In

spite of the name these flows are non-Newtonian. The greater the dimensionless

rheological parameter, n, present in Equation (4), the greater the non-Newtonian

flow behaviour. The greater the consistency index, k, the more viscous the flow is.

For n := 1 and k≡µ we have Newtonian viscosity. Equation (4) makes it possible

to model the shear-thinning behaviour (n< 1) and shear-thickening (n> 1). The

Ostwald-de Waele model is the simplest non-Newtonian model and due to this is

very useful as well as capable of blood flow approximation. The volume flow rate

for cylindrical cross-sections may be calculated as:

V̇ =
nπR3+

1
n

1+3n

(

∆p

2kL

)
1
n

(5)

and is a generalisation of Hagen-Poiseuille’s law for the Ostwald-de Waele’s model.

3.2. Murray’s law form

Following the same logic as in paragraph 2 it may be shown that for the non-

Newtonian case described by the Ostwald-de Waele model we obtain exactly the

same form of Murray’s law. It is enough to take advantage of formulae Nd= V̇∆p

and (5). The dissipation power takes the form:

Nd=2kL

(

1+3n

nπ

)n
V̇ n+1

R3n+1
=A
V̇ n+1

R3n+1
(6)

A new definition of constant A follows from the above equation. The

metabolic power remains the same as previously. The necessary condition for

the extreme gives us:

V̇ =

(

2B

(3n+1)A

)
1
n+1

R3=CR3 (7)

The form of this equation is identical as previously for the Newtonian

case (1). The only difference is the definition of the constant C. For n = 1

everything is reduced to the Newtonian case.

4. Flows in elliptical channels

4.1. Solution for elliptical cross-section

It can be shown that in generalised cylindrical coordinates it is not possible

to integrate the differential equations of the motion. This case differs from the

cylindrical one. However, this difficulty can be overcome by approximate methods.

The Ritz method [4] is one of the possibilities. It even gives an exact solution for

the case of an elliptical cross-section. Taking advantage of such a solution for

velocity field [4] it is possible to determine the volumetric flow rate in the form:

V̇ =
∆pa3b3π

4µL(a2+b2)
(8)

For a= b=R Equation (8) simplifies to the cylindrical case.
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On Some Extensions of Murray’s Law 231

4.2. Murray’s law form

Murray’s law preserves its validity for elliptical cross-sections. If we take

Nd= V̇∆p and Equation (8) the dissipation power yields:

Nd= V̇
2A
a2+b2

a3b3
(9)

where constant A equals A := 4µLπ−1. Metabolic power Nm = mπabL = Bab

remains intact. The total power N =Nd+Nm depends on the two variables, a

and b. The stationary point may be found as a solution of the two equations,
∂N
∂a =0 and

∂N
∂b =0. It follows that a= b=R= V̇

1/3(2A/B)1/6. This means that

the ellipse should take the form of a cylinder to minimise the total power. The

first sufficient condition requires the Hessian:

H(a,b)=

∣

∣

∣

∣

∣

∂2N
∂a2

∂2N
∂a∂b

∂2N
∂a∂b

∂2N
∂b2

∣

∣

∣

∣

∣

(10)

to be positive. This condition is satisfied. This is becauseH(R,R)= 33B2> 0. The

second sufficient condition (for minimum) is also satisfied ∂
2

∂a2N(R,R) = 7B > 0.

Finally, we have the well known formula V̇ = CR3 where C is of similar form

as previously C := 2−1/2A−1/2B1/2. The only difference is the definition of the

constant A.

5. Multi-objective description of Murray’s law

Since the Murray reasoning takes into consideration two powers (objective

functions) it is then a natural multi-objective optimisation problem. A whole set

of optimal solutions known as the Pareto set is obtained as a solution of such

a problem. There is also a number of scalarisation methods of the multi-objective

problem. They are very useful because they allow obtaining a Pareto set by means

of single objective optimisation methods. The problem considered by Murray (sum

of two powers) is just one particular scalarisation method.

5.1. Basic information

Vector f of n scalar functions fi is denoted as f := (f1, .. . ,fn). If a point

(solution) x inm-dimensional space IRm is denoted by x := (x1,. . .,xm) then the n-

dimensional objective fitness function value is f (x ) := (f1(x ),. . .,fn(x )). From this

it follows that the function f maps from m- to n-dimensional space f : IRm→ IRn.

Individual fitness functions fi, being components of f , map fi : IR
m→ IR. Let us

also introduce a subset N of a set of natural numbers N := {1, . .. ,n}⊆ IN of n

numbers.

Domination is a key concept for multi-objective optimisation. In the case of

minimisation of function f it is assumed that point x1 dominates over point (or

solution) x2 if ∀i∈N fi(x1)≤ fi(x2)∧∃i∈N fi(x1)<fi(x2) where x1,x2 ∈Ω⊆ IR
m.

Here the set of all admissible solutions is denoted as Ω. When we deal with

a maximisation of function f then one has to exchange relations ≤ and < in

the above definition with ≥ and >, respectively. We can say, by contradiction
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232 K. Tesch

of definition, that x1 does not dominate (for minimisation) over x2 (or x2 is not

dominated by x1) if ∃i∈N fi(x1)>fi(x2)∨∀i∈N fi(x1)≥ fi(x2). Hence, the Pareto

set Π of the solution is a set of those points which are not dominated by others

from the set of admissible solutions Ω. This can be denoted as:

Π :=

{

xj ∈Ω : ∀
x∈Ω

(

∃
i∈N

fi(x )>fi(xj) ∨ ∀
i∈N

fi(x )≥ fi(xj)
)

}

(11)

A more detailed discussion on the multi-objective optimisation is given in [8].

5.2. Typical scalarisation methods

Multi-objective optimisation gives a whole set of optimal solutions whereas

a single value of power is needed. There is a need for choosing one solution from

the Ω set. There are two ways. One can choose this solution directly from the Ω

when the multi-objective optimisation is finished or to solve a single objective

optimisation problem from the beginning instead. The latter needs scalarisation

vector f : IRm→ IRn to single f : IRm→ IR.

The most popular method is the weighted-sum method. The n-dimensional

vector of weights w := (w1,. . .,wn) is composed of individual weights wi ∈ [0,1]

which can be optionally selected, provided that
∑n
i=1wi = 1. The values of

individual weights represent the importance of a given function fi. Function f

is obtained from f by the dot product of function f and vector of weights w

in the form of f(x ) := w · f (x ) =
∑n
i=1wifi(x ). A proper selection of weights

produces convergence for individual elements of the Pareto set.

Apart from the weighted-sum method there is also target vector g . This

method reduces the function f to f by means of f(x ) := ‖(f (x )−g) ·W−1‖α.

Symbol W represents a matrix of weights and it is usually the diagonal of size

n×n. Vector g represents imaginary optimal values to which an algorithms tries

to converge. For the target vector method the norm ‖ · ‖α is replaced by the

generalised Euclidean norm in the form ‖a‖α := (
∑n
i=1 |ai|

α)1/α. Usually α := 2

andW := δ where δ represents the Kronecker delta.

5.3. Murray’s law form

A simultaneous optimisation of two powers (objective functions) in the

form N := (Nd,Nm) results in a non-dominated set of solutions (Pareto set). It is

possible to obtain an analytical solution describing the so called Pareto front P .

Taking advantage of the weighted-sum method we can obtain a parametric

representation of the solution where λ is a parameter. The scalarised form

of the objective function is obtained as N := w ·N and takes the shape of

N := λNd+(1−λ)Nm. The necessary condition for extreme N
′(R) = 0 gives us

a formula which is analogous to (1):

V̇ =
(

λ−1−1
)

CR3 (12)

According to Murray the dissipation power, Nd, and the metabolic power,

Nm, have identical contribution in the total power, N . This corresponds to
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On Some Extensions of Murray’s Law 233

a situation where the weight in Equation (12) equals λ = 2−1. In the multi-

objective description it means that both powers are equally important. However,

it follows from Equation (12) that it does not have to be so. If we incorporate

Equation (12) into mass conservation equation V̇0 =
∑

i V̇i we obtain the well

known form of Murray’s law (2). This means that one of the powers can have

a larger share than the other. A ‘share’ means weights λ and 1−λ for any λ∈]0;1[.

The above reasoning generalises Murray’s law.

Radius Rmay be found from Equation (12) and incorporated into equations

Nd = AV̇
2R−4 i Nm = BR

2. Rearranging and introducing the dimensionless

powers N+d , N
+
m we have:

N+d :=
Nd

(AB2V̇ 2)
1
3

=2−
2
3

(

λ−1−1
)
4
3 (13a)

N+m :=
Nm

(AB2V̇ 2)
1
3

=2
1
3

(

λ−1−1
)−

2
3 (13b)

The Pareto front P takes the following form:

P =

{

(N+d ,N
+
m) :N

+

d := 2
−
2
3

(

λ−1−1
)
4
3 ,

N+m := 2
1
3

(

λ−1−1
)−

2
3

} (14)

A formal definition of the Pareto front is that it is a set of points with coordinates

corresponding to Pareto set elements. It is written as P := {f (x ) : x ∈Π}. The

Pareto front is shown in Figure 2. The point with weight λ=2−1 is marked.

Figure 2. The Pareto front P
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234 K. Tesch

Instead of choosing a solution that treats both powers as equally important

(λ=2−1) it is also possible to apply the target vector method. The target vector

is chosen as an imaginary optimum. A natural choice for this optimum is such

a vector for which both powers equal zero. This is really an imaginary vector

because the dissipation power for viscous flows does not equal zero [4]. However,

it is assumed that the target vector g =(0,0). The vector is localised in the centre

of the coordinate system in Figure 2. According to discussion in paragraph 5.2 the

scalarisation N to N is done by means of norm N := ‖N −g‖2 becauseW := δ.

The norm ‖·‖2 is just Euclidian norm N =(N
2
d +N

2
m)
1/2. It is assumed that the

target vector g = 0 simplifies also the calculations. The necessary condition for

extreme N ′(R)= 0 gives a similar equation to (12):

V̇ =2
1
4CR3 (15)

The weight of this solution equals λ≈ 0.457 and is shown in Figure 2. What is

interesting, the point (N+d ,N
+
m) for this weight is not placed closer to the target

vector (0,0). This is because the Pareto front converges ‘faster’ to its own vertical

asymptote rather than to the horizontal one. It is well visible in Figure 2. Again,

using the formula (15) and the mass conservation equation, it is possible to show

that Murray’s law takes the standard form (2). What is more, one can observe

that the solution (15) obtained by means of the target-vector method is another

particular case of that obtained by means of weighted sum method (12). The same

concerns the original Murray’s solution for which λ=2−1.

6. Conclusions

Murray’s law for artery radii is valid for non-Newtonian fluids described

by means of the Ostwald-de Waele model. For the case of elliptical cross-sections

the minimal total power is obtained for the cylindrical shape. The multi-objective

formulation of Murray’s law makes it possible to generalise it. It is not necessary

for both powers to be equally important. Other cases are possible in the sense

of weights. The original minimal energy requirement condition V̇ = CR3 is

a particular case where the weight λ=2−1. Another particular case comes from

the target-vector method where λ=21/4. This method, however, does not assume

that both powers are equally important. It converges to the imaginary optimum

instead.

Further simplifications allow achieving interesting estimates by means of

Murray’s law. For the case of symmetrical bifurcations (R1 =R2) Murray’s law

simplifies to R0/R1=2
1/3. For the subsequent bifurcation we have R1/R2=2

1/3.

Generally speaking, R0/Rm = 2
m/3. This allows finding the bifurcation number

m as a function of the radii ratio of the first and last artery:

m=
ln R0Rn
ln2

1
3

(16)

Knowing the aorta and capillary ratio (e.g. R0/Rm = 1500) it is possible to

estimate the optimal number of bifurcations from the aorta to capillaries which
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On Some Extensions of Murray’s Law 235

is about 31. By means of the same assumptions we can estimate that there are

a few billion of capillaries (2m). Actually, there are more. This is because we

have a branching which varies from symmetric bifurcation. Additionally, below

a certain dimension or radii the tree structure becomes a network structure [5].

References

[1] Murray C D 1926 J. Gen. Physiol. 9 835

[2] Murray C D 1926 The Physiological Principle of Minimum Work. I. The Vascular System

and the Cost of Blood Volume, Proc. Nat. Acad. Sci., USA, 12

[3] Sherman T F 1981 J. Gen. Physiol. 78 431

[4] Tesch K 2008 Fluid Mechanics, Gdansk University of Technology Publishing, Gdansk,

Poland (in Polish)

[5] Cieślicki K 2001 Hydrodynamic Context of Brain Circulation, Academic Publishing

House EXIT, Warsaw, Poland (in Polish)
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