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Abstract

This dissertation is focused on analysis of the symmetric extendibility of quantum states
and its applications in the quantum information theory, with special attention paid to the
area of quantum entanglement distillation, quantum channels theory, quantum security, and
monogamy of quantum entanglement in time.

We analyze geometry of the set of symmetric extendible states, i.e. such states that
possess symmetric extensions and in particular, prove that the set is closed under action of
the 1-LOCC operators which is of a great importance for further applications in one-way
distillability of quantum states and quantum channels theory.

Basing on the Choi-Jamiolkowski isomorphism between quantum states and quantum
channels, we derive a simple test for the quantum channel capacity. We discuss also
monogamy of quantum entanglement and its relations with Bell theorem, and the sym-
metric extendibility.

Further, the subject of our analysis is also the theory of quantum entanglement mea-
sures and their relation to the symmetric extendibility. A new entanglement monotone and
parameter are introduced basing on this concept, which are applied as new upper bounds
on distillable entanglement. We introduce the concept of reduced variants of the quan-
tum communication rates, showing that they can efficiently estimate non-reduced quantum
measures.

Finally, it is derived that in the paradigm of the entangled consistent histories, introducing
the concept of quantum entanglement in time, a particular history is monogamous and we
can derive the Tsirelson bound on the Leggett-Garg temporal inequalities.

The results presented in this PhD thesis show importance of the concept of the symmetric
extendibility for further development of quantum information theory, especially in domain of
one-way communication.
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Chapter 1

Introduction

The main objective of this PhD thesis is to analyze the concept of symmetric extendibility
of quantum states, i.e. states having the so-called symmetric extensions, and applications
of this property to the quantum information theory, with a particular attention paid to the
area of quantum entanglement distillation, quantum channels theory, quantum privacy, and
monogamy of quantum entanglement in time. Due to a strong relation between monogamy
of quantum entanglement and the symmetric extendibility of quantum states, we discuss
separability of quantum states in a context of symmetric extendibility. As a natural conse-
quence of this analysis, we analyze the Bell inequalities for quantum states having symmetric
extensions and structure of the set of symmetric extendible states.

Further, the subject of analysis is also the theory of quantum entanglement measures and
their relation to the symmetric extendibility. New entanglement monotones and parameters
are introduced basing on this concept, which are applied as new upper bounds on distillable
entanglement. Due to the Choi-Jamiolkowski isomorphism between states and quantum
channels, the symmetric extendibility is also a substantial concept for the theory of quantum
channel capacities in domain which is a matter of research of this thesis. We discuss also the
new concept of quantum entanglement in time and initiate analysis of its monogamy on the
ground of the consistent entangled histories, in similarity to the concept of monogamy of
spatial quantum entanglement directly related to symmetric extendibility. Since it is a newly
emerging discipline in quantum information theory, many fundamental tools, widely used for
spatial correlations, have to be further developed for temporal correlations in future research.
The outline of this thesis is as follows:

In chapter 2, we introduce the fundamental concepts and tools of quantum information
theory which are necessary for understanding the following chapters. A special focus is put
on the theory of quantum channels and quantum entanglement.
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2

Chapter 3 is devoted to the concept of monogamy of quantum entanglement and the fa-
mous Bell theorem. We recall the key assumptions behind local realism and Bell inequalities.
Further, the relations between symmetric extendibility of quantum states and violation of
Bell inequalities is explored.

In chapter 4, we discuss in depth the symmetric extendible states analyzing geometry
of the set consisting of quantum symmetric extendible states. In particular, we prove that
one cannot reduce maximal extendibility of quantum states even if acts with one-way LOCC
operations on multiple copies of the state [126, 128] which is now broadly used in the
literature [123, 124, 122, 112, 121]. Composite systems and their symmetric extendibility is
discussed with a general representation of the composite extensions [128]. We present also
the separability test hierarchy based on the symmetric extendibility of quantum states.

In chapter 5, we present analytically derived symmetric extensions of isotropic states
[126]. This result is important due to the fact that all bipartite quantum states can be
transformed under U ⊗U∗-twirling operations into isotropic states. Basing on that, we
propose a new entanglement parameter [126] built on a normalized relative entropy distance
to the set of symmetric extendible states in analogy to the relative entropy of entanglement.
We recall also the conditions for symmetric extendibility of two-qubit states and present the
regions for Bell diagonal states.

Chapter 6 is focused on applications of symmetric extendibility concept to distillation
of quantum entanglement and entanglement measures. We recall the fundamental concepts
of quantum entanglement distillation protocols and entanglement measures. We present the
concept of best symmetric extendible approximation and a new entanglement monotone
[128]. We introduce the reduced version of one-way distillable entanglement [127] and
prove that it is an upper bound on one-way distillable entanglement. It is also proved that
asymptotically regularized new entanglement parameter [126] is a good upper bound on
one-way distillable entanglement.

The subject of chapter 7 is the concept of quantum channels and its symmetric ex-
tendibility. We recall classical and quantum channel capacities measures and discuss their
additivity. We present a simple test for quantum channel capacities [126] which is based on
the observation that quantum entanglement is monogamous and prevents parties from perfect
cloning of quantum states, thus, imposing on quantum channels, isomorphic (by means of
Choi-Jamiolkowski isomorphism) with symmetric extendible states, zero quantum capacity.
We present new reduced variant of quantum channel capacity [127] which in some cases
can dramatically reduce complexity of analysis of the search problem for quantum channel
capacities and which is a new upper bound on quantum channel capacity. Finally, we discuss
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3

the subject of super-activation of quantum channel capacities with symmetric extendible
channels.

In chapter 8 we discussed shareability of quantum private correlations. We recall the
concept of a quantum secret key and quantum private states. We introduce a reduced secret
key [127] and show that it can be used as an upper bound on the secret key rate of quantum
protocols. We present also some new lemmas bounding the one-way secret key rate in terms
of a distance to the set of symmetric extendible states [128].

Chapter 9 is devoted to the new emerging discipline focused on analysis of quantum
correlations in time. The issue of quantum entanglement in time [129, 130] is discussed
on the ground of the entangled consistent histories [40–42], a recently extended version of
the consistent (decoherent) histories theory [77–80, 85–87]. It is argued that in similarity
to quantum entanglement in space, temporal quantum entanglement as a new concept is
also monogamous for a particular history [129, 130]. Further, basing on the concept of
entangled histories we prove analytically the Tsirelson bound [38] on temporal CHSH-
like [39] inequalities which confirms the previous results based on convex optimization of
correlator spaces for correlations between the consecutive measurements [71].

In chapter 10, we summarize the key results of this PhD Thesis and elaborate on further
interesting open research problems and future research directions in this area.

List of publications:

1. M. L. Nowakowski, P. Horodecki, A simple test for quantum channel capacity, J.
Phys. A: Math. Theor. 42, 135306 (2009).

2. M. L. Nowakowski, P. Horodecki, Efficient bounds on quantum communication rates
via their reduced variants, Phys. Rev. A 82, 042342 (2010).

3. M. Nowakowski, The symmetric extendibility of quantum states, J. Phys. A: Math.
Theor. 49, 385301 (2016).

4. M. Nowakowski, Monogamy of quantum entanglement in time, Preprint quant-ph/1604.03976
(submitted to Phys. Rev. A).

5. M. Nowakowski, Quantum entanglement in time, American Institute of Phys. Conf.
Proc.: Quantum Retrocausation III (2016).D
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Chapter 2

Foundations of quantum information
theory

In this chapter we study the fundamental concepts related to quantum states and operations on
them which form a language of quantum information theory and will be a necessary tool for
understanding following chapters. Our present discussion will allow us to face more complex
matters related to symmetric extendibility of quantum states and quantum channels through
which they or their parts are sent. More extensive considerations on quantum information
theory foundations can be found in [3, 28, 13, 76, 125, 143].

2.1 Quantum states

In classical information theory, a source generates a binary state element represented by 0 or
1 in a binary space and in general, the classical source generates objects over a finite discrete
alphabet. In the world of quantum mechanics, a state |Ψ⟩ of a physical object A can be a
convex linear combination over basis vectors corresponding to a complex Hilbert space H

in which the state of the physical object lives1, i.e. |Ψ⟩ ∈ H . This fact is formulated in
the following postulate of quantum mechanics: The state of an isolated physical system is
represented by the normalized state vector |Ψ⟩ in the Hilbert space H and ∥|Ψ⟩∥= 1. The
system is then in a so-called pure state.

We will use further Dirac notation for representation of normalized quantum states
|Ψ⟩ ∈ H (’kets’). As an example, one can represent the basis vectors of two-dimensional

Hilbert space H = C∈ as follows:|0⟩=

(
1
0

)
, |1⟩=

(
0
1

)
. There always exists a dual space

1We will consider states living in Hilbert spaces of finite dimension: dimH < ∞.
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2.1 Quantum states 5

H ∗ associated with H , which is a set of all linear functionals on H . This represents the
corresponding relation:

H ∋ |Ψ⟩ −→ ⟨Ψ| ∈ H ∗ (2.1)

Each ket |Ψ⟩ ∈ H can be now associated with a Hermitian conjugation ⟨Ψ| ∈ H ∗ (called
’bra’) and the scalar product between the vectors is a ’bra-ket’:

H ×H ∋ (|φ⟩, |ψ⟩)−→ ⟨φ |ψ⟩ ∈ C (2.2)

Let us now remind properties of the inner product in Hilbert spaces:

⟨φ |φ⟩ ≥ 0, (2.3)

⟨ψ|φ⟩= ⟨φ |ψ⟩∗, (2.4)

⟨ψ1 +ψ2|φ⟩= ⟨ψ1|φ⟩+ ⟨ψ2|φ⟩, (2.5)

⟨αφ |ψ⟩= α
∗⟨φ |ψ⟩, α ∈ C, (2.6)

(⟨φ |φ⟩= 0)⇔ (|φ⟩= 0). (2.7)

The inner product generates a natural norm ∥|Ψ⟩∥ =
√

⟨Ψ|Ψ⟩ which induces the metric:
Dist(|Ψ⟩, |Φ⟩) = ∥|Ψ⟩− |Φ⟩∥=

√
⟨Ψ−Φ|Ψ−Φ⟩.

A state of the physical object can be represented by the pure state only if the observer
can possess maximal information about the object. Otherwise, the object is correlated with
the environment, i.e. it is correlated classically or quantum entangled with the environment
(quantum entanglement will be presented in the following sections) and then, there does
not exist a local observer measuring the state of the object that could possess a complete
knowledge about the state of the object. It should be emphasized that in the latter case lack
of full information about the object is not due to uncertainty in the classical sense, but is
a result of the inability of full description of the object correlated with other objects. The
object is then in a mixed state ρ ∈ B(H ). The set of quantum states is a subset of the
operator algebra B(H ) acting on a Hilbert space H , and the elements of the the set are
called density matrices.

Definition 2.1.1 The Banach algebra B(H ) will denote a Banach algebra of bounded
linear operators Λ on a complex Hilbert space H with a norm:

∥Λ∥= sup{∥Λx∥ : x ∈ H , ∥x∥ ≤ ∞}. (2.8)
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2.1 Quantum states 6

The boundedness of a linear operator Λ represents a fact that it maps bounded subsets in H

into bounded subsets in H which is a substantial property for physical quantities that can be
a subject of measurements as we will show further.

It can be shown (a proof in e.g. [19]) that an algebra B(H ) is endowed in involution
Λ → Λ∗ where exists the only one element Λ∗ ∈ B(H ) so that:

∀x,y∈B(H ) (Λx,y) = (x,Λ∗y), (2.9)

∥ Λ ∥=∥ Λ
∗ ∥ . (2.10)

It is worth mentioning that the B(H ) is also a C∗-algebra which is implied by the aforemen-
tioned properties. We remind now definitions of operator classes important for applications
in quantum information theory and quantum mechanics:

Definition 2.1.2 An operator Λ ∈ B(H ) is:

Hermitian i f Λ = Λ
∗, (2.11)

unitary i f ΛΛ
∗ = Λ

∗
Λ = I where I denotes identity in B(H ), (2.12)

a pro jector i f Λ
2 = Λ. (2.13)

Further, one introduce the scalar product for these operators:

∀A,B∈B(H )(A,B) = Tr(A†B), (2.14)

where Tr(·) denotes the trace operation on the operator. Having defined such a product, we
can derive a norm in the algebra:

∀A∈B(H ) ∥ A ∥=
√

(A,A). (2.15)

The set of such operators endowed with the aforementioned scalar product and norm is a
special case of a Hilbert space, and is called a Hilbert-Schmidt space. Thus, whenever we use
the notation ρ ∈ B(H ) in this thesis, we consider a quantum state from a Hilbert-Schmidt
space.

Assume that the system is in one of the states |ψi⟩ (i indexes the potential physical states)
with probability pi, the set {pi, |ψi⟩} is called an ensemble of pure states and a density matrix
of such a setup is:

ρ = ∑
i

pi|ψi⟩⟨ψi|, (2.16)
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2.1 Quantum states 7

where ∑i pi = 1. Now, we can pose a question: when does an operator ρ ∈ B(H ) is
a density matrix representing a physical state? The answer comes from the following
well-known theorem:

Theorem 2.1.3 An operator ρ is a density matrix associated with {pi, |ψi⟩} if and only if
the conditions hold:

(1) Tr(ρ) = 1.

(2) ρ ≥ 0, i.e. ∀|ψ⟩∈H ⟨ψ|ρ|ψ⟩ ≥ 0.

It is worth mentioning that pure states |Ψ⟩ ∈ H can be associated with density matrix
ρ = |Ψ⟩⟨Ψ| which is a projector on one-dimensional subspace H|ψ⟩ = span{|ψ⟩} since:

ρ
2 = |ψ⟩⟨ψ||ψ⟩⟨ψ|= |ψ⟩⟨ψ|= ρ. (2.17)

This leads to the assumption that one can easily explore the degree of purity of the state
ρ engaging this observation. The following lemma gives a quick test of purity of a quantum
state ρ:

Lemma 2.1.4 Let ρ ∈ B(H ) be a density matrix then Tr(ρ2)≤ 1 and Tr(ρ2) = 1 only if
ρ is a pure state.

The state ρ ∈ B(Cn) is called a maximally mixed state if it has a form: ρ = 1
n I, with the

identity operator I = ∑i |i⟩⟨i| and a standard orthonormal basis {|i⟩} where ⟨i| j⟩= δi j.
Since any convex combination of two states of the system ρX ∈ B(H ) and ρY ∈ B(H )

is again a proper normalized quantum state, i.e. (1−α)ρX +αρX ∈ B(H )(0 ≤ α ≤ 1), the
set S ∋ ρ of all possible states of the system is a convex set. Thus, a geometrical analysis
of sets of quantum states comes down to studying geometry of convex sets to a great extent
[13]. Further, all extreme points 2 of the set S are one-dimensional projectors of the form
P = |φ⟩⟨φ |.

Example 2.1.5 We will consider now a two-dimensional quantum system - a qubit which
state can be represented by a 2×2 positive Hermitian matrix. It should be noted that the
Pauli matrices (generators of SU(2) group) create a complete orthogonal basis for all density
matrices ρ ∈ B(C2) representing a qubit state:

σ0 = I2 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.18)

2An extreme point of a convex set cannot be represented as a non-trivial convex combination of other
extreme points, i.e. so that 0 < α < 1.
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2.2 Composite systems 8

with an inner product meeting the condition ∀i, j Trσiσ j = 2δi j where δi j stands for the
Kronecker delta. Then, the qubit density matrix can be represented as follows:

ρ =
1
2
(I2 +

3

∑
i=1

xiσi) =
1
2
(I2 + x⃗ · σ⃗), (2.19)

xi = Tr(σiρ) ∈ R (2.20)

where x⃗ · σ⃗ is a scalar product and x⃗ = col(x1,x2,x3) is called a Bloch vector. The matrix
ρ represents a state of a physical system if besides being Hermitian, satisfies the positivity
condition which occurs when the vector indicates a point inside the unit sphere (it represents
a pure state if the Bloch vector is a unit vector).

2.2 Composite systems

A pure state of a composite system A1A2 . . .An is represented by a state vector in a tensor
Hilbert space, i.e. |Ψ⟩ ∈ HA1 ⊗HA2 · · ·⊗HAn .

Let us consider a bipartite system AB. If a state of A is characterized by a vector
|Φ⟩A = ∑i αi|φ⟩i ∈ HA and |Ψ⟩B = ∑i βi|ψ⟩i ∈ HB for B subsystem, then the tensor product
is defined as follows:

|Φ⟩A ⊗|Φ⟩B = ∑
i j

αiβ j|φi⟩⊗ |ψ j⟩ (2.21)

If the basis in HA is BA = {|0⟩, |1⟩, . . . , |i⟩} and for HB is BB = {|0⟩, |1⟩, . . . , | j⟩}, then
HA ⊗HB is spanned by the basis BAB = {|0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, . . . , |i⟩ ⊗ | j⟩}. It implies:
dimHA ⊗HB = dimHA ·dimHB. In many cases, the tensor sign will be omitted and the
element |i⟩⊗ | j⟩ will be replaced by |i j⟩. As a consequence, the scalar product of tensor
vectors is:

⟨φ1|⊗ ⟨φ2||ψ1⟩⊗ |ψ2⟩= ⟨φ1|ψ1⟩⟨φ2|ψ2⟩ (2.22)

A local state of a subsystem A, that is a part of a larger system AB, is determined by
the reduced matrix: e.g. when the state of the bipartite system is represented by the density
matrix ρAB ∈ B(HA ⊗HB), then a state of the A-subsystem is represented by the reduced
density matrix ρA ∈ B(HA). This means that Alice possessing A system does not have any
complete knowledge about the global state ρAB. The matrix of the reduced system is defined
by means of the partial trace operator [19–21]:

Definition 2.2.1 Let ρAB ∈ B(HA ⊗HB) be a state of bipartite system AB, then the state
of A-subsystem is represented by the reduced matrix ρA = TrBρAB which elements are
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2.2 Composite systems 9

determined by the partial trace operation:

ρA(i, j) =
dimHB

∑
k

⟨i|A⟨k|BρAB| j⟩A|k⟩B, (2.23)

where vectors |·⟩A (and |·⟩B) form an orthonormal basis in HA (and HB).

For a system consisting of n subsystems A1A2..An, we can generalize the above definitions
distinguishing between two subsets A≡A1 . . .Ak and B≡Ak+1 . . .An (1≤ k ≤ n−1) applying
the same procedure of deriving the reduced states. As an example, let us consider the state
ρAB acting on HA ⊗HB where HA ∼= C3 and HB

∼= CN :

ρAB =
3

∑
i, j

|i⟩A⟨ j|⊗Ai j =

A00 A01 A02

A†
01 A11 A12

A†
02 A†

12 A22

 (2.24)

where Ai j is a matrix of dimension N ×N and for the Hermiticity of ρAB, Ai j = A†
ji. The

the reduced states of A and B are:

ρAB =
3

∑
i, j

|i⟩A⟨ j|⊗Ai j ⇒

{
ρA = TrBρAB = ∑

3
i, j Tr(Ai j)|i⟩A⟨ j|

ρB = TrAρAB = ∑
3
i Aii

(2.25)

Extensions and purifications of quantum states

We will now consider extensions of a quantum state ρAB and its special case - purification:

Definition 2.2.2 An extension of a bipartite state ρAB ∈ B(HA ⊗HB) to E-system is any
such a state ρAB ∈ B(HA ⊗HB ⊗HE) so that TrEρABE = ρAB. A pure extension |ΨABE⟩ ∈
HA ⊗HB ⊗HE of a state ρAB is called its purification.

In general, for any ρA ∈ B(HA) we can always find its purification as an extension |ΨAB⟩ ∈
HA ⊗HB so that after tracing out the ancillary system B, one gets again:

ρA = TrB|ΨAB⟩⟨ΨAB|. (2.26)

Noteworthily, one can find infinitely many purifications |Ψ̃AB⟩ of a given state ρA since:

|Ψ̃AB⟩= [I⊗UB]|ΨAB⟩ ⇒ ρA = TrB|ΨAB⟩⟨ΨAB|= TrB|Ψ̃AB⟩⟨Ψ̃AB|. (2.27)

where UB is a unitary operation acting on B-part of the system and |ΨAB⟩ is an arbitrarily
chosen purification of ρA. The most frequent purification procedure is based on a spectral
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2.2 Composite systems 10

decomposition of a mixed state ρ:

ρ =
M

∑
i

αi|φi⟩⟨φi| −→ |Ψ⟩=
M

∑
i

αi|φi⟩|i⟩, (2.28)

where |i⟩ form an orthogonal basis for the ancillary system.

No-cloning principle

Classical information theory allows the precise copying of information which is applied
by classical computers in the instance of copying files. According to quantum information
theory one can also copy states but only the base ones {|0⟩, |1⟩, . . .} (which actually can
represent the classical states), however, it prohibits cloning of non-orthogonal states which is
claimed in the following theorem [170]:

Theorem 2.2.3 There does not exist an unitary operation U ∈ B(H ) which could clone an
’unknown’ state |Ψ⟩ ∈ H so that: U |Ψ⟩⊗ |0⟩= |Ψ⟩⊗ |Ψ⟩.

Proof. Assume that there exists an operator U copying the states ideally |Ψ⟩, |Φ⟩ ∈ H , i.e.:{
U |Ψ⟩⊗ |0⟩= |Ψ⟩⊗ |Ψ⟩
U |Φ⟩⊗ |0⟩= |Φ⟩⊗ |Φ⟩

(2.29)

Since U is unitary, we can derive the scalar products:

⟨Ψ⊗Ψ|Φ⊗Φ⟩= (⟨Ψ|Φ⟩)2 = ⟨0|⊗ ⟨Ψ|U†U |Φ⟩⊗ |0⟩= ⟨Ψ|Φ⟩⟨0|0⟩= ⟨Ψ|Φ⟩. (2.30)

which is a contradiction when 0 < ⟨Ψ|Φ⟩< 1 (for non-orthogonal |Ψ⟩ and |Φ⟩). �

As previously noted, the no-cloning principle does not preclude cloning of orthogonal
states, i.e. the cloning machine (device performing the operation U) can clone orthogonal
states. As an example may serve the quantum gate CNOT (a quantum equivalent of the
classic gate of a controlled negation) working on qubits with the matrix representation:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.31)

which clones basis states |φ⟩ ∈ {|0⟩, |1⟩}:

CNOT |φ⟩⊗ |0⟩= |φ⟩⊗ |φ⟩. (2.32)
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2.3 Completely positive maps 11

2.3 Completely positive maps

After considering the static properties of quantum states, the question arises about the
dynamics of quantum composite systems. We can state the following question: textitwhat
operations on quantum states are physically allowed? This is an indirect question about
the kind of quantum evolution that is allowed for a quantum system which is addressed by
the well-known postulate about its unitarity: the evolution of a closed quantum system is
determined by a unitary operator U. A state |Ψ⟩ ∈ H of a system at time t1 is mapped into
a state |Ψ̃⟩ ∈ H at time t2: |Ψ̃⟩=U |Ψ⟩.

The above postulate determines the dynamics of closed systems and allows operation of
unitary operators only. However, the issue appears in the case of analysis of an evolution
of open systems that can interact with other systems. The issue boils down to finding a
mathematical representation of the physical processes that will be further identified with
the allowed quantum operations on quantum systems. To solve this problem, it is assumed
initially that the system in a state ρS, which evolution we are studying, is in a product state
with its environment ρS ⊗ρE (i.e. totally uncorrelated with the environment). Thus, the
evolution of the whole system is unitary (under assumption that the whole system S⊗E is
now a closed system) in accordance with the above postulate and the state of the system after
interaction with the environment is:

ρ̃S = TrE [U(ρS ⊗ρE)U†]. (2.33)

It is worth mentioning that the expectation value of any observable A acting on S does
not depend on whether we consider only ρ̃S or the whole composite system including the
environment, i.e. ⟨A⟩= Tr[Aρ̃S] = Tr[A⊗ I[U(ρS ⊗ρE)U†]]3. The latter is a fundamental
observation about the nature of operations on systems and their extensions reflecting the fact
that any quantum operation on a local subsystem maps the global state again to a proper
quantum state. The local observer performs measurements on the environment in the selected
environment database by means of partial trace operation on the environment and then forgets
measurement results. Consequently, the state of a local system is a statistical mixture of
states corresponding to the measurement results on the environment.

The analysis of operators Λ performing the mapping: ρS −→ ρ̃S = Λ(ρS) is a subject of
completely positive (CP) maps theory. Namely, all quantum operations are characterized as a
set of mappings Λ : B(H1)→ B(H2) meeting the following axioms:

(1) Λ is a linear operation,

3Vide sec. Quantum measurements and operations.
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2.4 Quantum measurements and operations 12

(2) Λ is completely positive [115],

(3) Λ does not increase trace, i.e. Tr[Λ(ρ)]≤ 1.

Complete positivity [115] reflects the aforementioned fact of mapping a proper quantum
state into a proper quantum state (where an operation can be on the subsystem):

Definition 2.3.1 4 A linear map Λ : B(H1)→ B(H2) is completely positive if and only if
for any ancillary system on Ha and any operator Ω ∈ B(H ⊗Ha) there holds:

Ω ≥ 0 ⇒ (Λ⊗ I)Ω ≥ 0, (2.34)

where I is the identity operator acting on B(Ha).

If the operator preserves the trace we call it completely positive trace-preserving (CPTP),
otherwise, it decreases the trace and is just completely positive(CP) - in this case the process
is probabilistic, i.e. Λ-process occurs with probability pΛ = Tr[Λ(ρ)].

2.4 Quantum measurements and operations

The measurement results on quantum systems are classical values and as such have to be
represented by real numbers which is a subject of the quantum mechanics postulate: Any
measurable physical property can be represented by an observable - a positive Hermitian
operator M ∈ B(H ). The allowed measurement results are real eigenvalues of M. Thus a
physical system can be completely characterized by the Banach tensored algebra of potential
observables that can act on it. This statement is of a very deep physical and philosophical
meaning about what is real and when the gathered information about the system is objective.
Before we start considering properties of observables, it is worth mentioning that classical
systems can be characterized by commutative observable algebras which is not the case for
general quantum states.

Due to the assumption that the measurement results have to be real numbers, the eigen-
vectors |ψi⟩ and eigenvalues λi for an observable M are in relation:

M|ψi⟩= λi|ψi⟩, (2.35)

and in degenerate case one eigenvalue λi corresponds to many eigenvectors |ψk
i ⟩ spanning

the eigenspace Vλi:
M|ψk

i ⟩= λi|ψk
i ⟩ k = 1,2, ..., jn. (2.36)

4For operators A i B it holds: A ≥ B, if ∀|ψ⟩∈H ⟨ψ|A−B|ψ⟩ ≥ 0.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2.4 Quantum measurements and operations 13

Eigenvectors span an orthonormal basis in H , thus:

⟨ψk
i |ψ l

j⟩= δi jδkl and ∑
i

jn

∑
k=1

|ψk
i ⟩⟨ψk

i |= I (2.37)

Note that the projective operator on jn-dimensional subspace V ⊂H can be decomposed
as a sum of one-dimensional projectors on basis vectors in this subspace:

P =
jn

∑
i=1

Pi. (2.38)

and such an operator is a multi-dimensional projector.
Now, for any observable A we can find a spectral decomposition:

A = IAI (2.39)

= ∑
i

jn

∑
k=1

|ψk
i ⟩⟨ψk

i |A∑
j

jm

∑
l=1

|ψ l
j⟩⟨ψ l

j|

= ∑
i

jn

∑
k=1

∑
j

jm

∑
l=1

|ψk
i ⟩⟨ψk

i |A|ψ l
j⟩⟨ψ l

j|.

Since ⟨ψk
i |A|ψ l

j⟩= λ j⟨ψk
i |ψ l

j⟩= λ jδklδi j (where |ψ l
j⟩ are eigenvectors of A), then:

A = ∑
i

jn

∑
k=1

∑
j

jm

∑
l=1

λ jδklδi j|ψk
i ⟩⟨ψ l

j|

= ∑
i

jn

∑
k=1

λi|ψk
i ⟩⟨ψk

i |

= ∑
i

λiP̃i, (2.40)

where P̃i = ∑
jn
k=1 |ψ

k
i ⟩⟨ψk

i |.
The expectation value5 of an observable A on a state ρ ∈ B(H ) is:

⟨A⟩= Tr[Aρ]. (2.41)

5For a smooth wave function |Ψ(x)⟩, the expectation value of observable A is defined as: ⟨A⟩ =∫
⟨Ψ(x)|A|Ψ(x)⟩dx.D
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2.4 Quantum measurements and operations 14

It is easy to derive that Tr[A|Ψ⟩⟨Ψ|] = ⟨Ψ|A|Ψ⟩, then for ρ = |Ψ⟩⟨Ψ|:

⟨A⟩ = ⟨Ψ|A|Ψ⟩ (2.42)

= ∑
i

λi⟨Ψ|Pi|Ψ⟩

= ∑
i

jn

∑
k=1

λi⟨Ψ|ψk
i ⟩⟨ψk

i |Ψ⟩

= ∑
i

jn

∑
k=1

λi|⟨ψk
i |Ψ⟩|2,

where ∑
jn
k=1 |⟨ψ

k
i |Ψ⟩|2 is a probability that a measurement on a state |Ψ⟩ generates a result λi

corresponding to the projector on a subspace spanned by |ψk
i ⟩.

Note that for a composite system ρAB ∈ B(HA ⊗HA) measurement of the expectation
value Γ on B-subsystem gives:

⟨Γ⟩= TrA[(I ⊗Γ)ρAB] = Tr(ΓρB), (2.43)

where ρB = TrAρAB, i.e. measuring the subsystem of a composite system is equivalent to
measuring the subsystem after performing the measurements on the rest of the global system
in its basis (that of the rest) and forgetting this knowledge.

In general, any quantum operation can be represented by a linear operator Λ : B(H1)−→
B(H2) where dimH1 = d1 and dimH2 = d2 with which one can associate a set of d2 ×d1

complex matrices {Mm}N
m=1 where ∑

N
m=1 M†

mMm = Id1 . The matrices are called Kraus
operators and the decomposition of quantum operation Λ is called a Kraus decomposition:

Λ(ρ) =
N

∑
m=1

MmρM†
m (2.44)

The Mm operation transforms ρ into ρm state with probability pm = Tr[MmρM†
m]:

ρ −→ ρm =
MmρM†

m

Tr[MmρM†
m]

(2.45)

A special case of operation is a von Neumann measurement when the Kraus operators are
just projectors. In general setup, for this type of measurements we measure an observable
O = ∑i αiPi where ∀i ̸= j αi ̸= α j and i ≤ dimH . The measurement results belong to the set
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2.4 Quantum measurements and operations 15

of results related to the projectors Pi and the state is mapped as follows:

ρ −→ ρ̃ =
∑i PiρPi

Tr(∑i PiρPi)
. (2.46)

And for the composite system in a state ρAB ∈ B(HA ⊗HB) a measurement on its
subsystem, say for A, leads to the transformation:

ρAB −→ ρ̃AB =
∑i(Pi ⊗ IB)ρAB(Pi ⊗ IB)

Tr[∑i(Pi ⊗ IB)ρAB(Pi ⊗ IB)]
. (2.47)

One more important class of quantum measurements is called POVMs (positive-operator
valued measurements) where we are not interested in the form of the output state but rather
in the probability pm = Tr[MmρM†

m] = Tr[M†
mMmρ] of the m-th result with which we can

associate POVM element Em = M†
mMm. This means that the protocol is built on measuring

the probability distribution P(M = m) = Tr[Emρ] of the random variable M. In practice,
the POVM is performed by coupling with the ancilla and then performing e.g. projective
measurements on the ancillary system.

To summarize discussion about quantum operations and measurements as completely
positive (CP) maps, it is very informative to remind that all classes of operations are derived
from the fundamental postulate about unitary evolution of quantum systems, which is
articulated in the following theorem:

Theorem 2.4.1 Any quantum operation Λ on a quantum system A in a state ρA can be
performed by three elementary operations:
1. Adding of an ancillary system R (called also the reference system) in a state ρR:

ρA −→ ρA ⊗ρR (2.48)

2. Performing an unitary operation U on the composite system A⊗R:

ρA ⊗ρR −→UρA ⊗ρRU† (2.49)

3. Tracing out the ancillary system R:

UρA ⊗ρRU† −→ TrR[UρA ⊗ρRU†] (2.50)

This simple theorem is a powerful tool for many crucial theorems in quantum information
theory, especially in reference to symmetric extensions of quantum systems and quantum
channels.
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2.5 Quantum channels 16

In particular, we define LOCC operations as a finite composition of local quantum operations
and classical communication. For Alice and Bob sharing the state ρAB ∈ B(HA)⊗HB) we
distinguish the following types of LOCC:

1. Zero-way LOCC/0 where no classical communication is allowed between the par-
ties, only local trace-preserving CP maps ΛA : B(HA)−→ B(HA) and ΛB : B(HB)−→
B(HB):

Λ /0(ρAB) = ΛA ⊗ΛB(ρAB) (2.51)

2. One-way LOCC→ where classical communication is allowed only in one direction,
either from Alice to Bob or from Bob to Alice:

Λ→(ρAB) = ∑
i

Λ
i
A ⊗Λ

i
B(ρAB) (2.52)

where for one-way communication from Alice to Bob, Tr[∑i Λi
A ⊗ I(ρAB)]≤ 1 (trace non-

increasing operations on Alice’s side) and trace-preserving operations on Bob’s side are
allowed, i.e. Tr[∑i I⊗Λi

B(ρAB)] = 1. For the direction of classical communication from Bob
to Alice, we assume trace non-increasing operations on Bob’s side and trace-preserving on
Alice’s side.

3. Two-way LOCC↔ operations can be viewed as a composition of local operations and
classical communication in both directions, thus can be represented as a composition of trace
non-increasing operations on both sides of Alice and Bob.

It is vital to note that for operations not preserving the trace of ρAB, the correct output
state is ρ̃AB = Λ(ρAB)/Tr[Λ(ρAB)].

2.5 Quantum channels

A quantum channel is a completely positive trace-preserving map (CPTP) Λ : B(Hin)→
B(Hout) acting on an input state ρin ∈ B(Hin) and resulting with the output state ρout =

Λ(ρin). This concept is inherited from the classical information theory where the discrete
source generates a signal that is transmitted through the noisy channel e.g. by the wire.

There holds a fundamental channel-state duality between quantum channels and states
called as Choi-Jamiolkowski isomorphism [36, 37, 111]. The Choi-Jamiolkowski isomor-
phism is an isomorphism between linear maps Λ : B(Hin)→ B(Hout) and states living in
the tensor product space B(Hin ⊗Hout):

Theorem 2.5.1 [36, 37] Consider the map Λ : Mn(C) −→ Md(C), then the following
statements are equivalent:
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2.5 Quantum channels 17

𝕀A 

Alice
 

|Ψ
+
  Ψ

+
|

 

 

𝜌AB 

Alice
 

Bob
 

Fig. 2.1 Alice starts with a bipartite singlet state |Ψ+⟩ and sends one of the subsystem
to Bob through the channel Λ. Alice and Bob after this operation share a state ρAB =
[IA⊗Λ]|Ψ+⟩⟨Ψ+|.

1. Λ is completely positive,
2. Λ is n-positive, i.e. Λ⊗ ICn is a positive map,
3. For any orthonormal basis {|ei⟩} in Cn the nd × nd matrix is positive (known as Choi
matrix of Λ):

ΦΛ =

Λ(|e1⟩⟨e1|) · · · Λ(|e1⟩⟨en|)
... . . . ...

Λ(|en⟩⟨e1|) · · · Λ(|en⟩⟨en|)

 (2.53)

Namely, assume that a quantum state ρAB ∈ B(HA ⊗HB) is shared between two parties
Alice and Bob. The isomorphism states that it can be achieved if Alice holds initially a
maximally entangled bipartite state |Ψ+⟩= ∑

d−1
i=0

1√
d
|ii⟩ (a singlet, d = dimHA) and sends

[111] one part of it to Bob through the channel Λ : B(HA)−→ B(HB) [Fig. 2.1]:

ρAB = [IA⊗Λ]|Ψ+⟩⟨Ψ+| (2.54)

Every physical quantum system is a subject of interactions with the environment and
decoherence which can be interpreted as an influence of noise. Quantum noise, in similar to
the classical concept of noise, transforms the input state by means of a quantum channel Λ
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2.5 Quantum channels 18

characterizing the noise process. In general, it is assumed that noise is spatially local and
Markovian. The former means that there are not spatial correlations between the operators
introducing noise to the system and the latter means that they are not temporally correlated.
Obviously, one can analyze other models of noise but for needs of these thesis, whenever we
use the term ’noise’, we think about local and Markovian noise.

As already observed, there are a couple of alternative representations of quantum chan-
nels. We have already used the famous Choi-Jamiolkowski isomorphism and the Kraus
representation for quantum operations. We can also define quantum channels by means of
the Stinespring dillation [156] which inherits its intuition on the aforementioned observation
that any quantum operation on a quantum state ρ of a system can be perceived as an action of
a unitary operation on the larger extended system extended with the auxiliary system, which
is traced out after this action.

Theorem 2.5.2 (Stinespring Theorem) Let Λ : B(H )−→ B(H ) be a linear map. Then Λ

is completely positive if and only if it has the form:

Λ(A) =V ∗
π(A)V (2.55)

for some unital ∗-homomorphism6 π : A −→ B(K) on a Hilbert space K and for some
bounded linear map V : H −→ K.

Then, for every quantum channel Λ : B(HA)−→ B(HA′), there exist a unitary matrix
U, some auxiliary space K and the state γB such that:

ρA′ = Λ(ρA) = TrKU [ρA ⊗ γB]U† (2.56)

Below we present important examples of quantum channels.

Pauli channels

In a Pauli qubit channel Λ : B(C2) −→ B(C2) every error (i.e. X, Y, Z) can occur with
an arbitrary probability. Thus the input state will be not changed with probability 1− p =

1− (p1 + p2 + p3) (i.e. with this probability the channel will act with identity mapping I on
the state) and its representation is:

Λ(ρ) = (1− p)ρ + p1XρX + p2Y ρY + p3ZρZ, (2.57)

6π is a unital ∗-homomorphism, i.e. is linear, multiplicative, and preserves the ∗-operation - an involution
that is conjugate-linear and anti-multiplicative.
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2.5 Quantum channels 19

It can be represented in the formalism of linear operators Ai (so-called Kraus operators) as:

A0 =
√

1− pI, A1 =
√

p1X , A2 =
√

p2Y, A3 =
√

p3Z, (2.58)

Particular types of Pauli random channels are:

A bit flip channel:
A0 =

√
1− pI, A1 =

√
pX . (2.59)

A phase flip channel:
A0 =

√
1− pI, A1 =

√
pZ. (2.60)

A bit and phase flip channel:

A0 =
√

1− pI, A1 =
√

pY. (2.61)

A depolarizing channel:
Λ(ρ) = p

I
2
+(1− p)ρ, (2.62)

which generates pure noise as a maximally mixed state I
2 with probability p. It has an

operator representation:

A0 =

√
1− 3p

4
I, A1 =

√
p

X
2
, A2 =

√
p

Y
2
, A3 =

√
p

Z
2
, (2.63)

which is derived from:
I
2
=

1
4
(ρ +XρX +Y ρY +ZρZ). (2.64)

Amplitude damping channel

This channel models dissipation of energy when e.g. an excited atom in a state |1⟩ during a
process of spontaneous emission transitions to the ground state |0⟩ having emitted a photon
with probability γ:

A0 =

(
1 0
0

√
1− γ

)
, A1 =

(
0

√
γ

0 0

)
. (2.65)

Noteworthily, this channels, as opposed to Pauli channels, do not preserve the identity
(Λ(I) ̸= I).
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2.6 Quantum entanglement and separability of quantum states 20

2.6 Quantum entanglement and separability of quantum
states

Quantum mechanics allows the existence of composite systems spatially separated, in a
global state |ψ⟩ ∈ H , yet locally none of their sub-systems can have a pure state assigned.
These "exotic" states called entangled states manifest a fundamental difference of correlations
between classical and quantum world.

Theorem 2.6.1 (The Schmidt decomposition [107]) Let dimH1 = m and dimH2 = n and
|ψ̂⟩ be a normalized vector in H1 ⊗H2, and ρ = |ψ̂⟩⟨ψ̂|, ρ1 = Tr2ρ , ρ2 = Tr1ρ . Then:

(1) the reduced matrices ρ1 i ρ2 have the same positive eigenvalues λ1, ...,λk (with the
same multiplicity) and every additional dimension of these matrices is ’built’ with a
zero-eigenvalue (note that then k ≤ min(m,n)).

(2) |ψ̂⟩ is represented as:

|ψ̂⟩=
k

∑
i=1

√
λi|êi⟩⊗ | f̂i⟩, (2.66)

where |êi⟩ (and | f̂i⟩) are orthonormal eigenvectors of ρ1 ∈ B(H1) (and ρ2 ∈ B(H2)),

∑i λi = 1 and λi ≥ 0.

The
√

λi are so-called Schmidt coefficients and the number of non-zero coefficients in
Schmidt decomposition of |ψ̂⟩ is called the Schmidt rank of the state |ψ̂⟩.

Example 2.6.2 As an example let us consider a state Ψ ∈ HA ⊗HA ∼= C2 ⊗C2, in that
case the Schmidt decomposition can consist of at most two coefficients. The state is a
product vector if

√
λ1 = 0 and

√
λ2 = 1 or

√
λ1 = 1 and

√
λ2 = 0. A state with coefficients√

λ1 =
√

λ2 = 1√
2

is maximally entangled in HA ⊗HB (maximal entanglement means
that quantum correlations are maximal in relation to a given entanglement measure [137]
as shown in the following chapters). Maximally entangled states in a computation basis
{|0⟩, |1⟩} are the Bell states (which span the maximally entangled basis in C2 ⊗C2):{

|Ψ±⟩= 1√
2
(|01⟩± |10⟩)

|Φ±⟩= 1√
2
(|00⟩± |11⟩).

(2.67)

Note that the Schmidt decomposition is unique because there do not exist two different
decompositions of a given state with different number of λi. Moreover, if the Schmidt rank is
more than 1 then the state is entangled and the subsystems are in mixed states.
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2.6 Quantum entanglement and separability of quantum states 21

In general, any separable state (in terms of density matrix) can be decomposed to product
elements as a convex combination of separable states (i.e. any convex combination of
separable states is again a separable state which is not always true for entangled states -
e.g. one can find a decomposition of a noise state of a bipartite system in the Bell basis,
B(C2 ⊗C2) ∋ ρAB = 1

4I=
1
4(|Ψ

+⟩⟨Ψ+|+ |Ψ−⟩⟨Ψ−|+ |Φ+⟩⟨Φ+|+ |Φ−⟩⟨Φ−|))
Applying the results by R. Werner [167], we remind now a definition of quantum separa-

bility:

Definition 2.6.3 The state ρAB ∈ B(HA ⊗HB) is separable if and only if it can be repre-
sented as a convex combination of product states:

ρAB =
k

∑
i=1

piρ
i
A ⊗ρ

i
B, 0 ≤ pi ≤ 1,

k

∑
i=1

pi = 1, (2.68)

or if it can be approximated by separable states in a trace norm7. Otherwise, the state is
called entangled or non-separable.

Remark. Approximation in this case means that there exists such a series of separable states
{ρAB

n } where ρAB
n = ∑ j p jρ

A
j ⊗ρB

j so that limn→∞ ∥ρAB
n −ρAB∥= 0.

The aforementioned definition states clearly that any separable state ρAB = ∑i pi|ei⟩⟨ei|⊗
| fi⟩⟨ fi| shared between two parties Alice and Bob can be prepared by means of LOCC (local
operations and classical communication) which is not possible for any entangled state. For
such a setup, Alice generates states |ei⟩ with probability pi locally and Bob generates | fi⟩
with probability pi correspondingly, however, for generation of classical correlations between
the local states they can use classical communication medium like e.g. a phone.

Quantum entanglement is one of central concepts in quantum information theory and as
such is a subject of very extensive research, especially as a resource for quantum computation
and quantum cryptography. For many years one of the main open problems was to define
necessary and sufficient conditions for separability of all quantum states, that would be also
operationally efficient (i.e. could be calculated quickly e.g. by semi-definite programming
or analytically for a given state). To date we have known a couple of such conditions for
different classes of states, however, this research field is still open. Below we recall key
conditions and in the following chapters, a reader will see that symmetric extendibility is
also a central concept for this field. The very first complete characterization of such a test in
terms of necessary and sufficient conditions was based on a concept of completely positive
maps:

7A trace norm is defined as ∥A∥Tr = Tr|A|.
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2.6 Quantum entanglement and separability of quantum states 22

Theorem 2.6.4 [99] The state ρAB ∈ B(HA ⊗HB) is separable if and only if for any
positive map Λ : B(HB)−→ B(HB), an operator (I⊗Λ)ρAB is positive.

We introduce also a partial transposition operator ΓB acting on B-part (or any subsystem of
the composite state) of state ρAB:

Definition 2.6.5 The partial transposition [143] on B-subsystem of the composite system
AB in a state ρAB ∈ B(HA ⊗HB) is:

ΓB(ρAB) = (IA ⊗TB)ρAB (2.69)

where transposition TB : B(HB)−→ B(HB) acts only on B-part.

For matrix elements the Γ operation acts as follows:

ΓB(ρAB) = ΓB(∑
i jkl

ai jkl|i j⟩⟨kl|) = ∑
i jkl

ai jkl|il⟩⟨k j| (2.70)

The Peres citerion [143] of separability based on the above operation is:

Theorem 2.6.6 Any separable state ρAB ∈ B(HA ⊗HB) is PPT:

ΓB(ρAB)≥ 0 (2.71)

i.e. ΓB(ρAB) has non-negative eigenvalues.

and it does not matter if we consider ΓB or ΓA. As a consequence of the above theorems,
for 2⊗ 2 and 2⊗ 3 systems it is sufficient to check their partial transpositions and verify
if the output state is positive (PPT) or negative (NPT). For the first case one immediately
finds the PPT state separable, for the latter (NPT) entangled. This observation is stated in the
following lemma:

Lemma 2.6.7 [99] A state ρ ∈ B(C2 ⊗C2) or ρ ∈ B(C2 ⊗C3) is separable if and only if
Γ(ρ) is a positive operator.

Of a great importance is an observation that although all separable states are PPT, not every
entangled state is NPT. There exists a broad class of entangled states called bound entangled
[100], which have positive partial transpositions (PPT) and from which no entanglement can
be distilled by means of two-way LOCC (that will be a subject of further chapters).

Other entanglement criteria, which will be not a matter of consideration in this thesis,
include the range and matrix realignment criteria, and the reduction criterion [101, 30]. In
the following chapter, we will refer to the criteria based on Bell inequalities.
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2.7 Quantum entropic quantities 23

2.7 Quantum entropic quantities

In this section we recall fundamental quantum entropic quantities which will be a necessary
tool for quantitative analysis of entanglement and its applications to quantum information
processing.

The von Neumann entropy (a quantum counterpart of classical Shannon entropy for a
probability distribution P: H(P)≡−∑x P(x) logP(x)) is defined as:

S(ρAB) =−Tr(ρAB logρAB) (2.72)

in many cases we will just use SAB notation.
In analogy to classical relative entropy between two probability distributions, which

measure how different they are from each other, we define the quantum relative entropy
between states ρ and σ as:

R(ρ∥σ) = Tr[ρ(logρ − logσ)] (2.73)

where supp(σ)⊆ supp(ρ) with supp(·) denoting the subspace spanned by the eigenvectors
of the corresponding density matrix.
Relative entropy is unitarily invariant, i.e. for any U , R(UρU†∥UσU†) = R(ρ∥σ) and
positive R(ρ∥σ)≥ 0. It possess also two other important properties:
Joint convexity - for any p ∈ [0,1] and any four states{ρa,ρb,σc,σd} ∈ B(H ) there holds8:

R(pρa +(1− p)ρb∥pσc +(1− p)σd)≤ pR(ρa∥σc)+(1− p)R(ρb∥σd) (2.74)

Monotonicity under CP maps - for any completely positive map Λ:

R(Λ(ρ)∥Λ(σ))≤ R(ρ∥σ) (2.75)

The Holevo function χ(·) is defined for any ensemble of density matrices A= {pi,ρi} with
average density matrix ρ = ∑i piρi as follows:

χ(ρ) = S(∑
i

piρi)−∑
i

piS(ρi) (2.76)

and is a good upper bound [90, 91] on the accessible information. Whenever we use χ(ρ),
we understand that the Holevo function is a function of the aforementioned ensemble χ(A).

8An operator convex function is a function such that: f (pA + (1 − p)B) ≤ p f (A) + (1 − p) f (B), for
p ∈ [0,1], and Hermitian operators A and B (see a footnote on page 12).
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2.7 Quantum entropic quantities 24

Basing on the Holevo function, we derive also the observation [127] that will be later
used for finding efficient reduced variants of different quantum measures:

Observation 2.7.1 [127] For any ensemble of density matrices A= {λi,ρ
i
BB′} with average

density matrix ρBB′ = ∑i λiρ
i
BB′ there holds:

χ(ρBB′)≤ χ(ρB)+2S(ρB′) (2.77)

Proof. Basing on subadditivity9 and concavity of quantum entropy we can easily show
that:

|S(ρBB′)−∑
i

piS(ρ i
BB′)−S(ρB)+∑

i
piS(ρ i

B)| ≤

≤ |S(ρBB′)−S(ρB)|+ |∑
i

piS(ρ i
BB′)−∑

i
piS(ρ i

B)

≤ S(ρB′)+∑
i

piS(ρ i
B′)≤ 2S(ρB′)

which completes the proof. �
For any bipartite state ρAB one defines the quantum mutual information:

I(A : B) = S(A)+S(B)−S(AB) (2.78)

and further, for a tripartite system ρABC the conditional quantum mutual information:

I(A : B|C) = S(AC)+S(BC)−S(ABC)−S(C) (2.79)

where we use the notation for entropy of X system S(ρX) = S(X).
The coherent information for a channel Λ and a source state σ transferred through the

channel is defined as:
Ic(σ ,Λ) = IB(I ⊗Λ)(|Ψ⟩⟨Ψ|) (2.80)

where Ψ is a pure state with reduction σ and coherent information of a bipartite state ρAB

shared between Alice and Bob is defined as: IB(ρAB) = S(B)−S(AB). We will use further
the following notation: Ic(A⟩B) = IB(ρAB).

9Quantum entropy is subadditive, i.e. for any ρAB ∈ B(HA ⊗HB), there holds: S(ρAB)≤ S(ρA)+S(ρB).
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Chapter 3

Monogamy of quantum entanglement
and Bell theorem

In this chapter we explore the concept of monogamy of quantum entanglement and its
relation to symmetric extendibility. Further, we recall local realism and its violation by
entangled states reflected in violation of Bell inequalities which meet the conditions for Local
Hidden Variables (LHV). The chapter indicates also crucial connections between symmetric
extendibility and potential violation of Bell inequalities.

3.1 Local realism and Bell inequalities

Quantum entanglement is a phenomenon which does not have any reflection in classical
world and as such is a manifestation of so-called non-locality of quantum correlations. The
roots of studies in this matter reach the year 1935 when the famous paper by Einstein,
Podolsky and Rosen [63] discussed the so-called (EPR) pairs being in a bipartite singlet state
|Ψ−⟩ = 1√

2
(|01⟩− |10⟩) shared between two spin 1

2 particles. In such a case none of the
subsystems can have assigned a pure state as aforementioned in the previous chapter.

In particular, many entangled states violate local realism and in consequence, Bell
inequalities [12]. Local realism has roots in classical world-view where for particular
measurement of physical quantities, one believes that the measured physical quantities for
a physical object have a priori set values independent of the observers (realism) and for a
bipartite setup the measurement on one site does not influence the results of the other site’s
measurements (locality):

Realism. The physical quantities being a subject of the measurements have definite real
values which exist independent of the observation act.
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3.1 Local realism and Bell inequalities 26

Locality. The results of measurements performed by Alice do not influence the results of
measurements performed by Bob.

It is worth mentioning that the experiment is arranged so that for two parties Alice and
Bob, their experiments are causally disconnected. Thus, the measurement performed by
Alice cannot influence the measurements done by Bob due to the light speed limit imposed
by the special relativity theory.

To analyze correlations between results achieved in the experiment performed by Alice
and Bob, imagine that they share a bipartite physical system consisting of two spatially
separated sub-systems that could interact in the past and which will be a subject of local
measurements in distant laboratories belonging to Alice and Bob respectively (a distant
lab paradigm). Now, we can assign conditional probabilities to the measurement results
P(a,b|x,y) where x and y stand for measurement settings set locally by Alice and Bob
respectively, and a and b for the measurement outcomes. Note that the measurement
outcomes can be naturally inter-dependent, i.e. P(a,b|x,y) ̸= P(a|x)P(b|y) - the dependency
can be created by a local hidden variable λ ∈ Λ that the experimenters are not aware of.
The hidden variables are a building block behind Bell inequalities and as such represent a
hidden knowledge that cannot be possessed during the measurement process but influence the
measurement results and correlate them. The hidden variable is obviously also pre-defined in
accordance with the local realism.

Since the local measurement results are dependant only on x-settings and λ -variable for
Alice, and respectively on y-settings and λ -variable for Bob in local hidden variables (LHV)
model, and moreover, we assume locality, then:

P(a,b|x,y,λ ) = P(a|x,λ )P(b|y,λ ) (3.1)

For discrete distribution of λ on Λ-space, after many measurement series we obtain (it
reflects a random character of λ in many measurements repeated on the system):

P(a,b|x,y) = ∑
λ∈Λ

p(λ )P(a|x,λ )P(b|y,λ ) (3.2)

For continuous distribution of λ on Λ-space, we get a local hidden variable model:

P(a,b|x,y) =
∫

Λ

p(λ )P(a|x,λ )P(b|y,λ )dλ (3.3)

In general, every linear Bell inequality for bipartite setup B(A,B) of an experiment
performed by Alice and Bob can be represented as a linear combination of conditional
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3.1 Local realism and Bell inequalities 27

probabilities P(a,b|x,y) (R is a local realistic bound):

B(A,B)≡ ∑
xy

∑
ab

α(a,b,x,y)P(a,b|x,y)≤ R (3.4)

and α(a,b,x,y) ≥ 0 parameters characterize the specific Bell inequality. These inequali-
ties have to be satisfied by all classical correlations with the aforementioned probability
distributions P(a,b|x,y) built on LHV models.

The LHV model generates the probability vector P = [P(a,b|x,y)] having entries 0 ≤
P(a,b|x,y)≤ 1 where vectors P form a convex polytope S. The extreme points of the polytope
are the extremal B vectors with {0,1} entries. Each extreme vector B reflects a setup of
the experiment where the outcomes of the measurements are determined with certainty, i.e.
Bm,n

i j,kl = δ jmiδink with two sets of indices m = {m1, . . . ,msa} (sa is the number of measurement
settings on Alice’ site and mi indicates number of the measurement outcomes for the i-th
measurement setting) and respectively for Bob n = {n1, . . . ,nsb}.

For quantum correlations between a bipartite system in a state ρAB ∈ B(HA ⊗HB)

shared between Alice and Bob, the probability distribution for their measurement results is
given by P( j, l|i,k) = Tr(EA

i j ⊗EB
klρAB). The POVM elements for Alice’s i-th measurement

setting (and j denotes outputs of the measurement setting) are {EA
i j| EA

i j ≥ 0 ∧ ∑ j EA
i j = I}.

Example 3.1.1 (CHSH inequalities) We can assume that the experiment is led between two
sites shared by Alice and Bob. Assume that a source emits two particles in their directions
and that Alice and Bob can perform randomly one of two dichotomic measurements A1,2

and B1,2 (A2
i = B2

i = I for i ∈ {1,2} and the outcomes of the measurements are associated to
projective measurements on H ∼= C2). Then for any setup of the experiment producing LHV
results of the measurements, the CHSH [39] inequality can be formulated:

|E(A1B1)+E(A1B2)+E(A2B1)−E(A2B2)| ≤ 2 (3.5)

where E(Ai,B j) = ∑ab abP(ab|i j) is the expectation value for the measurements AiB j. For
quantum mechanical description of the experiment, we can use the CHSH operator

B = A1 ⊗ (B1 +B2)+A2 ⊗ (B1 −B2) (3.6)

remembering that the expectation value, for a quantum state ρAB of those two particles, is
E(Ai,B j) = Tr[Ai ⊗B jρAB]. Then for all quantum states ρAB admitting a LHV model, there
holds:

|TrBρAB| ≤ 2 (3.7)
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3.1 Local realism and Bell inequalities 28

It is also very interesting to note that CHSH inequality has also its so-called Tsirelson
bound [38] for all possible probability distributions allowed by quantum mechanics, i.e.
when E(Ai,B j) = Tr[Ai ⊗B jρAB]. Then for B = A1B1 +A1B2 +A2B1 −A2B2, we get B2 =

4I− [A0,A1][B0,B1] and in result the Tsirelson bound follows:

|TrBρAB| ≤ 2
√

2 (3.8)

The fundamental observation about Bell inequalities is that all classical correlations met
them and as observed by R. Werner [167], in general, all separable states being measured in
the experiment will produce probability distributions meeting Bell inequalities:

Theorem 3.1.2 [167] Any separable state ρ allows results of the local von Neumann mea-
surements in agreement with a local hidden variables model.

However, non-local correlations in general violate them. Yet, R. Werner built an important
class of non-local U ⊗U-invariant states 1 which for some parameters can generate results
with probability distribution described by LHV.

To be more precise, for any entangled state one can find a Bell inequality which will be
violated but at the same time there exists a broad class of entangled states [167] that satisfy
most popular Bell inequalities. In summary, when every separable state satisfy a given Bell
inequality, entangled states can violate or satisfy an arbitrary chosen Bell inequality. These
observations become clear when we look at the geometry of quantum states sets.

We remind now in this context a crucial Hahn-Banach theory for convex spaces [147]:

Theorem 3.1.3 (Hahn-Banach) [Fig. 3.1] Let S be a convex subset of a vector space V, and
let P be a point in V such that P /∈ S. Then there exists a hyperplane H which separates the
point P from the subset S.

It seems now to be clear that due to convexity of the separable states set2, any entangled
state can be separated from the set of separable states by some hyperplane. Such a hyperplane
in a Hilbert-Schmidt space B(H ) can be defined by its normal vector which is a hermitian
operator (thus, can be perceived as an observable):

Definition 3.1.4 [99] An entanglement witness W for a state ρ ∈ B(H ) is a hermitian
operator satisfying:

Tr(Wρ)< 0 and Tr(Wρsep)≥ 0, (3.9)

for any separable state ρsep ∈ B(H ).

1Vide sec. Isotropic states.
2It can by immediately observed that for any two separable states ρ = ∑i j pi jρi⊗σ j and σ = ∑kl p′klρ

′
k ⊗σ ′

l ,
their convex combination αρ +(1− p)σ (p ∈ [0,1]) is also separable.
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3.1 Local realism and Bell inequalities 29

S
 

ρent 

.
 

H
 

Fig. 3.1 Hyperplane H separates an entangled state ρent ∈ B(H ) from a convex set S of
separable states in the space B(H ) in accordance with the Hahn-Banach theorem.

It is now not difficult to observe that we may view Bell inequalities by prism of entangle-
ment witnesses concept [108], where the linear inequality performs intersection of the space
B(H ) of quantum states and the set of separable states is included in one of the half-spaces.

As an example we can reformulate the B operator for CHSH inequalities as a CHSH
witness which is non-negative on all LHV states [162]:

WCHSH = 2I+B (3.10)

where I stands for the identity operator.
It is now a very dynamic field of research to find more accurate methods of identifying if

a state is separable or not, either by means of non-linear Bell inequalities (where the set of
separable states is surrounded by curved hyper-surfaces in B(H )) [148] or by the sets of
linear Bell inequalities (they form a polytope-like structure, with facets represented by the
inequalities, around the set of separable states) [144].

No-signalling

Quantum mechanics meets also the no-signalling principle having its roots in the light speed
limit imposed by the special relativity theory. For Alice and Bob performing measurements
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3.2 Quantum entanglement is monogamous 30

in distant labs, the choice of the measurement setting on one side (Alice or Bob) cannot
influence the other’s side choice due to the spatial separation. It is formulated as:

P(a|x) = P(a|x,y) = ∑
b

P(a,b|x,y)

P(b|y) = P(b|x,y) = ∑
a

P(a,b|x,y)
(3.11)

It is interesting to observe that there exist probability distributions meeting no-signalling
principle which are not allowed by quantum mechanics, like the PR-box [134]. In this sense,
no-signalling theories are broader than quantum mechanics [134, 7, 8].

3.2 Quantum entanglement is monogamous

One of the fundamental questions related to quantum entanglement, as a resource shared
between two parties Alice and Bob, is whether the correlations could be shared between more
parties. The questions is fundamental not only due to applications in quantum computation
or quantum cryptography but also due to the very nature of processing information between
physical systems at different levels of complexity. It finds out that shareability of quantum
correlations is bounded and it has its roots in monogamy of entanglement.

One can refer to a broadly used explanation [43] for spatial monogamy of entanglement
between parties ABC. It states that A cannot be simultaneously fully entangled with B and C
since then AB would be entangled with C having a mixed density matrix that contradicts purity
of the singled state shared between A and B. It is expressed in Coffman-Kundu-Wootters
(CKW) [43] monogamy inequality for three-qubit system in a state ρABC:

C2(ρA|BC)≤C2(ρAB)+C2(ρAC) (3.12)

where C(·) stands for the concurrence between the parties (e.g. C2(ρA|BC) between A and
BC subsystems). C(ρAB) is an entanglement monotone3, and is defined as the averaged
concurrence of an ensemble of pure states {pi, |ΨAB

i ⟩} corresponding to ρAB minimized over
all pure decompositions of ρAB = ∑i pi|ΨAB

i ⟩⟨ΨAB
i | [43]:

C(ρAB) = in f ∑
i

piC(|ΨAB
i ⟩) (3.13)

3Vide sec. Entanglement measures.
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3.3 Monogamy of Bell inequalities vs. symmetric extendibility of quantum states 31

and respectively for all other states. Concurrence of a pure state is C(|ΨAB⟩)=
√

2[1−Tr(ρ2
A)]

and ρA = TrB|ΨAB⟩⟨ΨAB|.
If a bipartite state is in a singlet state ρAB = |Ψ+⟩⟨Ψ+|, then clearly the only possi-

ble tripartite extensions are of the form ρABE = ρAB ⊗ρ , i.e. no symmetric extension of
|Ψ+⟩ exists. That is also an immediate implication of the Schmidt decomposition for any
purification of ρABE to a state ΨABEE ′ which has to be decomposed to a factorized state
ΨABEE ′ = |Ψ+⟩⊗|ΦEE ′⟩ if for its reduction AB one wants to get ρAB = |Ψ+⟩⟨Ψ+|. Thus, we
get at least two proofs of monogamy of entanglement, one based on entanglement measures
and one based on purely geometrical considerations.

The concept of symmetric extendibility is directly related to monogamy of quantum
entanglement and that phenomenon was a building block for initiation of broad studies
of symmetric extendibility applications. If a bipartite state is in a singlet state ρAB =

|Ψ+⟩⟨Ψ+|, then clearly the only possible tripartite extensions are of the form ρABE = ρAB⊗ρ

as aforementioned and no symmetric extension of |Ψ+⟩ exists.
Symmetric extendibility [55, 56, 161, 128] of a given bipartite state ρAB ∈ B(HA ⊗HB)

(the Banach space of bounded operators) denotes that there exists a tripartite state ρABE ∈
B(HA ⊗HB ⊗HB) invariant due to permutation of B and E part.

Definition 3.2.1 (Symmetric extension) A state ρAB ∈ B(HA ⊗HB) is symmetrically ex-
tendible if there exists such a state ρABE ∈ B(HA ⊗HB ⊗HB) (HB = HE) so that for
permutation:

P = ∑
i jk

|i jk⟩⟨ik j| (3.14)

there holds PρABEP† = ρABE and TrEρABE = ρAB = ρAE .

3.3 Monogamy of Bell inequalities vs. symmetric extendibil-
ity of quantum states

We can relate violation of Bell inequalities with the existence of so-called symmetric exten-
sions or quasi-extensions of quantum states witch is directly related to symmetric extendibility
of a given quantum state [128].

In [55, 56, 161], B. Terhal, A. Doherty and D. Schwab proposed more general concept of
quasi-symmetric extension Hρ , basing on observations done by R. Werner in [169] 4. These
observations lead later to a crucial relation between symmetric extendibility and violation of
any Bell inequality. Hρ is an entanglement witness which is not necessarily positive:

4Vide sec. The separability problem vs. symmetric extendibility.
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3.3 Monogamy of Bell inequalities vs. symmetric extendibility of quantum states 32

Definition 3.3.1 [161] (Symmetric quasi-extension) Let π : H ⊗s → H ⊗s be a permutation
of spaces H in H ⊗s. One defines:

Sym(ρ) =
1
s! ∑

π

πρπ
† (3.15)

Then ρ on HA ⊗HB has a (sa,sb)-symmetric quasi-extension if there exists a multipartite
entanglement witness Hρ on H ⊗sa

A ⊗H ⊗sb
B such that Tr

H ⊗sa−1
A ,H

⊗sb−1
B

Hρ = ρ and Hρ =

SymA ⊗SymB(Hρ).

Application of this definition leads to the observation that, if ρAB has a symmetric
extension for Bob, then ρAB does not violate a Bell inequality with k settings on Bob’s
side and any number of settings on Alice’ side which is a subject of the following general
theorems:

Theorem 3.3.2 [161] If ρ has a (sa,sb) symmetric quasi-extension, then ρ does not violate
Bell inequalities with (sa,sb)-settings.

Proof. The theorem will be proved by extraction of Local Hidden Variables model for ρ .
Namely, for (sa,sb)-settings it should reproduce the vector Pi j,kl(ρ) = Tr(EA

i j ⊗EB
klρ) for all

possible choices of POVM measurements {EA
i j,E

B
kl}, as a convex combination of the extremal

B vectors:
Pi j,kl(ρ) = ∑

m,n
pm,n({EA

i j,E
B
kl},ρ)B

m,n
i j,kl (3.16)

where pm,n(·)≥ 0. If there exists a quasi-symmetric extension of ρ , then Tr(EA
i j ⊗EB

klρ) =

Tr(EA
i j ⊗EB

kl ⊗ I)Hρ . Now, basing on the symmetry property of Hρ , definition of the extreme
B vectors (as stated in the section Local realism and Bell inequalities) and properties of
POVMs, we can conclude:

Pi j,kl(ρ) = TrEA
i j ⊗EB

klρ = ∑
m,n

(TrEA
m ⊗EB

n Hρ)B
m,n
i j,kl (3.17)

where EA
m = EA

1,m1
⊗ . . .⊗EA

sa,msa
(and similarly for EB

n ). As Hρ is a quasi-extension, then
pm,n({EA

i j,E
B
kl},ρ) = TrEA

m ⊗EB
n Hρ and we get LHV model. �

It means that for a bipartite state ρ having a symmetric extension ρ̃ shared between Alice
and Bob, instead of measuring the state ρ , Alice and Bob can build ρ̃ . They perform one
measurement with one setting for each site from sa sites hold by Alice and sb sites belonging
to Bob. Since the measurements commute, it can be perceived as one complex measurement
with a single measurement which is equivalent to LHV.
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3.3 Monogamy of Bell inequalities vs. symmetric extendibility of quantum states 33

Theorem 3.3.3 [161] If ρ has a (1,sb) symmetric quasi-extension, then ρ does not violate
Bell inequalities with any number of settings on Alice’ site and sb settings for Bob.

Proof. The proof is based on the fact that it is not possible to violate any Bell inequality
if one party performs measurement with only one setting. Therefore, in such a case it is
not necessary to extend such a state. Here is the LHV model for a quasi-extension Hρ on
HA ⊗H ⊗sb

B :

pm,n({EA
i j,E

B
kl},ρ) =

∏
sa
i′=1(TrEA

i′mi′
⊗EB

n Hρ)

(TrIA ⊗EB
n Hρ)sa−1 (3.18)

Each pm,n is non-negative since Hρ is an entanglement witness. And as in the previous
proof, we obtain correct LHV values Pi j,kl(ρ) basing on the symmetry property of Hρ ,
definition of B vectors and properties of POVMs.

In this scenario Bob is the party who performs the measurement on the extension applying
only one setting for each of his site, thus, achieving LHV model for his measurement results.�

We will consider now more general monogamy relation [142] basing on the previous
intuitions relating Bell inequalities with symmetric extendibility but adding also insights from
no-signalling principle. Let us consider an experiment [142] with n+1 separated parties:
one Alice and n Bobs {B(1),B(2), . . . ,B(n)}. For this setup we consider a Bell inequality
B(A,B(m))≤ R for the results of measurements performed by Alice and arbitrary chosen m-th
Bob. The crucial assumption is that the number of settings at each Bob’s site B(m) is n (equal
to the number of Bobs) and the number of outcomes for Alice’ and Bob’s measurements
is arbitrary. Then there holds the monogamy inequality for n pairs of observers, each pair
having a single Bob and Alice:

n

∑
m=1

B(A,B(m))≤ nR (3.19)

This relation holds for all non-signalling theories, including quantum mechanical results
even if for a chosen pair of Alice and Bob B(m), a single Bell inequality B(A,B(m))≤ R is
violated.
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Chapter 4

Symmetric extendibility of quantum
states

The theory of symmetric extendible states being crucial for analysis of one-way distillabil-
ity and security of quantum states has still many unsolved problems. In this chapter we
introduce some new concepts related to classification of all symmetric extendible states
and analyze mainly composite systems including also a symmetric extendible part [128].
The key conclusions are related to behavior of multiple pairs of quantum states including
the fact that it is not possible to reduce maximal extendibility of quantum states even if
one acts with one-way LOCC operations on multiple states [126, 128]. We underpin those
results with geometric observations about structures of multi-party settings which posses
substantial symmetric extendible components in their sub-spaces [128]. It is also discussed
how separability of quantum states is related to symmetric extendibility and how efficiently
a symmetric extension of a quantum state can be found by means of convex optimization
methods and implemented in semi-definite programming.

The key results related to geometry of symmetric extendible set, symmetric extendibility
of composite systems and behavior of this property under 1-LOCC operations were published
in [126, 128].

4.1 Geometry of the symmetric extendible set

The concept of symmetric extendibility of a quantum state ρAB1 ∈ B(HA ⊗HB) can be gen-
eralized to a multipartite setup of its symmetric extension ρAB1...BkBk+1 ∈ B(HA ⊗H ⊗k+1

B )

(k > 1) with a permutational invariance on B-parties:
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4.1 Geometry of the symmetric extendible set 35

𝑆1 

𝑆2 

𝑆n 

𝑆0 

Fig. 4.1 The space of quantum states can be decomposed by the relation of k-extendibility. S0
denotes the set of all non-extendible states (the blue area) whereas Sn the set of states having
n-rank symmetric extensions.

Definition 4.1.1 [128] A state ρAB1 ∈ B(HA ⊗HB) is k-extendible if there exists such an
extension ρAB1...BkBk+1 ∈ B(HA ⊗H ⊗k+1

B ) so that ρABi = ρAB1 (for any 1 < i ≤ k+1) and
ρAB1...BkBk+1 = ρABπ(1)...Bπ(k)Bπ(k+1) for any permutation π on B-parties. The state ρAB1...BkBk+1

is called k-rank symmetric extension of ρAB1 .

By 0-extendible states we will denote those that are not symmetrically extendible at
all. One could note that it might be useful to partition the set of all symmetric extendible
states SE by relation of k-extendibility. If Sk denotes a convex set [126] of all states being
k-extendible, then there holds the natural inclusion relation [Fig. 4.1] reflecting the fact
that every 2-extendible state is also 1-extendible but the converse does not hold for all
1-extendible states etc.:

S1 ⊃ S2 ⊃ . . .⊃ Sk (4.1)

Of a great importance is the fact that for a given ρAB ∈ SE there may exist different
k-rank symmetric extensions (i.e. extensions ρABB1...Bk invariant due to permutations on
B-parties) so that the property is not unique and one could represent the set of appropriate
symmetric extensions by means of equivalence classes given by the relation B(HA ⊗HB) ∋
ρAB ∼ ρ ∈ B(HA ⊗H

⊗(k+1)
B ) if and only if ρ is a k-rank symmetric extension of state ρAB.
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4.1 Geometry of the symmetric extendible set 36

As the trivial example note that for ρAB = 1
2(|00⟩⟨00|+ |11⟩⟨11|) at least the following are

extensions of rank one: |GHZ⟩= 1√
2
(|000⟩+ |111⟩) and ρ = 1

2(|000⟩⟨000|+ |111⟩⟨111|).
For k-extendible states it might be useful to introduce an operator swapping k+1 particles:

Pπ = ∑
i1i2...ik+1

|i1i2 . . . ik+1⟩⟨π(i1)π(i2) . . .π(ik+1)| (4.2)

where swapping is performed for an arbitrary permutation π on B-part. Hence, there holds a
general relation for k-extendibility that explicitly derives set Sk: ∀π idA⊗PπρAB1...BkBk+1idA⊗
P†

π = ρAB1...BkBk+1 .

Example 4.1.2 As a 1-extendible state we present ρAB = 1
3 |00⟩⟨00|+ 2

3 |Φ+⟩⟨Φ+| that obvi-
ously possess 1-rank symmetric purification to W-state |W ⟩= 1√

3
(|001⟩+ |010⟩+ |100⟩).

We could derive for this example a general form of n-extendible state ϒAB(n) that can be
extended to W-like state:

ϒAB(n) =
n

n+2
|00⟩⟨00|+ 2

n+2
|Φ+⟩⟨Φ+| (4.3)

where |Φ+⟩= 1√
2
(|01⟩+ |10⟩).

Interestingly, one can simply show that for e.g. GHZ-like n-partite states being a symmetric
extension of ρAB = 1

2(|00⟩⟨00|+ |11⟩⟨11|) there holds ρAB = limn→∞ ρAB(n) that is in agree-
ment with theorems [161] stating implicitly that ρ is separable if and only if it is ∞-extendible
(where ρAB(n) is derived from n-partite GHZ state by tracing out all parties beside A and B).

In the following, we present two different approaches to the problem of representation
of symmetric extensions in the extended spaces. The first approach is widely used in
previous papers (see [55, 56, 161]) on extendibility of quantum states. Every bipartite state
ρAB ∈ B(HA ⊗HB) where HA = Cm and HB = Cn can be represented in the basis of
generators of group SU(m)⊗SU(n) as follows:

ρAB = γσ
0
A ⊗σ

0
B +∑

i>0
αiσ

0
A ⊗σ

i
B + (4.4)

+ ∑
j>0

β jσ
j

A ⊗σ
0
B + ∑

i, j ̸=0
ζi jσ

i
A ⊗σ

j
B

where σ i
B are basis elements of SU(n) and respectively σ i

A for SU(m). The coefficients are
real and elements of the basis satisfy relations: Tr[σ i

Sσ
j

S ] = ηSδi j and Tr[σ i
S] = δ1i with
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4.1 Geometry of the symmetric extendible set 37

S = {A,B}. Therefore, one could derive a general representation of all 1-rank symmetric
extensions which results also from the completeness of the aforementioned basis:

ρAB1B2 = ∑
i, j

αi jσ
i
A ⊗σ

j
B1
⊗σ

j
B2
+ (4.5)

+ ∑
i jk, j<k

βi jk(σ
i
A ⊗σ

j
B1
⊗σ

k
B2
+σ

i
A ⊗σ

k
B1
⊗σ

j
B2
)

and further, for general case of k-extendibility:

ρAB1...Bk+1 = ∑
i, j

αi jσ
i
A ⊗σ

j
B1
⊗ . . .⊗σ

j
Bk+1

+ (4.6)

∑
i,i1<i2<...<ik+1

∑
σ

βii1...ik+1σ
i
A ⊗σ

σ(i1)
B1

⊗ . . .⊗σ
σ(ik+1)
Bk+1

The latter approach that we will utilize in this thesis is based on partitioning a space on
which Bobs’ states operate into a symmetric and antisymmetric subspace.

In the following, we will prove some lemmas about Schmidt decomposition of k-rank
pure symmetric states that support more powerful theorem about properties of symmetric
extendible states in due course.

Lemma 4.1.3 [128] Let ρAB1 ∈B(HA⊗HB1) be symmetrically extendible to a k-rank pure
extension |ΨAB1...Bk+1⟩ ∈ HA ⊗H ⊗k+1

B1
(k ≥ 1) then there exists a Schmidt decomposition:

|ΨAB1...Bk+1⟩= ∑
i

αi|φ AB1
i ⟩|ψB2...k+1

i ⟩ (4.7)

where {|φ AB1
i ⟩},{|ψB2...k+1

i ⟩} are orthonormal sets and |ψB2...k+1
i ⟩ ∈ Symk(HB1)

⊕
Asymk(HB1)

(where Sym stands for the symmetric and Asym for the antisymmetric sub-space respectively).

Proof. Since IAB1 ⊗ Pπ |ΨAB1...Bk+1⟩⟨ΨAB1...Bk+1|IAB1 ⊗ P†
π = |ΨAB1...Bk+1⟩⟨ΨAB1...Bk+1| and

|ΨAB1...Bk+1⟩ is a pure symmetric extension, then:

∀π IAB1 ⊗Pπ |ΨAB1...Bk+1⟩=±|ΨAB1...Bk+1⟩

where Pπ operates only on B2 . . .Bk+1 of the system, which implies ∑i αi|φ AB1
i ⟩Pπ |ψ

B2...k+1
i ⟩=

±∑i αi|φ AB1
i ⟩|ψB2...k+1

i ⟩. However, since the state is a symmetric extension, the above Schmidt
decomposition is invariant due to any permutation on B-part and |φ AB1

i ⟩ indexes uniquely the
|ψB2...k+1

i ⟩ states so Pπ transforms |ψB2...k+1
i ⟩ onto itself. Therefore, the second multiplicands
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4.1 Geometry of the symmetric extendible set 38

of Schmidt decomposition represent either symmetric or antisymmetric orthonormal states.
�

While the spectral conditions for 1-rank symmetric extensions were stated in [123], we
derive general statements about spectral conditions for k-extendible states basing on the
observation about decomposition of symmetric states:

Observation 4.1.4 [128] Every pure normalized state |Ψ⟩ ∈ Symk+1⊕Asymk+1(HB1) of
k+1-partite system can be decomposed to the following Schmidt form:

∀1<l<k|Ψ⟩= ∑
i
|φ B1...Bl

i ⟩|φ Bl+1...Bk+1
i ⟩

where the multiplicands form respectively symmetric or antisymmetric orthonormal sets.

Proof. One can conduct the proof similarly to (4.1.3). Since ∀πPπ |Ψ⟩⟨Ψ|Pπ = |Ψ⟩⟨Ψ|,
then for all possible permutations the operation cannot change Schmidt decomposition of

∑i |φ
B1...Bl
i ⟩|φ Bl+1...Bk+1

i ⟩. Furthermore, due to assumed symmetry property of |Ψ⟩, a state of
any l-subsystem B1 . . .Bl represented by the first multiplicand is permutationally invariant
and the same is applied to the second multiplicand. �

This observation with application of lemma 4.1.3 can be effectively used to generate
k-extendible states.

Observation 4.1.5 Let ρAB1 be k-extendible to a pure symmetric state |ΨAB1...Bk+1⟩ then for
ordered vectors of eigenvalues of ρAB1 and ρB2...Bk+1 there holds1:

λ
↓(ρAB1) = λ

↓(ρB2...Bk+1) (4.8)

Proof. The proof is immediate applying Schmidt decomposition and results of (4.1.3). �

Symmetric extendibility of composite systems

In this section we explore symmetric extendibility of complex systems consisting of multiple
pairs of quantum states. Thus, all following statements are vital for protocols acting on such
quantum systems.

One may state a non-trivial question if it is feasible to achieve symmetric extendibility
of a composition of quantum states when at least one of them is not-symmetric extendible.
The result of this question is crucial both for quantum security applications and measuring
quantum entanglement. The following lemma casts some light on this field:

1For a vector x, we order its components in decreasing order, i.e.: x1 ≥ x2 ≥ . . .≥ xn and then write x↓.
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4.1 Geometry of the symmetric extendible set 39

Lemma 4.1.6 [128] If ρAB ∈ B(H N
A ⊗H M

B ) is not symmetrically extendible state then
there does not exist any such a state ρA′B′ ∈ B(H K

A′ ⊗H L
B′ ) that ρAB ⊗ ρA′B′ would be

symmetrically extendible in respect to BB′ subsystem.

Proof. Conversely, let ρABA′B′ = ρAB ⊗ρA′B′ be a symmetrically extendible state acting on
B(H N

A ⊗H M
B ⊗H K

A′ ⊗H L
B′ ). Therefore, one notes that ρABA′B′ after swapping to ρAA′BB′

can be represented by method (4.5) in an appropriate basis including generators of group
SU(N)⊗ SU(K)⊗ SU(M)⊗ SU(L) and further, can be extended to a 1-rank symmetric
extension ρAA′BB′B̃B̃′ where we extend BB′ part as follows:

ρAA′BB′B̃B̃′ = ∑
i jkl

αi jklTi jklkl + (4.9)

+ ∑
i jklmn

βi jklmn(Ti jklmn +Ti jmnkl)

with tensors Ti jklmn = σ i ⊗σ j ⊗σ k ⊗σ l ⊗σm ⊗σn. We derive the state ρABB̃ of system
ABB̃ tracing out that of A′B′B̃′. For the fact that Tr[σ i ⊗σ j ⊗σ k] = Tr(σ i)Tr(σ j)Tr(σ k)

and Tr[σ i] = δ0i after tracing out only elements with σ0 = I remain, namely, one obtains:

ρABB̃ = ∑
ik

αi1k1Ti1k1k1 + (4.10)

+ ∑
ikm

βi1k1m1(Ti1k1m1 +Ti1m1k1)

Hence, ρABB̃ is 1-rank symmetric extension of ρAB that is in contradiction with the assumption
that the latter is not symmetrically extendible. �

Corollary 4.1.7 [128] If ρAB ∈B(H N
A ⊗H M

B ) is at most k-extendible state then there does
not exist any such a state ρA′B′ ∈ B(H K

A′ ⊗H L
B′ ) that ρAB ⊗ρA′B′ would be k+1- extendible

in respect to BB′ subsystem.

Lemma 4.1.8 [128] Assume that ρAB ∈B(HA⊗HB) is not symmetric extendible and there
exists a local operation F acting on A-part such that σAB = (F⊗ id)ρAB(F† ⊗ id)/Tr[(F⊗
id)ρAB(F† ⊗ id)] is a symmetric extendible state.

Then for any local operations A and B acting on A and B part of the system:

A=U


α0

α1
. . .

αi

U† (4.11)
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4.1 Geometry of the symmetric extendible set 40

Λ(ρAB) =
A⊗ IρABA† ⊗ I

Tr(A⊗ IρABA† ⊗ I)
(4.12)

where for all i (0 ≤ i ≤ dimHA), 0 < αi ≤ 1 and U denotes an unitary operation (B
has a corresponding structure), there exists a local operation F̃ such that σ̃AB = (F̃⊗
B−1)Λ(ρAB)(F̃† ⊗B†−1)/Tr[(F̃⊗B−1)Λ(ρAB)(F̃† ⊗B†−1)] is symmetric extendible and
rankF= rankF̃.

Proof. To prove this lemma, it suffices to note that A=UDU† with a diagonal matrix
D. Further, we observe that F̃= F◦UD−1U† where D−1D = id. The latter is possible due
to the condition that for all i there holds: 0 < αi ≤ 1 and we easily observe that F= F̃◦A.
This brings us to conclusion that (F̃⊗ id)Λ(ρAB)(F̃†⊗ id) is a symmetric extendible operator
(after normalization becoming a physical state). If Bob acts in the process with a local
operation B, to ensure that the final state σ̃AB is symmetric extendible, he has to act with
a reversed local operation B−1 on his site (we ensured that the local operation B is also
reversible). �

Remark. It casts some light on a fact that local operations on Alice’s side actually do not
change the amount of symmetric extendibility embedded in a state.

This lemma is of a great importance for private security and entanglement distillation
studies, as we can always build a symmetric extension ΓABE of a state σ̃AB which means that
Eve potentially has a state ρE = ρB = TrAσ̃AB and operates on such a space. To support this
statement one can further derive the corollary about extendibility of any quantum state with a
proposal of new extendible number of a quantum state:

Definition 4.1.9 [128] For any ρAB, ηSE(ρAB) = maxF rankF is called the extendible num-
ber of a state ρAB where (F⊗ id)ρAB(F† ⊗ id) is a symmetric extendible operator and F is a
local operation acting on A (dimF states for the dimension of the image of F).

Corollary 4.1.10 [128] Any state ρAB ∈ B(HA ⊗HB) with extendible number ηSE can be
extended to a state ρABE ∈ B(HA ⊗HB ⊗HE)(dimHB = dimHE ) for which there exists
a filtering operation F on A so that (F⊗ id)ρABE(F† ⊗ id) is invariant due to permutation of
B and E.

Naturally, there holds: if ηSE(ρAB) = rank(ρA), then the state is symmetric extendible.
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4.2 Set of symmetric extendible states is closed under 1-LOCC 41

4.2 Set of symmetric extendible states is closed under 1-
LOCC

We will present now a generalized version of a lemma [126] up to k-extendible maps stating
that no matter what one-way operations Alice and Bob perform, the symmetric state shared
between Alice and Bob will keep its symmetric extendibility.

Note that the set of extendible states is convex and compact which can be obviously
obtained from the extendibility of any convex combination of extendible states. Subsequently,
we show that the set is closed under local operations and one-way classical communication
(1-LOCC) in the following lemma:

Lemma 4.2.1 [126] The set EAB of symmetrically extendible states is mapped under 1-LOCC
for Λ : B(HAB)→ B(HÃB̃) into the set of symmetrically extendible states EÃB̃.

Proof.

ρAB ⊂ EAB ⇒∃ρABB′ ρABB′ = ρAB′B ∧TrB′ρABB′ = ρAB

⇒ TrB̃′Λ(ρABB′) = ρÃB̃ ⊂ EÃB̃

where

Λ(ρABB′) =
K,L

∑
i, j=1

(IÃ
2 ⊗W B→B̃

ji ⊗W B′→B̃′
ji )

×(V A→Ã
i ⊗ IB

1 ⊗ IB′
1 )ρABB′

×(V A→Ã†
i ⊗ IB

1 ⊗ IB′
1 )

×(IÃ
2 ⊗W B→B̃†

ji ⊗W B′→B̃′†
ji )

and operations acting on Bob’s side are trace-preserving due to the necessity of non-breaking
the property of extendibility. �

Namely, it is not possible to reduce the maximal extendibility 2 of a quantum state by
means of 1-LOCC even if the operation is performed on multiple copies (cf. [126]). The
following lemma indicates a fact that one cannot produce maximally k-extendible state from
maximally n-extendible state (when n > k) by means of 1-LOCC Λ→(·) on any number of
pairs and is a generalization of the above one:

2A maximal symmetric extension of a state ρAB1 stands for such a ρAB1...Bn (n > 1) so that there does not
exist any symmetric extension ρAB1...Bk where k > n.
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4.2 Set of symmetric extendible states is closed under 1-LOCC 42

Lemma 4.2.2 [128] Let Λ→ be a 1-LOCC quantum operation (not necessarily trace-
preserving):

Λ→(ρ) = ∑
i j
(I ⊗Bi j)(Ai ⊗ I)ρ(Ai ⊗ I)†(I ⊗Bi j)

†

where ∑i A†
i Ai ≤ I and ∑ j B†

i jBi j = I for all i since Bob cannot communicate the outcome of
a probabilistic operation back to Alice. If ρ is maximally k-extendible state then Λ→(ρ) is
n-extendible and n ≥ k.

One may raise further a very important question how to create the property of symmetric
non-extendibility both in case of single states and collective systems using only local op-
erations or additionally one-way communication that naturally will have implications for
distillability and capacities of corresponding states and channels.

Lemma 4.2.3 [128] Let ρAB ∈ B(HAB) be a state possessing at most k-rank symmetric
extension where k < ∞ then there does not exist any 1-LOCC protocol represented by
ΛA→BC : B(HABC)→ (H̃ABC) (not necessarily trace-preserving):

ΛA→BC(ρAB ⊗σC) = ρ̃ABC (4.13)

so that ρ̃ABC is a symmetric extension of ρAB and σC ∈ B(HC) is an additional resource on
Bob’s side, i.e. TrCρ̃ABC = ρAB.

Proof. Since ρAB is k-extendible, one can assume that its symmetric extension is realized to
ρABB1...Bk but B1 . . .BK-part is possessed by Eve. Obviously no communication between Eve
and Bob in such a scenario is allowed so that Bob cannot detect locally Eve and further, since
the set of symmetric extendible states is closed under 1−LOCC operations [126] even if Alice
and Bob had engaged one-way communication they cannot break symmetric extendability of
ρAB and so cannot eliminate Eve if the symmetric extension had been realized.

Therefore, assuming that on the contrary ΛA→BC enables creation of a symmetric exten-
sion:

ΛA→BC ⊗ idB1...Bk(ρABB1...Bk ⊗σC) = Ω (4.14)

resulting state Ω would be k+1-symmetric extension of ρAB that contradicts the lemma’s
assumption about extendibility of this state and completes the proof. �

Remark. The aforementioned statements for n copies of symmetric extendible states
holds as well in asymptotic regime for n → ∞ due to the results of 4.1.6 that can be extended
for an infinite case.
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4.3 The separability problem vs. symmetric extendibility 43

As a result of the above lemmas we can conclude that in general for creation of any
symmetric extension one needs to engage two-way communication. However, it is interesting
to note that LOCC operations with finite bidirectional communication can be simulated
with stochastic local operations by including the expected communication bits in the shared
randomness, and succeeding only when these shared random bits and the to-be-communicated
bits coincide [120]. In this context, it might be a subject of further research to analyze
how symmetric extendibility behaves under such stochastic operations and how easily the
extensions can be created. These results will be vital for cryptographic applications.

4.3 The separability problem vs. symmetric extendibility

It is easy to note that a separable state ρAB = ∑i piρ
A
i ⊗σB

i can be symmetrically extended to
n Bobs ρn

AB = ∑i piρ
A
i ⊗ (σB

i )
⊗n for any n ≥ 1, i.e. any separable state is ∞-extendible. Thus,

one can presume that there is a strong relation between the concept of symmetric extendibility
and separability of a quantum state. It is based on the intuition that for the pair of quantum
states ρAB ∈ B(HA ⊗HB) and σAB ∈ B(HA ⊗HB) where maximal extendibility of σAB is
greater than that of ρAB, the state σAB is less entangled than ρAB (in terms of an appropriate
entanglement measure, e.g. based on a distance to the separability states set).

Although it is easy to observe that every separable state is ∞-extendible, it is not obvious
in the asymptotic regime if every ∞-extendible state is separable. The positive answer to this
question for an asymptotic regime is a conclusion of the theorem proved by R. Werner, M.
Fannes et al. in [67, 138] and is based on observations arose on the basis of the famous de
Finetti theorem [45].

The classical de Finetti theorem states that for any symmetric probability distribution
on m random variables PX1X2...Xm which is infinitely exchangeable (i.e. it can be extended to
n-partite distribution for all n > m and is invariant under any permutation π of the random
variables Pπ(X1)π(X2)...π(Xm) = PX1X2...Xm), one can find an expansion:

PX1X2...Xm =
∫

Pm
X dµ(PX) (4.15)

where dµ is a measure on the set of probability distributions of one variable PX .
We present now a quantum analogue of de Finetti theorem [160, 93, 133, 29, 72, 73]. A

state ρm ∈ B(H ⊗m) is exchangeable if it is invariant under any permutation πm on m copies
of H (i.e. πmρmπ†

m = ρ) and for any n, there exists an extended state ρm+n ∈ B(H ⊗m+n)

which is permutationally invariant under πm+n and: ρm = Trnρm+n (a partial trace over n
additional systems).
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4.3 The separability problem vs. symmetric extendibility 44

Theorem 4.3.1 (Quantum de Finetti Theorem) Let ρm ∈ B(H ⊗m) be an exchangeable
density matrix, then there exists a unique probability distribution P(ρ) over the space S of
quantum states on H so that:

ρm =
∫

S
ρ
⊗mP(ρ)dµ(ρ) (4.16)

where P(ρ)≥ 0 and the probability distribution is normalized
∫

S P(ρ)dµ(ρ) = 1 with dµ(ρ)

being a suitable measure on the space S.

Exchangeable states ρm create a specific sequence of states {ρm}+∞

m=1 called sometimes
exchangeable de Finetti sequence. We can easily observe that for the exchangeable states the
above expansion results in a convex combination of product states, hence, we can proceed to
the following strong statement:

Theorem 4.3.2 [67, 138] A state ρAB1 ∈ B(HA ⊗HB1) is separable if and only if it has
symmetric extensions ρAB1...Bn ∈ B(HA ⊗HB1 ⊗ . . .⊗HBn) for any n = 2,3, . . . ,∞ (i.e. is
∞-extendible).

Since every separable state is PPT (as discussed in previous sections, it is easy to observe
that for every separable state ΓB(ρAB) = ∑i piρ

A
i ⊗(σB

i )
T = ∑i piρ

A
i ⊗σB

i = ρAB), sometimes
it might be useful to introduce the concept of PPT symmetric extensions [55, 56]. PPT sym-
metric extension of ρAB1 is such a symmetric extension ρAB1...Bk+1 that Γ{Bi}(ρAB1...Bk+1)≥ 0,
i.e. is positive under any partial transposition of any subset of its sub-systems.

In a natural way, one can build a hierarchy of symmetric extensions:

Theorem 4.3.3 Let ρAB1 ∈B(HA⊗HB1) has a PPT symmetric extension ρAB1...Bn ∈B(HA⊗
H ⊗n

B1
) to n copies of B-subsystem. Then ρAB1 has a PPT symmetric extension to (n− 1)

copies of B.

Proof. For any state ρAB1...Bn−1 = TrBρAB1...Bn (reduction over one of the copy of B), it is easy
to observe that ρAB1...Bn−1 inherits the property of being a symmetric extension.

Now, we will consider PPT-property of that state, assume that ρAB1...Bn−1 is not PPT. Then
there is such a subset S of the subsystems that ΓS(ρAB1...Bn−1)< 0. Let |φ⟩ ∈ HA ⊗H ⊗n−1

B1

be the eigenvector with a corresponding negative eigenvalue of this PPT problem and let
{|i⟩}dB

i=1 be the basis for the system B which was traced out from ρAB1...Bn . Since ρAB1...Bn is
PPT, then for all i: ⟨φ |⟨i|ΓS(ρAB1...Bn)|i⟩|φ⟩ ≥ 0 and one gets immediately:

dB

∑
i=1

⟨φ |⟨i|ΓS(ρAB1...Bn)|i⟩|φ⟩= ⟨φ |TrB[ΓS(ρAB1...Bn)]|φ⟩ ≥ 0 (4.17)

which contradicts the assumption that ΓS(ρAB1...Bn−1)< 0. �
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4.4 Hierarchy of separability tests 45

4.4 Hierarchy of separability tests

Basing on the findings of the previous section we can build in a natural way a hierarchy
of separability tests [55, 56] searching for PPT k-rank symmetric extensions as a PPT
modification [Fig. 4.2] of the algorithm searching for k-rank symmetric extension for an
input state ρAB ∈ B(HA ⊗HB).

Namely, the first test verifies if the state is PPT. If no, then the state ρAB is entangled.
If yes, the state can be separable or entangled and it runs the second test to check if there
exists PPT symmetric extension (in a standard algorithm that would be just search for 2-rank
symmetric extension) ρABB ∈ B(HA ⊗H ⊗2

B ). If no, then the state naturally is entangled
etc. The n-th test searches for PPT symmetric extension ρAB...B ∈ B(HA ⊗H ⊗n

B ). It is
immediate to observe that each iteration is at least as powerful as all the preceding ones in
detecting entanglement [55, 56].

As mentioned, one could just look for symmetric extensions of quantum states without
verifying PPT-property of the extension, yet, as proved in [55, 56] introducing this condition
gives better operational results due to the strength of this additional condition.

The hierarchy of separability tests can be implemented as a semi-definite program (SDP)
by means of convex optimization methods. Moreover, it was also proved that the hierarchy is
complete, i.e. for any entangled state ρAB, the algorithm finishes with a positive result at a
finite n. We will use these methods further3 to find a whole class of symmetric extensions of
isotropic states and building new entanglement monotone basing on them after modification
of this SDP.

However, in this context we cannot forget that solving separability problem is of NP-hard
class (i.e. it is at least as difficult as solving any non-deterministic polynomial-time problem -
NP - in terms of computational complexity) which is also the case of the aforementioned
algorithm, scaling polynomially with the dimensions of the subsystems but finishing at
unknown step n.

4.5 Convex optimization for searching symmetric extensions

Searching for symmetric extensions of a given state is actually a particular type of a con-
vex optimization problem, that can be implemented in semi-definite programming (SDP).
A typical SDP is one of the convex optimization [22] form subjected to a linear matrix
inequality:

3Vide sec. Symmetric extendibility of isotropic states.
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Yes
 

Is  𝜌AB a PPT state?
 

𝜌AB has a PPT 
extension 𝜌ABB1

 to two 
copies of B?

 

𝜌AB is entangled
 

𝜌AB has a PPT 
extension  𝜌ABB1

…Bn
 to 

n copies of B?
 

𝑛 → +∞
 

𝜌AB is separable for 
n→ +∞

 

 

Yes
 

Yes
 

No
 

No
 

No
 

Fig. 4.2 The hierarchy of separability tests algorithm looking at each step for PPT symmetric
extension of n-rank for a state ρAB. If a state fails a particular step, it is entangled.
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4.5 Convex optimization for searching symmetric extensions 47

minimize cT x (4.18)

sub ject to F(x)≥ 0,

where c is a given vector, x = (x1, . . . ,xn) and cT x creates the objective convex function. The
positive semi-definite matrix F(x) = F0 +∑i xiFi (Fi are hermitian matrices) put constraints
on the optimization problem. The minimization is performed over vectors x and the set of
solutions of the problem is convex.

We will show now how to construct [55, 56] SDP for symmetric extensions. As discussed
previously4, any bipartite state ρAB ∈ B(HA ⊗HB) can be represented in the basis {σA

i ⊗
σB

j } as ρAB = ∑i j ρi jσ
A
i ⊗σB

j where ρi j = α
−1
A α

−1
B Tr[ρABσA

i ⊗σB
j ] (Tr[σX

i σX
j ] = αX δi j for

X = {A,B}). The algorithm performs search for an extension ρABB ∈ B(HA ⊗HB ⊗HB):

ρABB = ∑
i jk,,i<k

ρi jk{σ
B
i ⊗σ

A
j ⊗σ

B
k +σ

B
k ⊗σ

A
j ⊗σ

B
i }+∑

k j
ρk jkσ

A
k ⊗σ

B
j ⊗σ

A
k (4.19)

To ensure that ρABB is a symmetric extension of ρAB, we require additionally: TrBρABB = ρAB.
Due to the relations between {σi} operators we get ρi j1 = ρi j. Now the linear constraints
for the optimization problem comes from the requirement that the partial transposes and the
symmetric extension are positive semi-definite. Let us define:

F0 = ∑
j

ρ1 jσ
B
1 ⊗σ

A
j ⊗σ

B
1 + ∑

i=2, j=2
ρi j(σ

B
i ⊗σ

A
j ⊗σ

B
1 +σ

B
1 ⊗σ

A
j ⊗σ

B
i ) (4.20)

Fi ji = σ
B
i ⊗σ

A
j ⊗σ

B
i i ≥ 2,

Fi jk = (σB
i ⊗σ

A
j ⊗σ

B
k +σ

B
k ⊗σ

A
j ⊗σ

B
i ) k > i ≥ 2,

and we can re-write the linear constraint ρABB ≥ 0 of our SDP (we put all the indexes {i jk}
under J-index) in a more compact form:

F(x) = F0 +∑
J

xJFJ ≥ 0 (4.21)

and the coefficients ρi jk build the vector x.
Since the matrix ρABB is a symmetric extension over B-parties, we require that ΓA(ρABB)≥

0 and ΓB(ρABB)≥ 0 (PPT conditions), and in conclusion we can put the final condition for

4Vide sec. Geometry of symmetric extendible set.
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4.5 Convex optimization for searching symmetric extensions 48

SDP:
M = ρABB ⊕ΓA(ρABB)⊕ΓB(ρABB)≥ 0. (4.22)

and we actually resolve a feasibility problem M ≥ 0 (4.22) with an objective function
equal zero (i.e. c = 0 and cT x = 0) [22, 55, 56] that is a modification of standard convex
optimization problem.

For higher levels of the hierarchy, the algorithm generates the symmetric matrices FJ of
higher dimension and then builds the block diagonal matrix M for which the optimization is
performed so it searches for an appropriate k-rank symmetric extension and verify if it has
PPT-property.

Example 4.5.1 As a special example of application of these observations we use below
bipartite state ρAB that is extendible for F ≤ 1

2 , moreover, notice that in this range the state
may be quite strongly entangled [126]:

ρAB =
F
3

P++
1−F

3
(|01⟩⟨01|+ |20⟩⟨20|+ |21⟩⟨21|) (4.23)

Note that filtering on Bob’s side the state ρAB, and in general any such a state, does
not change the extendibility, what may be simply proved. Applying filtering with W =

diag
[
1, 1√

F
, 1√

2−F

]
we get a state ρ̃AB and a maximally mixed state ρ̃A on Alice’s side:

ρ̃AB =
W ⊗ IρABW † ⊗ I

Tr{W ⊗ IρABW † ⊗ I}
, ρ̃A =

I
3

(4.24)

ρ̃AB =



F
3 0 0 0

√
F

3 0 0 0 F
3
√

2−F

0 1−F
3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0√
F

3 0 0 0 1
3 0 0 0

√
F

3
√

2−F

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1−F

3(2−F) 0 0

0 0 0 0 0 0 0 1−F
3(2−F) 0

F
3
√

2−F
0 0 0

√
F

3
√

2−F
0 0 0 F

3(2−F)



(4.25)

For any of the above states, the extension can be found by means of linear optimisation
with help of SEDUMI module [157]. We have found the extension of ρAB very easily, in fact
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4.5 Convex optimization for searching symmetric extensions 49

we have for F ≤ 1
2 the following spectral decomposition of the extension ρBAB:

|ϕ0⟩= |020⟩ and λ0 =
1−F

6
|ϕ1⟩= |001⟩+ |100⟩+ |111⟩+ |122⟩+ |221⟩ and λ1 =

F
3

|ϕ2⟩= |021⟩ and λ2 =
1−2F

6
|ϕ3⟩= |101⟩ and λ3 =

1−2F
3

|ϕ4⟩= |120⟩ and λ4 =
1−F

6
|ϕ5⟩= |121⟩ and λ5 =

1−2F
6

(4.26)

where generally eigenvalues have to fulfil the following conditions so that after tracing out
Brigitte we obtain ρAB: {

λ0 +λ4 =
1−F

3
λ2 +λ5 =

1−2F
3

(4.27)

According to these constructions, we may find another state ρBAB that is nearest (in the
set of states constructed on the above eigenvectors) to singlet in a sense of maximizing fidelity
(F = ⟨Ψ+|ρAB|Ψ+⟩) of its local reduction ρAB:{

ρBAB = 1
5 |ϕ1⟩⟨ϕ1|

ρAB = 3
5P++ 1

5 |01⟩⟨01|+ 1
5 |21⟩⟨21|

(4.28)

As a generalization of such states, we construct states extreme in the above sense for
arbitrary dimension:

ϒ =
d

2d −1
P++

1
2d −1

d−1

∑
i=1

|i 0⟩⟨i 0| (4.29)

We state now the following question as a natural conclusion of above analysis:
Question: What is the maximal possible value of fidelity of ρ that we may obtain from states
for which Q→ = 0 (a zero one-way quantum channel capacity5)?

5Vide chap. Quantum Channels
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Chapter 5

Isotropic states and their symmetric
extensions

In this chapter we present analytically derived symmetric extensions of isotropic states
which are important for further definition of new entanglement measures based on symmetric
extendibility, due to the fact that every state can be transformed under U⊗U∗ - twirling into an
isotropic state and for maximally entangled singlets, the nearest symmetric extendible states
from the set of symmetric extendible states set are the isotropic states [126]. Furthermore,
we define a new entropic measure [126] based on a normalized relative entropy distance to
the set of symmetric extendible states in analogy to the relative entropy of entanglement.

5.1 Isotropic states

In this section we present a unique class of quantum states - Werner states and isotropic
states. R. Werner [168] analyzed bipartite quantum states ρ ∈ B(H ⊗H ) which do not
changes their structure if their subsystems are exposed to the same local unitary operations:

ρ =U ⊗UρU† ⊗U† (5.1)

The structure of the Werner states is as follows:

ρW (α) =
I +αP

d2 +αd
(5.2)

where P = ∑
d−1
i, j=0 |i j⟩⟨ ji|. The state is separable for 1 ≥ α ≥− 1

d (i.e. it is separable if and
only if it is PPT), NPT for − 1

d > α ≥ 1 and two-way 1-distillable1 for −1
2 > α ≥−1. For a

1Vide sec. Distilling quantum entanglement.
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5.2 Symmetric extendibility of isotropic states 51

bipartite qubit state ρW ∈ B(C2 ⊗C2), we get [135]:

ρW = α|Ψ−⟩⟨Ψ−|+(1−α)
I
4

(5.3)

where −1
3 ≤ α ≤ 1 and |Ψ−⟩= 1√

2
(|00⟩− |11⟩).

The states are so specific due to the following property. Namely, any state ρ , subjected
to random bilocal unitary transformations of the form U ⊗U , becomes a Werner state. The
random unitary operations are called twirling operations:

ρW =
∫

dUU ⊗UρU† ⊗U† (5.4)

The second class of states considered in this thesis creates so-called isotropic states [139].
These are the only states invariant under U ⊗U∗ transformation. We can derive them as
a higher-dimensional generalization of ρW ∈ B(C2 ⊗C2), interchanging |Ψ−⟩ with |Ψ+⟩
[101]:

ρ(α,d) = αP++(1−α)
I

d2 (5.5)

where − 1
d2−1 ≤ α ≤ 1. If we are interested in the question of how much singlet fraction

F = TrP+ρ is embedded in this state, we get the following broadly used form:

ρ(d,F) =
d2

d2 −1
[(1−F)

I
d2 +(F − 1

d2 )P+] (5.6)

The state is a mixture of a singlet state P+ = |Ψ+⟩⟨Ψ+| and a pure noise with a representation
ρnoise = I/d2. It is the only state invariant under U ⊗U∗ transformation. The state is NPT if
F > 1

d and the parameter F is invariant under U ⊗U∗ twirling.
Finally, in analogy to U ⊗U twirling, any state exposed to U ⊗U∗ twirling becomes an

isotropic state ρiso:

ρiso =
∫

dUU ⊗U∗
ρU† ⊗U∗†. (5.7)

5.2 Symmetric extendibility of isotropic states

Using techniques [62], we show [126] that the nearest state to a singlet in an arbitrary
dimension is a state ρ(d,Fmax) from a subset of isotropic states ρ(d,F) [101] with fidelity
F ≤ Fmax for which those are symmetrically extendible:

Fmax =
d +1

2d
(5.8)
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5.2 Symmetric extendibility of isotropic states 52

ρ(d,F) =
d2

d2 −1
[(1−F)

I
d2 +(F − 1

d2 )P+] (5.9)

Indeed, following [62] one needs to analyze operators from a six dimensional non-commutative
C∗-algebra that are U ⊗U ⊗U-invariant and V(23)-invariant. Such operators S will be repre-
sented as a linear combination of the basis elements of the algebra: B= {S+,S−,S0,S1,S2,S3}
where for the trace condition one obtains [62] conditions for factors of the combination:
s2 = s3 = 0 and, further, from positivity: s0 = 1− s+− s−.

S = s+S++ s−S−+ s0S0 + s1S1 (5.10)

The matter of interest is now the tetrahedron in three-dimensional euclidian space of parame-
ters (s+,s−,s1) confined by the hyperplanes [62]: {h

′
1,h

′
2,h

′
3,h

′
4} in which exists the state

ΩABE giving the searched symmetric extendible reduction ρAB. For maximizing the distance
of the unknown state ρAB to singlet it suffices [126] to find the maximization over fidelity F̃
between the symmetric extension represented as ΩABE and virtually extended unnormalized
operator ρABB′ = P+⊗ I as F̃max = Tr[P+⊗ I ΩABE ] = Tr[P+ ρAB] = Fmax :

F+ = Tr[(P+⊗ I) S+]/Tr[S2
+] = 0

F− = Tr[(P+⊗ I) S−] = 0
F0 = Tr[(P+⊗ I) S0]/Tr[S2

0] = d/2d
F1 = Tr[(P+⊗ I) S1]/Tr[S2

1] = 1/2d

(5.11)

{
F̃ = F0 +

−→s ◦−→f
F̃max = max−→s ∈∆ F̃

(5.12)

where ∆ denotes the tetrahedron bounded by mentioned hyperplanes,
−→
f = [F+−F0,F−−

F0,F1] and −→s = [s+,s−,s0]. Normalization of parameters Fi inherits from the commutation
relations [62] between operators Si. Maximization results in −→s = [0,0,1] that relates to the
found aforementioned isotropic states ρAB = ρ(d,Fmax). The explicit form of the tripartite
symmetric extension of isotropic states ρ(d,Fmax) in the border of extendibility is [126]:

ΩABE =
1

2d
(S0 +S1) (5.13)

where [62]: {
S0 =

1
d2−1(d(X +V XV )− (XV +V X))

S1 =
1

d2−1(d(XV +V X)− (X +V XV ))
(5.14)
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for
|Φ⟩= ∑

i
|ii⟩ , X = |Φ⟩⟨Φ|⊗ I , V =V(23) = ∑

i jk
|i jk⟩⟨ik j|. (5.15)

It is important to notice that the same results can be obtained numerically by means
of linear programming methods that we have utilized to find the broad class of symmetric
extendible states.

5.3 Relative entropy and distance to the set of symmetric
extendible states

Distance measures are introduced to quantify generally distances between quantum states or
between a state and a specific subset of quantum states but they also bring more operational
application related to statistical distinguishability of quantum states. In particular, a funda-
mental issue relates to the distance of a given quantum state ρ ∈ B(H ) to the nearest (in a
sense of a chosen metric) separable state σ ∈ B(H ) from a set S of separable states in this
space S ⊂ B(H ), which is compact and convex.

This distance relates directly to the strength of entanglement shared between subsystems
of a system in a state ρ and we will find out in the following chapter that distance measures are
good candidates to quantify quantum entanglement. This concept is based on the intuition that
the closer to separable states a multipartite quantum state is localized, the less entanglement
it stores and for any separable state, its entanglement E(σ) = 0 2. On the other hand, we
predict that the states, which are close to each other, will generate similar statistical results
for the measurements performed on them.

There are many different proposals of distance measures introduced in quantum infor-
mation theory but we present below the most popular. For a given set of separable states
S ⊂ B(HA ⊗HB), the distance of a state ρ ∈ B(HA ⊗HB) to the nearest separable state
can be assessed by [13]:

Bures distance DBures(ρ) = minσ∈SDBures(ρ,σ), where D2
Bures(ρ,σ) = 2[1−

√
F(ρ,σ)]

with fidelity defined as: F(ρ,σ) = [Tr
√√

ρσ
√

ρ]2.

Hilbert-Schmidt distance DHS(ρ)=minσ∈SDHS(ρ,σ), where DHS(ρ,σ)=
√

Tr(ρ −σ)2.

Trace distance DTr(ρ) = minσ∈SDTr(ρ,σ), where DTr(ρ,σ) = 1
2Tr|ρ −σ |.

2Vide sec. Entanglement measures.
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5.3 Relative entropy and distance to the set of symmetric extendible states 54

The trace distance between ρ and σ is actually the variational distance of the probability
distributions generated by POVMs on these states:

DTr(ρ,σ) = max
V

DTr(P,S) (5.16)

where maximization is over all POVMs V on ρ and σ (which generates the probability
distributions P and S). As an application, one could try to decide if an unknown state equals
σ if no prior knowledge is given and only POVMs could be performed. As in case of other
measures, it is interesting to note that the trace distance is monotonic under CPTP maps Λ:
DTr(Λ(ρ),Λ(σ))≤ DTr(ρ,σ) and reflects also the strong convexity: DTr(∑i piρi,∑i qiσi)≤
DTr(P,S)+∑i piDTr(ρi,σi).

Another very popular measure, directly related with the Bures distance, is the fidelity
quantifying an overlap of two quantum states. For pure states |Ψ⟩ and |Φ⟩, the fidelity equals
the probability of passing the test by |Ψ⟩ whether it is |Φ⟩, and it reads:

F(P|Ψ⟩,P|Φ⟩) = |⟨Ψ|Φ⟩|2 (5.17)

In general, for mixed states ρ and σ :

F(ρ,σ) = [Tr
√√

ρσ
√

ρ]2 (5.18)

and if one of the states is pure, then F(|ψ⟩⟨ψ|,σ) = Tr(|ψ⟩⟨ψ|σ). Fidelity is also monotonic
under action of CPTP channels Λ:

F(Λ(ρ),Λ(σ))≥ F(ρ,σ) (5.19)

and moreover, there holds a very interesting property for pure extensions |ψ⟩ and |φ⟩ of
mixed states ρ and σ respectively:

F(ρ,σ) = max
|ψ⟩,|φ⟩

|⟨ψ|φ⟩|2 (5.20)

In this context, the next quantity - the relative entropy of entanglement is not a distance (as
it is not symmetric, i.e. R(ρ∥σ) ̸= R(σ∥ρ)), however, it is also used to quantify entanglement
of quantum states since it can be used to distinguish a given state ρ from the nearest separable
state:

DR(ρ) = minσ∈SR(ρ∥σ) (5.21)
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5.3 Relative entropy and distance to the set of symmetric extendible states 55

It is interesting to notice the relation between relative entropy and the trace distance [13]:

R(ρ∥σ)≥ 2DTr(ρ,σ)2 (5.22)

and as we will see further, the relative entropy of entanglement is an efficient upper bound
on distillable entanglement which is one of the key reason for such an interest in this matter.
Basing on these insights and monogamy of quantum entanglement, we introduced and
developed in [126] the concept of a distance of a quantum state to the nearest symmetric
extendible state which is also a new upper bound on one-way distillable entanglement (vide
sec. ’New upper bounds on one-way distillable entanglement’). As we will find out, in
similarity to a standard case of separable state where DR(ρ) = 0 if the state ρ is separable,
we propose an entropic measure which gives a zero value for states being symmetrically
extendible [126]. This is a crucial for all states being a subject of 1-LOCC distillation and
cryptographic protocols.

We define the measure of this distance to the set of symmetric extendible states based on
the definition of relative entropy:

Definition 5.3.1 [126] Assume that a convex set EAB is a set of extendible states, i.e.

EAB = {σAB : ∃ΨABB′C σAB = σAB′ =

= TrCB[|ΨABB′C⟩⟨ΨABB′C|]}

Then the distance of a state ρAB on HAB = HA ⊗HB with dimHA = dA and dimHB = dB

to the set of extendible states EAB of d ⊗d type where d = max[dA,dB] is defined by

REAB(ρAB) = δAB inf
σAB∈E

R(ρ̃AB∥σAB) (5.23)

where ∀ρ,σ R(ρ∥σ) = Tr[ρ logρ −ρ logσ ] and δ =− logd
log (d+1)

2d

with d = max[dA,dB] due to

normalization of this function on maximally entangled states. In the formula (5.23) ρ̃AB is
taken as a state of d ⊗d type (after embedding ρAB into d ⊗d space).

Normalization of this symmetric extendible relative entropy is derived in such a way that
for maximally entangled states: REAB(|Ψ+⟩⟨Ψ+|) = logd and for all symmetric extendible
states σ , REAB(σ) = 0. It becomes clear in next chapter that by such a formulation we can
derive new upper bounds on one-way distillable entanglement. Such a formula would be
not possible without a derivation of exact symmetric extensions of isotropic states and their
relation to singlet states.
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5.4 Symmetric extendibility of bipartite qubit states 56

5.4 Symmetric extendibility of bipartite qubit states

Every bipartite state ρAB ∈ B(HA ⊗HB) (where dimHA = m and dimHB = n) can be
represented in the so-called Fano form [66], decomposed in the product group basis SU(m)⊗
SU(n) as:

ρAB =
1

mn
(IA ⊗ IB +

m2−1

∑
i=1

β
A
i σi ⊗ IB +

n2−1

∑
j=1

β
B
j IA ⊗σ j +

m2−1

∑
i=1

n2−1

∑
j=1

γ
AB
i j σi ⊗σ j) (5.24)

where β
A

and β
B

can be interpreted as real Bloch vectors of the reduced states ρA = TrBρAB

and ρB = TrAρAB respectively. Further, [γAB
i j ] can be represented as a real (m2−1)× (n2−1)

matrix of correlation parameters γAB
i j .

It is interesting to analyze this structure in case of bipartite qubit systems in a state
ρAB ∈ B(C2 ⊗C2). Then the Fano representation is:

ρAB =
1
4
(IA ⊗ IB +

3

∑
i=1

β
A
i σi ⊗ IB +

3

∑
j=1

β
B
j IA ⊗σ j +

3

∑
i, j=1

β
AB
i j σ j ⊗σ j) (5.25)

where {σ1,σ2,σ3} denote the Pauli matrices and the real parameters are (we project the state
ρAB onto a basis vectors of a Hilbert-Schmidt space B(C2 ⊗C2)):

β
A
i = Tr(ρABσi ⊗ IB) (5.26)

β
B
j = Tr(ρABIA ⊗σ j) (5.27)

β
AB
i j = Tr(ρABσi ⊗σ j) (5.28)

(5.29)

Furthermore, any two-qubit state having the reduced density matrices ρA = ρB = I/2 can be
transformed to the Bell diagonal representation by means of local unitary operations UA and
UB acting on the qubits A and B which diagonalize the correlation matrix [β AB

i j ], i.e.:

ρAB =
1

∑
i j=0

αi j|Φi j⟩⟨Φi j| (5.30)

with the Bell states |Φi j⟩= 1√
2
(|0i⟩+(−1)i|11⊕ j⟩) and the corresponding eigenvalues:

αi j =
1
4
(1+(−1)ix− (−1)i+ jy+(−1) jz) (5.31)
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5.4 Symmetric extendibility of bipartite qubit states 57

Fig. 5.1 All Bell diagonal two-qubit states are represented by the tetrahedron with the
extreme points (vertices of the tetrahedron) {(1,1,−1),(−1,−1,−1),(1,−1,1),(−1,1,1)}
representing the Bell states. The octahedron represents all separable two-qubit states diagonal
in the Bell basis.

Therefore, such states can be represented by means of vectors τ = [x,y,z] [Fig. 5.1] (the
eigenvalues αi j are non-negative and the density matrix is normalized).

It is now an open question what are the general conditions for symmetric extendibility
of general bipartite states although the conditions are known for all two-qubit states. This
condition is a subject of the following theorem proved recently in [112]:

Theorem 5.4.1 A two qubit state ρAB is symmetric extendible if and only if:

Tr(ρ2
B)≥ Tr(ρ2

AB)−4
√

detρAB (5.32)

where ρB = TrAρAB.
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5.4 Symmetric extendibility of bipartite qubit states 58

Fig. 5.2 Symmetric extendible states ρAB which are diagonal in the Bell basis are represented
as the region R = {ρAB : Tr(ρ2

B) ≥ Tr(ρ2
AB)− 4

√
detρAB} inside the tetrahedron of Bell

diagonal states.

The region of symmetric extendible bipartite qubit states on C2 ⊗C2, which are diagonal
in the Bell basis, is represented in the Fig. 5.2. Since the reduced matrices of such states are
maximally entangled, the simplified condition for such states reads:

4
√

detρAB ≥ Tr(ρ2
AB)−

1
2

(5.33)
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Chapter 6

Distillation of entanglement and
entanglement measures

6.1 Distilling quantum entanglement

The concept of entanglement distillation has its roots in classical communication theory where
an initial message is sent through a noisy channel and then a receiver tries to recover an initial
message by local operations and classical communication with the sender. Actually, the two
engaged parties apply a communication protocol that in a natural way can include also error
correction mechanism preventing the final message from disturbance of the environment when
sent throughout the channel and cryptographic mechanisms protecting their communication
from an influence of the adversary Eve. Thus, in quantum analogy Alice and Bob can
consider a noisy quantum state of a shared systems as a resource that they would like to
utilize for reliable communication under condition that they can transform their systems into
strongly entangled pairs.

The distillable entanglement is a measure responding to the question: how much pure
entanglement (in terms of singlets P− = |Ψ−⟩⟨Ψ−|) can Alice and Bob extract from n copies
of a system in a state ρAB (globally in a state ρ

⊗n
AB ) by means of only local operations

and classical communication (LOCC)? The two parties try to transform (distill) n pairs of
systems in a state ρAB into k singlets |Ψ−⟩ = 1√

2
(|00⟩− |11⟩). The maximal possible rate

D(ρAB) = limn→∞
k
n of this process is called distillable entanglement [Fig. 6.1].

One can consider different variations of entanglement distillation process basing on
allowable types of classical communication between two parties (let us say Alice and Bob)
sharing the system.
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Alice
 

|Ψ
+
  Ψ
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Bob
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Alice
 

Bob
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n
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Fig. 6.1 Spatially separated Alice and Bob share n pairs of quantum states ρAB. They
operate on the pairs with local quantum operations and engage also a classical channel of
communication, e.g. a mobile, to communicate classically. After action of this quantum
protocol, they achieve k pairs of strongly entangled states |Ψ+⟩.
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6.1 Distilling quantum entanglement 61

Namely, the most popular and historically first scheme is based on local quantum op-
erations and bidirectional communication between Alice and Bob, so called 2-LOCC or
two-way entanglement distillation, for which one considers the rate D↔.

If only one-directional communication is allowed in the distillation protocol (either
from Alice to Bob or only from Bob to Alice), then we say about 1-LOCC or one-way
entanglement distillation (and one-way distillable entanglement rate D→ respectively).

In case of no classical communication allowed (only quantum local operations allowed),
we consider so called zero-way or 0-LOCC entanglement distillation protocols (and D /0).
Since protocols using zero-way communication are a subset of a set of protocols using
one-way classical communication, and the latter are a subset of 2-LOCC protocols, it is an
immediate observation that in general for any ρAB there holds:

D /0(ρAB)≤ D→(ρAB)≤ D↔(ρAB) (6.1)

A formal definition of the process is as follows:

Definition 6.1.1 [98, 137] For a bipartite state ρAB ∈ B(Cd1 ⊗Cd2) consider a sequence
Pn of LOCC operations such that Pn(ρ

⊗n
AB ) = ρn where ρn ∈ B([C2 ⊗C2]⊗kn). Then the set

P =
⋃

∞
n=1{Pn} is called a distillation protocol of the state ρAB if:

lim
n→∞

∥ρn −P⊗kn
− ∥= 0. (6.2)

For a chosen distillation protocol P , its rate is defined as:

R(P) = lim
n→∞

sup
kn

n
(6.3)

Then the entanglement distillation of the state ρAB is defined as:

D(ρAB) = sup
P

R(P), (6.4)

where supremum is over all possible distillation protocols P .

Therefore, we recalled also a definition of a rate of a given quantum protocol (even such
for which R(P) = 0) and we take supremum over all accessible protocols to Alice and Bob
to find the most optimal one which extracts a maximal possible number of pure singlets
P− = |Ψ−⟩⟨Ψ−| (if any).

There exists a dual concept to the distillable entanglement engaging in some sense reverse
scheme, so called entanglement cost EC. In general, it measures how many singlets has to
be utilized by Alice and Bob minimally to produce n output copies of a state ρAB. Thus,
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6.1 Distilling quantum entanglement 62

EC(ρAB) = limn→∞
k
n where k stands for the number of bipartite systems in a singlet state

|Ψ−⟩ needed in this process.

Definition 6.1.2 [98, 137] For a bipartite state ρAB ∈ B(Cd1 ⊗Cd2) consider a sequence
Pn of LOCC operations such that Pn(|Ψ−⟩⟨Ψ−|⊗n) = ρn where ρn ∈ B([C2⊗C2]⊗kn). Then
the set P =

⋃
∞
n=1{Pn} is called a formation protocol of the state ρAB if:

lim
n→∞

∥ρn −ρ
⊗kn
AB ∥= 0. (6.5)

For a chosen formation protocol P , its rate is defined as:

R(P) = lim
n→∞

sup
n
kn

(6.6)

Then the entanglement cost of a state ρAB is defined as:

EC(ρAB) = sup
P

R(P), (6.7)

where supremum is over all possible protocols P of ρAB formation.

Calculation of distillable entanglement for any state ρ is extremely difficult due to the
considered asymptotic region and non-classical behavior of quantum entanglement for many
pairs (e.g. activation of bound entanglement or general non-additivity of entanglement).
Thus, one cannot just scale the behavior of entanglement for a couple of entangled pairs into
the infinite regime. Basing on that, of a great importance become all efficient lower and upper
bounds on distillable entanglement (in all LOCC variants), especially those operationally
easy to calculate or verify in labs.

We say that a state is non-distillable if D(ρAB) = 0, i.e. there does not exist any such a
protocol that the output state ρout is in a singlet state. To assess capabilities of the engaged
protocol to distill entanglement, we can recall the fidelity measure as F(ρout) = TrP⊗k

+ ρout

to assess the overlap between the output state and the expected number of singlets as we will
see in the example below.

Example 6.1.3 (BBPSW Distillation Protocol [17])
We assume that Alice and Bob starts the protocol sharing multiple pairs of ρAB state. The
fidelity fraction for these states is F(ρAB) = TrP+ρAB > 1/2. As proved in [17], only then
the protocol is able to distill a smaller number of pairs with higher singlet fraction. We
repeat the following steps and with each iteration the fidelity for output states grows:
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6.1 Distilling quantum entanglement 63

1. Alice and Bob take two pairs of the initial state ρAB and apply U ⊗U∗ twirling op-
eration achieving isotropic states (as observed in the previous chapter) - i.e. two realize
twirling, Alice engages one-way classical communication to communicate to Bob which
random unitary operation U he should apply:

ρAB ⊗ρAB −→ ρF ⊗ρF (6.8)

2. Then they apply locally UXOR operation at each pair they possess locally, where the first
qubit is called a source qubit and the second as a target qubit:

UXOR = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11| (6.9)

3. The target qubits of Alice and Bob are measured locally in a computational basis {|0⟩, |1⟩}.
If Alice and Bob have the same result (they have to engage at this stage two-way classical
communication to verify the results), they keep the source pair ρ̃AB. Otherwise, they discard
the source pair and can repeat with other pairs.
One can calculate now the improved singlet fraction F̃ for the remaining pairs ρ̃AB:

F̃(ρ̃AB) =
F2 + 1

9(1−F)2

F2 + 2
3F(1−F)+ 5

9(1−F)2
(6.10)

With a huge number of pairs Alice and Bob can obtain arbitrary high F, yet still not F = 1, as
the asymptotic rate of this protocol is convergent to zero. Therefore, at a next stage we have
to engage so-called ’hashing protocol’ [47–49] which enables final distillation of singlet
pairs by means of one-way distillation protocol for pairs where coherent information is
positive IC(A⟩B)> 0.

In general, for any state ρAB, one can state the following necessary and sufficient condition
for distillability of any bipartite quantum state:

Theorem 6.1.4 [100] Any state ρAB on H = HA ⊗HB is distillable if and only if there
exist two-dimensional projectors P : H n

A → C2 and Q : H n
B → C2, such that for some n the

state:
ρ̃AB = (P⊗Q)ρ⊗n

AB (P⊗Q)† (6.11)

is entangled.

As a consequence, we observe that all NPT two-qubit states ρAB ∈ B(C2 ⊗C2) are two-
way distillable and in general, all NPT states ρAB ∈ B(C2 ⊗C3) are two-way distillable.
Furthermore, it implies the following powerful statement:
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6.1 Distilling quantum entanglement 64

Theorem 6.1.5 [100] If a state ρAB is PPT, then it cannot be distilled.

There exist a broad class of so-called bound entangled states [100], from which no
entanglement can be distilled. The initially discovered class of bound entangled states was
of PPT type due to the above theorem stating that PPT states cannot be distilled even if
they are entangled. However, there is a big open problem in quantum information theory
still unresolved, whether there exist non-distillable NPT entangled states. As we observed
previously that any state can be transformed by twirling to Werner states, this problem can
be reduced to the issue of finding non-distillable Werner states as follows:

Theorem 6.1.6 [101] The following statements are equivalent:
1. Any NPT state is distillable.
2. Any entangled Werner state ρW is distillable.

Example 6.1.7 (Bound Entangled State [100]) A state ρa ∈ B(C3 ⊗C3) is PPT bound
entangled for a ∈ (0,1) and separable for a = 0 or a = 1:

ρa =
1

8a+1



a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

√
1−a2

2
0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√

1−a2

2 0 1+a
2


(6.12)

One-way entanglement distillation

In [50, 51, 49], I. Devetak and A. Winter proved that one-way distillable entanglement D→

of a state ρAB can be represented as regularization of one-copy formula engaging coherent
information. The proof of this theorem was possible only due to the proof of a very powerful
hashing inequality [49] which to date is one of the strongest results in domain of one-way
quantum protocols.

A one-way entanglement distillation protocol consists of:
1. A quantum instrument T = (Tl)

L
l=1 for Alice which is a set of quantum operations
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6.1 Distilling quantum entanglement 65

performed by Alice.
2. For each l (communicated by Alice to Bob via a classical channel), there exists a quantum
operation Rl performed by Bob (Rl are trace-preserving completely positive maps).

We call it an (n,ε)-protocol [49] if it acts on n copies of the state shared between Alice
and Bob and produce a maximally entangled state:

|ΨN⟩=
1√
N

N

∑
n=1

|nA⟩⊗ |nB⟩ (6.13)

with fidelity 1− ε:

F(|ΨN⟩,
L

∑
l=1

(Tl ⊗Rl)ρAB)≥ 1− ε (6.14)

Then there holds a hashing inequality for any state ρAB:

Theorem 6.1.8 [49] For any state ρAB, there holds:

D→(ρAB)≥ IC(A⟩B) (6.15)

where IC(A⟩B) = S(B)−S(AB).

And these results lead to more general formula for one-way entanglement distillation in
terms of coherent information:

Theorem 6.1.9 [49] For any bipartite state ρAB:

D→(ρAB) = lim
n→∞

1
n

D(1)
→ (ρ⊗n

AB ) (6.16)

with

D(1)
→ (ρAB) = max

T

L

∑
l=1

λlIc(A⟩B)ρl (6.17)

where the maximization is over quantum instruments T = {T1, . . . ,TL} on Alice’s system, λl =

TrTl(ρA), Tl is assumed to have one Kraus operator Tl(ρ) = AlρA†
l and ρl =

1
λl
(Tl ⊗ id)ρAB.

Moreover, it is assumed that l is bounded by dimension of A system as L ≤ d2
A.

Generally for two-way LOCC, I. Devetak and A. Winter proved a very interesting result
[49]:

Theorem 6.1.10 For any state ρAB:

D(ρAB) = lim
n→∞

1
n

sup
V

IC(A′⟩B′)ω (6.18)
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6.1 Distilling quantum entanglement 66

with any two-way LOCC operations V and the coherent information refers to the output state
ω =V (ρ⊗n

AB ).

Since the concept of the coherent information is fundamental for definitions of distill-
able entanglement and quantum channel capacity, we recall below the observation about a
multipartite system ABB’ where BB’ part is initially possessed by Bob (Alice possesses
A-subsystem) and Bob can transfer B’-subsystem to Eve:

Observation 6.1.11 [127] For a bipartite state ρABB′ ∈ B(HA⊗HB⊗HB′) shared between
Alice and Bob (B and B’ system) there holds:

Ic(A⟩BB′)≤ Ic(A⟩B)+2S(B′) (6.19)

Proof. One can easily observe that for subadditivity of entropy S(BB′)≤ S(B)+S(B′) and
for the Araki-Lieb inequality |S(AB)−S(B′)| ≤ S(ABB′), the left hand side can be bounded
as follows: S(BB′)− S(ABB′) ≤ S(B)+ S(B′)− S(AB)+ S(B′) = Ic(A⟩B)+ 2S(B′) which
completes the proof. �

As observed, there are two classes of quantum states which cannot be generally distilled
by means of two-way LOCC protocols: separable states and bound entangled states that we
elaborate on further. If we consider now a domain of one-way distillation, we have to add
one more class of all symmetric extendible states [126], from which no entanglement can be
distilled by means of one-way LOCC. That is a subject of the following observation [126]:

Observation 6.1.12 If any bipartite state ρAB has a symmetric extension ρABB′ , so that
ρABB′ = ρAB′B and ρAB = TrB′ρABB′ , then for the one-way distillable entanglement there
holds:

D→(ρAB) = 0. (6.20)

Proof of the above theorem is immediate and follows from quantum entanglement
monogamy (cf. [26, 30]). If Alice sends classical information to Bob and they distill singlet
in the protocol then the state can not have symmetric extension since Bob’s colleague, say
Brigitte (corresponding to index B’) could also receive the same message from Alice and
finally share the singlet with Alice too. But Alice’s particle cannot be maximally entangled
with two different particles at the same time (this is just the entanglement monogamy
property). So a symmetric extendible state can not have one-way distillable entanglement
nonzero.

Basing on theory of entanglement distillability we state the following conjecture in do-
main of one-way communication linking it directly with symmetric extendibility of quantum
states:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6.1 Distilling quantum entanglement 67

Conjecture 6.1.13 [128] Any state ρAB on H = HA ⊗HB is one-way distillable if and
only if there exists a two-dimensional projector P : H n

A → C2 such that for some n ≥ 1 the
state:

ρ̃AB = (P⊗ id)ρ⊗n
AB (P⊗ id)† (6.21)

is not symmetrically extendible.

For a potential proof, it is an immediate observation that one-way distillable quantum states
cannot be symmetric extendible [126], yet it is an open question if there exists a two-qubit
state that is not at the same time symmetric extendible nor one-way distillable. Since we know
conditions for symmetric extendibility of two-qubit states [123, 112], this conjecture if true
would simplify analysis of entanglement of two-qubit states and capacity of channels acting
on such spaces substantially. On the contrary, if there exist two-qubit states that are neither
symmetric extendible nor one-way distillable then they would be one-way counterparts of
bound entangled states for two-way distillability in higer dimensions. An analysis of this
subject seems to be of a great importance for further studies on quantum secure protocols
and structure of entanglement.

As an example, it is worth mentioning Werner states [167] and the hypothesis about NPT
(non-positive trace-preserving) bound entangled states [53, 59]. As discussed in a previous
chapter, the structure of the Werner states is as follows:

ρW (α) =
id +αP
d2 +αd

(6.22)

where P= ∑
d−1
i, j=0 |i j⟩⟨ ji|. The state is separable for 1 ≥ α ≥− 1

d , NPT for − 1
d > α ≥ 1 and

two-way 1-distillable for −1
2 > α ≥−1. Applying the conditions for symmetric extendibility

[112], we found that for d = 2, the state is non-symmetric extendible for −0.8 ≥ α ≥−1.
We analyzed potential one-way distillability of the state for the region of non-symmetric

extendible Werner states with non-positive coherent information, namely for −0.8 ≥ α >∼=
−0.85559. The latter condition excludes all those states being distilled by well-known
one-way hashing protocol.

The analysis was performed for two-copies of the state and over 108 random filtering
operations on Alice’ side and random unitary operations on Bob’s side. However, the
protocol was not able to distill states with positive coherent information which suffices to
distill entanglement with the hashing protocol.

Therefore, it is an open question if the state is one-way distillable in the region −0.8 ≥
α >∼=−0.85559 or it is one-way ’bound entangled’ which would be a counterpart of bound
entanglement concept in two-way communication domain.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6.2 Entanglement measures 68

6.2 Entanglement measures

As we could already observe, of profound importance is the method of quantifying entangle-
ment which is a subject of entanglement measures theory.

All entanglement measures E : B(H )−→ R≥0 have to meet the following necessary
conditions although there are still discussions which conditions they should meet [98, 13]:
1. Monotonicity under action of any LOCC operation Λ:

E(ρAB)≥ E(Λ(ρAB)) (6.23)

Its strong monotonicity version assumes that one can apply probabilistic LOCC (i.e. after
action of probabilistic LOCC on the state ρAB, one gets the state ρ i

AB with probability pi) and
then we require:

E(ρAB)≥ ∑
i

piE(ρ i
AB) (6.24)

2. Vanishing on separable states, i.e. for any separable state ρAB, it is required that:

E(ρAB) = 0 (6.25)

In this context, there are some additional postulates related to entanglement measures which
support to a great extent analysis of entanglement properties:
3. Normalization on singlet states: E(|Ψ+⟩⟨Ψ+|) = logd.
4. Asymptotic continuity:

∥ρn −σn∥1 → 0 =⇒ |E(ρn)−E(σn)|
logdn

→ 0, (6.26)

where ρn,σn ∈ B(Hn) and dimHn = dn.
5. Convexity for any ensemble of states {pi,ρi}:

E(∑
i

piρi)≤ ∑
i

piE(ρi). (6.27)

Some measures can possess also additivity property for any two states:

E(ρ ⊗σ) = E(ρ)+E(σ) (6.28)D
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6.2 Entanglement measures 69

but in general they are either sub-additive (≤) or super-additive (≥). For such cases as we
will see further, it is convenient to consider a regularized measure E∞(ρAB):

E∞(ρAB) = lim
n→∞

E(ρ⊗n
AB )

n
(6.29)

In general, as defined by G. Vidal [166], any function E : B(H ) −→ R≥0 which is just
monotonic under LOCC operations is called an entanglement monotone. To be more precise,
we expect that any entanglement monotone (and any entanglement measure) is invariant
under local unitary operations and does not increase under action of LOCC and this is why
we restrict our attention only to the non-increasing monotones (under action of LOCC), and
in particular, to one-way entanglement monotones (non-increasing under 1-LOCC). It can be
assumed that [166] an entanglement monotone is non-increasing ’on average’ under action
of LOCC (which is a more restrictive version of monotonicity), i.e.:

E(ρ)≥ ∑
i

piE(ρi) (6.30)

where after action of probabilistic LOCC on the state ρ , one gets the state ρi with probability
pi. In the following, the new entanglement monotone based on the best symmetric extendible
approximation in is an example meeting such a condition.

We have already considered geometric measures of entanglement like the trace distance
measure, the Bures measure, the Hilbert-Schmidt measure and the fidelity of entanglement
or relative entropy of entanglement. All are related by direct connections with geometry of
analyzed states and its geometric distance or similarity to either separable states or symmetric
extendible states. The latter is considered as far as the subject of analysis includes action of
1-LOCC operations [126].

Further, both aforementioned distillable entanglement and entanglement cost are exam-
ples of operational measures of entanglement [13]. They are defined implicitly due to the
asymptotic regime considered and are operational due to the direct relation to operations
LOCC that form engaged quantum protocols P in a laboratory by Alice and Bob in order to
distill entanglement or engage entanglement into production of requested quantum states.

We invoke another measure built directly on a concept of extendibility where for a given
state ρAB, one searches for its tripartite extensions.

Squashed entanglement [32] is defined as:

Esq(ρAB) = inf
ρABE

1
2
[SAE +SBE −SE −SABE ] (6.31)
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6.2 Entanglement measures 70

where the infimum is taken over all extensions ρABE so that ρAB = TrEρABE and SX stands
for the von Neumann entropy of the system X. Squashed entanglement is monotone, vanishes
on separable states and is convex.

In what follows, we show how new upper bounds on one-way entanglement distillation
and new entanglement monotones can be built applying the above theorems and the concept
of symmetric extendibility.

Symmetric extendible component in quantum states

In this section we consider vulnerability of quantum states to the loss [128] of non-symmetric
extendibility property asking how easily the quantum state becomes symmetric extendible
by distraction of its sub-system or how much of symmetric extendibility can be extracted
from the state. When the former recalls lockability of entanglement measures, the latter
relates to the best symmetric approximation subject responding to the question: how much
of non-symmetric extendible component has to be mixed with symmetric extendible state so
that it becomes non-symmetric extendible?

The general idea of locking a property of a quantum state relates to the loss or decrease
of this property subjected to a measurement or discarding of one qubit. It has been shown
[103, 32] that entanglement of formation, entanglement cost and logarithmic negativity
are lockable measures which manifests as an arbitrary decrease of those measures after
measuring one qubit.

Herewith, we analyze in fact locking of non-symmetric extendibility in sense that dis-
carding one qubit from the quantum state that is not symmetric extendible leads to the loss
of this property. Further, we derive implications for quantum security applying one-way
communication between engaged parties Alice and Bob.

We shall show now that the property of non-symmetric extendibility of an arbitrary state
ρAB can be destroyed by measurement of one qubit and in result, it presents how easily a
quantum state can be removed of one-way distillability and security.

Let us consider bipartite quantum state shared between Alice and Bob on the Hilbert
space HA ⊗HB ∼= Cd+2 ⊗Cd+2

ρAB =
1

2d −1


dP+ 0 0 A

0 0 0 0
0 0 0 0

A † 0 0 σ

 (6.32)D
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6.2 Entanglement measures 71

where P+ is a maximally entangled state on Cd ⊗Cd , σ =∑
d−1
i=1 |i 0⟩⟨i 0| and A is an arbitrary

chosen operator so that ρAB represents a correct quantum state. This state is represented in
the computational basis |00⟩, |01⟩, |10⟩, |11⟩ held by Alice and Bob and possess a singlet-like
structure. Whenever one party (Alice or Bob) measures the state in the local computational
basis, the state decoheres and off-diagonal elements vanish which leads to a symmetric
extendible state [126]:

ϒAB =
d

2d −1
P++

1
2d −1

d−1

∑
i=1

|i 0⟩⟨i 0| (6.33)

from which no entanglement nor secret key can be distilled by means of one-way com-
munication and local operations. Clearly this example shows that from a non-symmetric
extendible state possessing large entanglement cost and non-zero one-way secret key one can
easily obtain a symmetric structure by discarding small part of the whole system destroying
possibility of entanglement distillation and secret key generation by means of 1-LOCC.

Thus, it is interesting to consider how much of symmetric extendibility is embedded in
a given state ρAB as it can be expected that the more symmetric extendibility is hidden in
a state, the less vulnerable for losses of one-way distillable entanglement and security it is
[128]. Besides analysis of symmetric structures in projected subspaces, we will also propose
to perform this task by means of the best symmetric extendible approximation [122, 113]
that decomposes the state into a symmetric extendible component σext and non-symmetric
extendible component σnext :

ρAB = max
λ

λσext +(1−λ )σnext (6.34)

We denote by λmax(ρ) the maximum weight of extendibility [122] of ρAB where 0 ≤
λmax(ρ) ≤ 1,thus, all symmetric extendible states have the weight λmax = 1 and due to
the maximization of λ over all potential decompositions of ρ into a symmetric extendible
and non-symmetric extendible component, the state σnext does not contain any symmetric
extendible component, i.e. λmax(σnext) = 0. It is proved in [124, 122] that in case of one-way
protocols only the non-symmetric extendible component can be effectively utilized for gener-
ation of a secret key and it confirms that the notion of symmetric extendibility is crucial for
consideration of one-way entanglement and key distillation [Fig. 6.2].

However, we show that there exist states which do not possess any symmetric extendible
component in the aforementioned decomposition but there can be a large symmetric ex-
tendible component embedded in them. An example of such a state is given above (8.40) and
one can derive the following statement about general structure of such states:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6.2 Entanglement measures 72

ρAB 

.
 

.
 

.
 𝜎ext 𝜎𝑛ext 

λ 1-λ 

Ω𝑠𝑒𝑝 

Ω𝑠𝑦𝑚 

Ω 

Fig. 6.2 Best symmetric extendible approximation of a state ρAB =maxλ λσext +(1−λ )σnext .
Ωsep denotes the set of separable states, Ωsym denotes the set of symmetric extendible
states and Ω stands for the set of quantum states. There holds a natural inclusion relation:
Ωsep ⊂ Ωsym ⊂ Ω.

Lemma 6.2.1 [128] Consider a state γ on HAA′BB′ = HA⊗HA′ ⊗HB⊗HB′ ∼Cd ⊗Cd ⊗
Cd ⊗Cd:

γ = ρ ⊗σ (6.35)

being a composition of an arbitrary chosen state σ ∈ B(HA′ ⊗HB′) and a non-symmetric
extendible state ρ ∈ B(HA ⊗HB) with no symmetric extendible component λmax(ρ) = 0.
Then for the best extendible approximation of γ there holds λmax(γ) = 0, i.e. there is no
symmetric extendible component in γ ∈ B(HAA′BB′).

Proof.
Conversely, assume that there exists decomposition of γAA′BB′ with non-zero symmetric

extendible component, i.e. λ ̸= 0:

γAA′BB′ = λσext +(1−λ )ρne (6.36)

then both components would be supported on HAA′BB′ and one can search for a decomposition
of γAA′BB′ after tracing out A’B’-part. Due to linearity of a partial trace operation ΓX(·) =
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6.2 Entanglement measures 73

TrX(·) we obtain:

ΓA′B′(γAA′BB′) = λΓA′B′(σext)+(1−λ )ΓA′B′(ρne) (6.37)

and, further, basing on a symmetric extendibility property of composite systems [126] one
derives that tracing out A′B′ from σext does not destroy its symmetric extendibility and
produces symmetric extendible state σ̃ext (ρ̃ne results from tracing out A’B’ from ρne):

ρ = λσ̃ext +(1−λ )ρ̃ne (6.38)

Thus, the initial assumption would imply existence of a non-zero symmetric extendible
component of the state ρ that contradicts the aforementioned decomposition. �

In the following, one can make an immediate observation about any private quantum
state1 [103]:

Corollary 6.2.2 [128] Any private quantum state γABA′B′ ∈ B(HABA′B′):

γABA′B′ =
1
2

1

∑
i, j=0

|ii⟩⟨ j j|⊗UiρA′B′U†
j , (6.39)

where Ui and U j are arbitrary unitary transformations, does not possess symmetric extendible
component, i.e. λmax = 0.

Remark. The proof is conducted in analogy to the proof of 6.2.1 but this state represents a
twisted composition of singlet and an arbitrary chosen state ρA′B′ where AB-part is the key
part of the state and is not symmetric extendible due to the observation that secure states
cannot be symmetric extendible [122].

Basing on previous studies of entanglement measures and importance of symmetric
extendible states, we introduce the following one-way best symmetric approximated en-
tanglement monotone (as a counterpart of BSA - best separable approximation in [113]):

Definition 6.2.3 [128] For any ρ ∈ B(HA ⊗HB) having best symmetric decomposition
ρAB = maxλ λσext +(1−λ )σnext , the best symmetric approximated entanglement monotone
is defined as:

Ess(ρ) = 1−λmax(ρ) (6.40)

1Vide sec. Quantum private states and secret key.
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6.2 Entanglement measures 74

Proof. (We will prove that the quantity meets the conditions to become an entanglement
monotone.)
1. If ρ is separable, i.e. also symmetric extendible, then λmax = 1 and Ess(ρ) = 1−λmax = 0.
2. Ess(ρ) is invariant under local unitary operations since application of local operations UA

and UB on σext leaves it extendible to the third part B’, i.e. Ess(UA ⊗UBρU†
A ⊗U†

B)≥ Ess(ρ)

and vice versa.
3. For any bi-local operations Vi(·) (with allowed one-way communication, where Vi(·) =
Ai(·)A†

i ⊗Λi(·), ∑i AiA
†
i = I and Ai denotes local POVMs on Alice’s side and Λi(·) denotes

completely positive trace-preserving map on Bob’s side), there holds:

Ess(ρ) = 1−λmax(ρ) ≥ ∑
i
(1−λ

max
i (ρi)Tr(Vi(ρ)))

≥ ∑
i

Ess(ρi)Tr(Vi(ρ)))

and ρi =Vi(ρ)/Tr(Vi(ρ)). To achieve this result we followed the reasoning in [113] and the
fact that the set of symmetric extendible states is closed under 1-LOCC operations which
means that any bi-local operations associated with one-way communication cannot generate
non-symmetric extendible state from a symmetric extendible state so they can only increase
the symmetric extendible component in the output state, i.e.:

Vi(ρ) =Vi(λσext +(1−λ )σnext)→ ρi = λiσ
ext
i +(1−λi)σ

next
i , (6.41)

and we observe that λi ≥ λ as the local operations can still operate on the state σnext in such
a way that the output state can possess some symmetric extendible component but not vice
versa (we recall the observation that initially, σnext does not contain any symmetric extendible
component). �

It is interesting to notice that for two-qubit states on C2 ⊗C2 there holds a non-trival
observation about best symmetric approximated decomposition:

ρ = λσext +(1−λ )|Ψ⟩⟨Ψ| (6.42)

with σext being a symmetric extendible component that appears in ρ with highest probability.
The proof of this observation can be based on BSA with separable components [113] where
ρ = ασsep+(1−α)|Ψ⟩⟨Ψ| (remembering that ρ ∈ B(C2⊗C2)). As set of separable states
is a subset of the convex set of symmetric extendible states, then for any dimension α ≤ λ .
Further, due to the fact that any two-qubit state has best separable decomposition into a
separable and projective entangled component, we conclude that λσext = ασsep +β |Ψ⟩⟨Ψ|
for arbitrary chosen β .
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6.3 New upper bounds on one-way distillable entanglement 75

These propositions can simplify potentially many research problems like analysis of
CHSH regions vs. symmetric extendibility of states [121] represented in the steering ellipsoid
formalism or just further analysis on security and distillability of all C2 ⊗C2 states.

A. Sanpera and R. Quesada pointed out in [141] that there is a strong relation between the
best separable approximation and the max-relative entropy. The max-relative entropy can be
defined as: Dmax(σ ∥ ρ)≡ logmin{λ : σ ≤ λρ} and suppσ ⊆ suppρ and it is interpreted as
a probability of finding a component σ in decompositions of ρ . Then for the best separable
approximation of a state ρ , Dmax(σsep ∥ ρ) is interpreted as the maximal probability of
finding σsep in the best separable decomposition of ρ .

Following these results, we can immediately propose a similar max-relative entropy
monotone based on the best symmetric extendible decomposition, i.e. Dmax(σext ∥ ρ) where
σext stands for the extendible component in a state ρ . This leads immediately to λ =

max(2−Dmax(σext∥ρ)) where maximization is over the set of symmetric extendible states such
that suppσext ⊆ suppρ .

An open problem [128] is, whether for one-way distillable entanglement we can state that
D→(ρ)≤ (1−λmax(ρ))D→(σnext)? If the answer is negative, then it would be interesting to
analyze a general relation between D→ and D→(σnext). This issue seems to be substantial
for bounding the one-way distillable entanglement for a state ρ in terms of the one-way
distillable entanglement of its maximal non-extendible component.

6.3 New upper bounds on one-way distillable entanglement

We analyze now if similarly to the distance from separable states one can construct an
appropriate entanglement measure basing on (5.23) [126]. The normalized distance from the
set of extendible states does not satisfy though all necessary conditions [163, 164] that every
measure of one-way distillable entanglement has to satisfy: introduction of the normalization
factor δAB causes that REAB(ρ) becomes explicitly dependant on the dimension of the system
AB, therefore, for protocols increasing dimension of the input state the parameter is not a
monotone [126]:

A1. If σAB is separable then REAB(σAB) = 0 due to the fact that every separable state is
extendible.

A2. Local unitary operations leave REAB(σAB) invariant that is satisfied due to invariancy of
distance measures under local unitary transformations, i.e. REAB(σAB) = REAB(UA ⊗
UBσABU†

A ⊗U†
B).
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6.3 New upper bounds on one-way distillable entanglement 76

A3. (Restricted 1-LOCC monotonicity.) The parameter REAB(σAB) of one-way distillable
entanglement does not increase under non-increasing dimension 1-LOCC, i.e. Λ :
B(HAB)→ B(HÃB̃) with nAB = max[dA,dB], nÃB̃ = max[dÃ,dB̃] for nAB ≥ nÃB̃, then

REÃB̃
(Λ(σAB))≤ REAB(σAB) (6.43)

This condition may be simply proved due to non-increasing of R(ρ∥σ) under a subclass
of 1-LOCC operations Λ that is stated in the lemma 4.2.1, i.e. the set of symmetric
extendible states EAB is mapped under 1-LOCC into a set of symmetric extendible
states EÃB̃. Namely, because Λ(EAB)⊂ EÃB̃ and the relative entropy is monotonic under
CP maps, and assuming that σ∗ is an extendible state that realizes the minimal value
in eq.(5.23) we have:

REAB(ρ) = δABR(ρ∥σ
∗)≥ δÃB̃R(Λρ∥Λσ

∗)

≥ δÃB̃ inf
σ∈EÃB̃

R(Λρ∥σ) = REÃB̃
(Λρ)

where nAB ≥ nÃB̃ derives the condition δAB ≥ δÃB̃ (the parameter δAB is defined in
5.23).

However, we show further that the entanglement parameter can be utilized for bounding
one-way entanglement of distillation due to preparation of the measure in asymptotic regime.

In general, every entanglement parameter of type E(σ) = α infρ∈∆ D(σ∥ρ) where
D(σ∥ρ) is appropriate distance between σ and ρ , ∆ denotes the characteristic set to which
the distance is measured and α normalizes the parameter so that E(|Ψ+⟩⟨Ψ+|) = logd is
not monotonic, i.e. ∃Λ E(σ)> E(Λ(σ)). For REAB unitary injection of input state ρAB into
higher dimensional space gives REAB(ρ)> REÃB̃

(Λ(ρ)).
Additionally, following analysis in [98, 58], we show that the entanglement parameter

satisfies:

B1. (Continuity on isotropic states.) We may simply show that this parameter is continuous
on isotropic states ρ(dn,Fn) with Fn → 1,dn → ∞ that means

RE (ρ(dn,Fn))

logdn
→ 1

as then RE (ρ(dn,Fn))→ logdn that is easy to check.
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6.4 Reduced one-way distillable entanglement 77

Following the papers [98, 102] and the above definition we define the distance in the
asymptotic regime as follows [126]:

R∞
EAB

(ρAB) = limsup
n→∞

REAB(ρAB
⊗n)

n
(6.44)

Having defined above regularized parameter R∞
EAB

(ρAB), we are able now to determine
an upper bound on the one-way distillable entanglement. In [49] Devetak and Winter have
proved a very powerful conjecture (discussed above) called "hashing inequality"

D→ ≥ S(ρB)−S(ρAB)

from which one may find particular states of non-zero D→. For the very features of measures
that bound the distillable entanglement D→, defined in [98, 58], where was shown that
monotonicity and continuity on isotropic states are sufficient for any properly regularised
function to be upper bound for D→, we may prove now the following theorem exploiting
only distillation protocols in the line of the proof:

Theorem 6.3.1 [126] For any bipartite state ρAB there holds:

D→(ρAB)≤ R∞
EAB

(ρAB) (6.45)

Proof. Any one-way distillation protocol can be reduced to the distillation protocol
[98, 58, 102] where the input is ρ⊗n and the output is a family of the states ρ(dn,Fn) with
limn→∞

logdn
n = D→(ρ) and Fn → 1.

We may always put dn ≤ nn
AB for nAB = min[dA,dB] since there holds D→(ρ)≤ lognAB.

Thus, we can consider only 1-LOCC non-increasing dimensions of input and so monotonicity
of REAB holds.

By analogy with the theorem put in [98, 58, 102] the properties (A3) and (B1) imply that
R∞

EAB
(ρAB) is an upper bound for D→. The regularisation (6.44) with supreme value enables

the upper bound of D→. �

6.4 Reduced one-way distillable entanglement

We can now propose a new bound on distillation of entanglement by means of one-way LOCC.
This result is based on the aforementioned observation [50, 51] that one-way distillable
entanglement D→ of a state ρAB can be represented as regularization of one-copy formula:
D(1)
→ (ρAB) = maxT ∑

L
l=1 λlIc(A⟩B)ρl where the maximization is over quantum instruments
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6.4 Reduced one-way distillable entanglement 78

T = {T1, . . . ,TL} on Alice’s system, λl = TrTl(ρA), Tl is assumed to have one Kraus operator
Tl(ρ) = AlρA†

l and ρl =
1
λl
(Tl ⊗ id)ρAB. Basing on the results of Observation 6.1.11, we

derive a general formula for the bound on one-way distillable entanglement applying the
reduced quantity:

Definition 6.4.1 [127] For a bipartite state ρABB′ ∈ B(HA ⊗HB ⊗HB′) shared between
Alice and Bob (B and B’ system) the reduced one-way distillable entanglement is defined as:

D(1)
→ ↓ (ρABB′) = inf

U
[D(1)

→ (U (ρAB))+∆D→] (6.46)

where U denotes unitary operations on Bob’s system with a possible transfer of subsystems
from Bob to Eve, i.e. U (ρAB) = TrB′(I ⊗UBB′)ρABB′ for some unitary UBB′ . ∆D→ = 2S(ρ̃B′)

denotes the defect parameter related to increase of entropy produced by the transfer of
B’-subsystem from Bob’s side to Eve and ρ̃B′ = TrAB(I ⊗UBB′)ρABB′ .

Remark. It is substantial to note that in a case of an odd dimension of the space of the system
possessed by Bob, i.e. dimB(HBB′) = 2k + 1 for some k ∈ N, we can always perform
isometric embedding E : B(HBB′)→ B(HB̃B′) of the space to make it even on Bob’s side,
which can be done e.g. be adding an ancillary system ρancilla = |0⟩⟨0| to Bob, also of
an odd dimension and then perform a local unitary operation on Bob’s side. After this
operation Bob can always split his system which show that the definition can be always
applied for the bipartite state shared between Alice and Bob, for any dimension on Bob’s side.
Since such an isometric embedding on Bob’s side is a local operation, it does not change
distillable entanglement for the system shared between Alice and Bob. Thus, in general,
D→(ρABB′) = D→(ρAB̃B′). In a consequence, one can always generate D(1)

→ ↓ (ρAB̃B′) We
can apply this reasoning to all following statements about the reduced one-way distillable
entanglement.

Theorem 6.4.2 [127] For a bipartite state ρABB′ ∈ B(HA ⊗HB ⊗HB′) shared between
Alice and Bob (B and B’ system) there holds:

D→(ρABB′)≤ D→ ↓ (ρABB′)

where D→ ↓ (ρABB′) = limn D(1)
→ ↓ (ρ⊗n

ABB′)/n denotes regularized version of reduced one-way
distillable entanglement for one copy. Particularly, for identity operation U = id on Bob’s
side one obtains: D→(ρABB′)≤ D→(ρAB)+∆D→ where ∆D→ = 2S(ρB′).

The left inequality is an immediate implication of the following lemma for the one-copy
formula [127]:
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6.4 Reduced one-way distillable entanglement 79

Lemma 6.4.3 [127] For every bipartite state ρABB′ there holds:

D(1)
→ (ρABB′)≤ D(1)

→ ↓ (ρABB′) (6.47)

Proof. It suffices to use results of Observation 6.1.11. to notice that for a chosen set of
instruments T on Alice side for calculation of D(1)

→ (ρABB′) the inequality holds as extension of
inequality from Observation 6.1.11. by multiplicands λl on the left and right side. However,
if in case of calculating D(1)

→ (ρAB) there exists a set T’ maximizing D→(ρAB) better than T,
then right hand side of the inequality can be only greater. �

To prove the inequality asymptotically it suffices to notice that statements of this lemma
hold also for the arbitrary chosen state ρn = ρ⊗n. Let ρABB′

n be a state maximizing D→(ρABB′)

as an asymptotic regularization of coherent information ( cf. def. 6.1.9).
Basing on Observation 6.1.11, one can immediately derive for the maximizing state ρABB′

n :
1
n Ic(A⟩BB′) ≤ 1

n [Ic(A⟩B)+ 2S(ρB′
n )]. Since the maximization over quantum instruments T

is on Alice’s side, we can perform this operation on both sides of the inequality which
completes the proof.

It is crucial to notice that the ’defect’ parameters ∆ for the reduced quantities are sub-
additive and hence, can be exploited in case of composite systems and regularization:

Corollary 6.4.4 [127] For the reduced quantities of {K→,P,Q→,D→} for composite systems
there holds: ∆X(ρ ⊗σ) ≤ ∆X(ρ)+∆X(σ) and ∆Y (Λ⊗Γ) ≤ ∆Y (Λ)+∆Y (Γ) where X =

{K→,D→} stands for states2 and Y = {Q→,P} for channels3 respectively.

To prove the above corollary it suffices to use subadditivity of entropy for composite systems
since Bob can act with a unitary operation before he discards some part of his subsystem. This
property of the parameters enables regularization in the asymptotic regime of the reduced
quantities for large systems ρ⊗n.

Example 6.4.5 (Activable multi-qubit bound entangled states)
As an example illustrating this bound we consider an activated bound entangled state ρII

[46] which is distillable if the parties (Alice and Bob) form two groups containing between
40% and 60% of all parties of the system in the state ρII .

If Alice or Bob posses less than 40% of the system or system is shared between more than
two parties, then the state becomes un-distillable. This state for large amount of particles
can manifest features characteristic for ’macroscopic entanglement’ with no ’microscopic
entanglement’.

2Vide chap. Quantum Privacy.
3Vide chap. Quantum Channels.
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6.4 Reduced one-way distillable entanglement 80

For definition of the state, let us consider the family ρN of N-qubit states:

ρN = ∑
σ=±

λ
σ
0 |Ψσ

0 ⟩⟨Ψσ
0 |+ ∑

k ̸=0
λk(|Ψ+

k ⟩⟨Ψ
+
k |+ |Ψ−

k ⟩⟨Ψ
−
k |) (6.48)

where |Ψ±
k ⟩=

1√
2
(|k1k2 . . .kN−10⟩±|k1k2 . . .kN−11⟩) are GHZ-like states with k= k1k2 . . .kN−1

being a chain of N −1 bits and ki = 0,1 if ki = 1,0, thus, the state is parameterized by 2N−1

coefficients. The states |Ψ±
0 ⟩=

1√
2
(|00 . . .0⟩± |11 . . .1⟩) denote the standard GHZ states.

Let us consider now a bipartite splitting P where Alice takes 0.6N of qubits and Bob
takes the other 0.4N qubits. We can immediately show that:

D→(ρII)≤−2(λ+
0 +λ

−
0 +2∑

k
λk) log(λ+

0 +λ
−
0 +2∑

k
λk) (6.49)

since for Bob transferring one qubit to the environment, we obtain undistillable state ρN−1

and D↔(ρN−1) = 0 which obviously implies D→(ρN−1) = 0. It is noticeable that even for a
large macroscopic system with N → ∞:

D→(ρII)≤−2(λ+
0 +λ

−
0 +2∑

k
λk) log(λ+

0 +λ
−
0 +2∑

k
λk). (6.50)

It can be easily shown that with the same method it is possible to achieve an upper bound on
one-way quantum channel capacity Q→ which is a subject of analysis in the next chapter.
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Chapter 7

Quantum channels

7.1 Types of quantum channel capacities

Quantum channel capacity Q(Λ) of a channel Λ is a measure of reliability of a channel in
transmitting quantum information from a sender to the receiver and has its roots in classical
coding theorem by Shannon [151, 152] who analyzed transmission of classical information
over noiseless and noisy channels respectively. We focus in this section on recalling the most
fundamental approach to defining the quantum version of this concept [9, 10, 125].

Namely, let us define a quantum source [9, 10] Ω = (Hs,Γ) generating a sequence
Γ = {ρ1

s ,ρ
2
s , . . . ,ρ

n
s } where the state ρ1

s acts on Hs, ρ2
s acts on H ⊗2

s and ρn
s on H ⊗n

s

respectively. Then, the entropy of a source Ω is defined as:

S(Ω) = lim sup
n→∞

S(ρ(n)
s )

n
(7.1)

A coding protocol (or scheme) consists of a sequence of trace-preserving encoding maps En

and respectively, decoding maps Dn:

En : B(H ⊗n
s )→ B(H ⊗n

c ) (7.2)

Dn : B(H ⊗n
o )→ B(H ⊗n

s ) (7.3)

The code space H ⊗n
c is a space of a code Cn onto which the initial states are encoded

in a direct analogy to the classical space of codewords. Further, a channel Λ⊗n acts on the
encoded state and produce a state on the H ⊗n

o which will be finally decoded by Dn to a state
on H ⊗n

s [Fig. 7.1].
.
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7.1 Types of quantum channel capacities 82

|Ψ  

Alice
 

Bob
 

|Ψ   𝐸n
 𝐷n

 

Λ
 

Λ
 

Λ
 

Λ 

. . . 

Fig. 7.1 Alice encodes her state with an encoding operation En which generates a state
|Ψ⟩ ∈ Cn of a code Cn, that she sends through n uses of the channel Λ. Then Bob applies
decoding operation to decode the state |Ψ̃⟩ with high fidelity. The rate of the code Cn is
R = 1

n logdimCn and the quantum capacity of a quantum channel Λ is an optimal rate over
all possible codes.
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7.1 Types of quantum channel capacities 83

As observed, the model of a coding scheme is in direct analogy to the classical coding
theorem, where a message sent by a sender Alice is firstly encoded (it can be performed
on multiple copies of the message in parallel) by her, then sent via a noisy channel which
introduces some errors to the encoded information and at the final stage, it is decoded by Bob
who tries to retrieve an original message.

Basing on the definition of the encoding and decoding operations, one can define the
(n,ε)-code as such a coding scheme which meets the following condition for the fidelity:

min
|φ⟩∈H ⊗n

s

F(|φ⟩⟨φ |,Dn ◦Λ
⊗n ◦En(|φ⟩⟨φ |))≥ 1− ε (7.4)

The rate of the code is defined as:

R =
1
n

logdimH ⊗n
s (7.5)

The source Ω can be sent reliably over a quantum channel Λ if there exists a coding scheme
so that:

lim
n→∞

min
|φ⟩∈H ⊗n

s

F(|φ⟩⟨φ |,Dn ◦Λ
⊗n ◦En(|φ⟩⟨φ |)) = 1 (7.6)

and we call the rate R for transmission over the channel Λ achievable if there exists a sequence
of subspaces Hn in H ⊗n

c such that:

R = lim
n→∞

sup
logdimHn

n
(7.7)

Then, the quantum capacity of the quantum channel [9, 10] (called also the subspace
transmission capacity of a quantum channel) is defined as a supremum over all achievable
rates R of all possible codes on the input states which is in analogy to definitions of distillable
entanglement and quantum key:

Q(Λ) = sup{R : R achievable}. (7.8)

Intuitively it responses to the question: how many qubits can we sent faithfully through n
uses of the channel (where the inputs can be entangled)? It is worth mentioning the alternative
approach to this definition of a quantum channel capacity which is based on entanglement
transmission over the channel. Namely, the alternative definition of the rate R̃ is built on the
entanglement fidelity definition:

R̃ = max
ρn∈B(H ⊗n

s )
{S(ρn) : Fe(ρ,Dn ◦Λ

⊗n ◦En)≥ 1− ε} (7.9)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


7.1 Types of quantum channel capacities 84

where the entanglement fidelity Fe is defined for a bipartite system where one part of the
system is sent through the channel Λ:

Fe(ρ,Λ) = F(|Ψ⟩⟨Ψ|,(I ⊗Λ)(|Ψ⟩⟨Ψ|)) (7.10)

where |Ψ⟩ is a purification of ρ and Fe is not dependant on the choice of this purification.
The rate R̃ is achievable for the channel Λ if there exists a source Ω (and entropy S(Ω)) that
can be sent reliably via Λ channel, i.e. limn→∞ Fe(ρn,Dn ◦Λ⊗n ◦En) = 1.

The quantum channel capacity defined as a supremum over the aforementioned achievable
rates R̃ is also called the entanglement transmission capacity of a quantum channel Q̃(Λ). It
is proved that both quantities are equal [9]:

Q(Λ) = Q̃(Λ) (7.11)

If the transmission process is assisted by a classical communication between parties Alice
and Bob we talk about either one-way quantum channel capacity Q→(Λ) (one direction com-
munication) or two-way quantum channel capacity Q↔(Λ) (bidirectional communication)
(or zero-way when no classical communication is exchanged between the parties).

The above definitions of quantum channel capacities reflects the process of transmission
of quantum states through the channel, however, due to the very definitions endowed with
infinities, they are not operationally very useful for direct estimation of the quantities.
Therefore, of a great importance are alternative definitions or bounds on the quantum channel
capacities.

In particular, the quantum capacity of a quantum channel can be defined in terms of
coherent information which is one of the best known definitions of the quantum capacity. It
can be formulated by means of the coherent information even when the communication is
assisted by one-way or two-way classical communication between Alice and Bob:

Theorem 7.1.1 [48, 49] Let Λ : B(HA)→ B(HB) be a quantum channel, then:

Q /0(Λ) = Q→(Λ) = lim
n→∞

1
n

max
|ψA′An⟩

Ic(A′⟩Bn)ω (7.12)

where |ψA′An⟩ denotes a pure state of the system A′A⊗n, i.e. n copies of A together with a
reference system A’, and the state |ω⟩ results from sending the subsystem An through n copies
of the channel:

ω = I⊗Λ
⊗n(|ψA′An

⟩⟨ψA′An
|) (7.13)
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7.1 Types of quantum channel capacities 85

For two-way quantum channel capacity, there holds:

Q↔(Λ) = lim
n→∞

1
n

max
|ψA′An⟩,O

Ic(A′⟩Bn)ω (7.14)

with ω resulting from action of n copies of a channel Λ and two-way LOCC operations O on
the system A′An:

ω =O[I⊗Λ
⊗n(|ψA′An

⟩⟨ψA′An
|)] (7.15)

Noteworthily, a quantum channel assisted by forward communication (one-way classical
communication) has the same quantum capacity as a quantum channel unassisted by such
communication (zero-way classical communication) and there holds:

Q /0(Λ) = Q→(Λ)≤ Q↔(Λ) (7.16)

We also know that a single-letter formula for quantum channel capacity is in general smaller
than the asymptotically regularized version:

Q(1)
/0 (Λ) = Q(1)

→ (Λ) = max
|ψA′A⟩

Ic(A′⟩B)ω ≤ Q /0(Λ) (7.17)

where we consider only one copy of A. The system AA′ is in a state |ψA′A⟩, over which the
maximization is considered and ω = I⊗Λ(|ψA′A⟩⟨ψA′A|) - the system A is sent through the
channel Λ. Further, since Q /0(Λ) = Q→(Λ), we will use the simplified notation for quantum
channel capacity Q(Λ) assuming that it can be assisted by one-way communication which
does not change its value. This notation has been also used widely in literature during recent
years.

In a context of this discussion, we have to recall the observation that one can analyze a
classical content of the final output states after decoding the quantum states which can be
performed by collective POVM operations performed by Bob. This leads us to the definition
of the classical capacity of a quantum channel and its famous Holevo formulation:

Theorem 7.1.2 [92, 150] The classical capacity C(Λ) of a quantum channel Λ is:

C(Λ) = lim
n→∞

C(1)(Λ⊗n)

n
(7.18)

where the Holevo capacity stands for:

C(1)(Λ) = max
{pi,ρi}

χ{pi,ρi}(Λ) = max
{pi,ρi}

[S(∑
i

piΛ(ρi))−∑
i

piS(Λ(ρi))] (7.19)
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7.1 Types of quantum channel capacities 86

with χ(·) denoting the Holevo function, {pi,ρi} an ensemble of quantum signal states,

∑i pi = 1 and pi > 0. Every ρi is an input signal state to the channel sent with probability pi.

It is fundamental to note that the Holevo function χ{pi,ρi}(Λ) can be interpreted as the
amount of classical information sent through the Λ channel from Alice to Bob. Alice
prepares the signal states ρi with a priori probability pi and sends them through the channel.
Bob finally tries to recognize which signal state was sent by Alice, by means of collective
measurements on his side and he analyzes classical information after his measurements.

For the Holevo capacity C(1)(Λ), it is assumed that Alice prepares the input state as a
product state ρ1 ⊗ρ2 ⊗ . . .⊗ρn with each ρi as a potential signal state for a single use of the
channel Λ. Thus, no entanglement between the input states is allowed in this formula although
Bob can apply measurements entangled on his received states. That is also the reason for
consideration of more general scheme where the input states can be entangled and it results
in necessity of using the regularized version of this capacity as: C(Λ) = limn→∞

C(1)(Λ⊗n)
n .

The subject of regularization of both quantities as C(Λ) = limn→∞
C(1)(Λ⊗n)

n and Q(Λ) =

limn→∞
Q(Λ⊗n)

n relates to the question of additivity of classical capacity and quantum capacity
of quantum channels, i.e. whether Q(Λ1 ⊗Λ2) = Q(Λ1) +Q(Λ2) and C(1)(Λ1 ⊗Λ2) =

C(1)(Λ1) +C(1)(Λ2). The answer to this question is negative and for many years was
a big open question of the quantum information theory since for classical channels the
information theoretic quantities are additive, e.g. if a channel Λ1 and Λ2 are classical then
C(1)(Λ1 ⊗Λ2) =C(1)(Λ1)+C(1)(Λ2) and in a result C(1)(Λ) =C(Λ).
For general quantum channels, M. Hastings proved in 2009 [84] that classical capacity of
quantum channels is non-additive:

C(1)(Λ1 ⊗Λ2)>C(1)(Λ1)+C(1)(Λ2) (7.20)

and as we will see further, there are also existential proofs of this property in case of quantum
channel capacity of quantum channels [153]:

Q(Λ1 ⊗Λ2)> Q(Λ1)+Q(Λ2) (7.21)

It is also substantial to note that in general, there holds:

C(Λ)≥ Q(Λ) (7.22)

In the following sections, we focus on the class of quantum capacities of quantum
channels assisted by one-way classical communication between Alice and Bob which is
directly related to the application of symmetric extendibility of quantum channels.
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7.2 Simple test for quantum channel capacity 87

7.2 Simple test for quantum channel capacity

As we could observe, it has been proven [15] that there is a strong connection between
entanglement distillation [17] and quantum channel capacities. No-cloning principle has
been used to prove that for some region quantum depolarising channel has zero capacity even
if does not destroy entanglement [26].

Following the idea [26] developing restriction on qubit depolarising channel from approx-
imate quantum cloning we shall utilise general notion of symmetric extensions of quantum
states (see [55, 56, 161]) to provide a general rule and examples of channels with zero
one-way capacity. We show that every state ρAB(Λ) which has a symmetric extension ρABB′

has special featured one-way distillable entanglement D→ and quantum channel capacity Q
according to its quantum channel implied by Jamiolkowski isomorphism.

Combining the observation from a previous chapter that any symmetric extendible state
has zero one-way distillable entanglement with Choi-Jamiolkowski isomorphism between
states and channels we get immediately the following:

Observation 7.2.1 [126] A sufficient condition for quantum capacity of a given quantum
channel Λ to vanish is symmetric extendibility of the state ρAB(Λ) isomorphic to the channel.

Proof. Proof of the above theorem is immediate and follows again from quantum
entanglement monogamy (cf. [26, 30]) and the fact that the set of symmetric extendible states
is closed under 1-LOCC operations. If the state ρAB, being Choi-Jamiolkowski isomorphic
with the quantum channel Λ, is symmetric extendible (which means that Λ is an extendible
channel) then for n copies of ρAB (isomorphic with n copies of Λ), one still gets a symmetric
extendible state ρ

⊗n
AB and so Λ⊗n is still symmetric extendible. Even if one would add any

additional 1-LOCC operations between the parties engaged in the coding-encoding protocol,
then the output state is still symmetric extendible (in accordance with the 1-LOCC closeness
of the set of symmetric extendible states) and one still cannot achieve any singlet states from
the output states so the channel capacity is zero Q(Λ) = 0.

Conversely, assume that the quantum capacity of the channel is positive Q(Λ)> 0. Then,
in accordance with the definition of the quantum channel capacity, the coherent information
on the output state ρ

⊗n
AB is positive and there exists a protocol, i.e. "the hashing protocol",

which from the state ρ
⊗n
AB isomorphic with the channel (even in the asymptotic regime, n→∞)

is able to distill k copies of singlet states |Ψ+⟩⟨Ψ+|, for some k > 0. But we know that
the set of symmetric extendible states is closed under 1-LOCC operations and "the hashing
protocol" cannot produce k singlets from a symmetric extendible state. This implies that
Γn

AB = ρ
⊗n
AB could not be symmetric extendible. The last statement holds due to the fact that
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σ⊗n is symmetric extendible if σ is symmetric extendible (for any n), as already proved in
the chapter 4. �

In the following, we present a special classes of channels which are directly related to
the concept of symmetric extendibility which proves a great importance of that concept for
quantum channels theory.

(Anti)degradable channels

We recall now the degradable channels and anti-degradable channels [52] basing on the
Stinespring dillation for a given quantum channel. We already mentioned in the introductory
chapters treating of quantum channels that a channel Λ acting on a state ρA can be represented
by a unitary operation U acting on the system in this state and ancillary system of the
environment E:

Λ(ρA) = TrE [U(ρA ⊗|0⟩E⟨0|)U†] (7.23)

Then the complementary channel (or a dual channel) ΛC acts on the environment, i.e.:

ΛC(ρA) = TrA[U(ρA ⊗|0⟩E⟨0|)U†]. (7.24)

Then we call the channel Λ degradable if there exists another channel ΛD which is able
to transform (degrade) the channel Λ into its complementary channel ΛC when acts on the
output of that channel:

ΛC = ΛD ◦Λ. (7.25)

Further, a channel Λ is anti-degradable if there exists such a channel ΛAd which transforms
the complementary channel ΛC into Λ:

Λ = ΛAd ◦ΛC. (7.26)

We can find an immediate relation of anti-degradability of quantum channels with
symmetric extendibility:

Lemma 7.2.2 [123] A channel Λ is anti-degradable if and only if its Choi-Jamiolkowski
representation ρΛ = 1

d ∑
d−1
i, j=0 |i⟩⟨ j|⊗Λ(|i⟩⟨ j|) is symmetrically extendible.

As a natural consequence of this fact, one finds that for all anti-degradable channels ΛAd ,
there holds Q(ΛAd) = 0. Moreover, all necessary and sufficient conditions for symmetrically
extendible states hold also for anti-degradable channels isomorphic with them by means of
the Choi-Jamiolkowski isomorphism.
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7.2 Simple test for quantum channel capacity 89

Entanglement breaking and k-extendible channels

A special class of channels are those which always generate separable states, i.e. if Alice
possesses two maximally entangled particles in a state |Ψ+⟩AB and sends one of the particles
to Bob via the entanglement breaking channel Λ, then they will share a separable state in the
output:

Definition 7.2.3 [105] A channel Λ is called entanglement breaking if ρAB = [I⊗Λ]|Ψ+⟩⟨Ψ+|
is a separable state where |Ψ+⟩= 1√

d ∑
d−1
i=0 |ii⟩.

It is worth mentioning that such channels have very simple Kraus representation with rank-
one operators V , i.e. Λ(ρ) = ∑iViρV †

i . Further, it can be represented in a so-called Holevo
form :

Λ(ρ) = ∑
k

RkTr(Fkρ) (7.27)

where Rk are density matrices and Fk are POVMs on ρ . In this scenario the sender Alice
performs POVM measurements Fk on the state and send the outcome k via the classical
channel to Bob who basing on that prepare the output state Rk. In a result, all such channels
have zero two-way capacity Q↔(ΛEBreak) = 0. It is also noticeable that for any channel Λ

and an entanglement breaking channel ΛEBreak there holds:

Q↔(ΛEBreak ⊗Λ) = Q↔(Λ) (7.28)

which means that assistance of entanglement breaking channel does not change capacity of a
quantum channel.

A next class of channels with zero two-way capacity generates bound entangled states:

Definition 7.2.4 [106] A channel Λ : Mm −→ Mn is binding entanglement if ρ = [I ⊗Λ]P+
(ρ ∈ B(Cm ⊗Cn)) is a bound entangled state.

As we will see later, in contrary to the case of entanglement breaking channels, binding
entanglement channels (for which Q(ΛEBind) = 0) can activate entanglement in the assisted
state. Thus, in general for this class Q(ΛEBind ⊗Λ) ̸= Q(Λ)+Q(ΛEBind) (which is a an
example of non-additivity of quantum channel capacities).

As already observed, quantum channels generating symmetric extendible states have zero
one-way quantum channel capacities, such channels are called symmetric side channels or
symmetric extendible channels:

Definition 7.2.5 A channel Λ is called k-extendible if ρAB = [I⊗Λ]|Ψ+⟩⟨Ψ+| is a k-extendible
state where |Ψ+⟩= 1√

d ∑
d−1
i=0 |ii⟩.
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7.3 New upper bounds on one-way quantum channel capacity 90

An example of such a channel can be 1
2-erasure channel: Λerasure(ρ) =

1
2ρ + 1

2I generating
symmetric extendible state from a singlet when one of its subsystems is sent through. Thus, in
accordance with the above definitions, every entanglement breaking channel is ∞-extendible
channel.

7.3 New upper bounds on one-way quantum channel ca-
pacity

The best known derivation of the one-way quantum channel capacity Q(Λ) [18, 11] is
expressed as an asymptotic regularization of coherent information (as an analogue to def.
6.1.9):

Q(Λ) = lim
n→∞

1
n

sup
ρn

Ic(ρn,Λ
⊗n) (7.29)

with parallel use of N copies of Λ channel. Coherent information for a channel Λ and a
source state σ transferred through the channel is defined as: Ic(σ ,Λ) = IB(I ⊗Λ)(|Ψ⟩⟨Ψ|)
where Ψ is a pure state with reduction σ and coherent information of a bipartite state ρAB

shared between Alice and Bob is defined as: IB(ρAB) = S(B)−S(AB). We will use further
the following notation: IB(ρAB) = Ic(A⟩B).

Motivated by the reduced quantity of the one-way distillable entanglement rate and the
observation 6.1.11, we derive further the reduced version of quantum channel capacity [Fig.
7.2] and show that it is a good bound on quantum channel capacity (we remember also that
Q /0(Λ) = Q→(Λ) which is not the case for distillable entanglement):

Definition 7.3.1 [127] For a one-way quantum channel ΛBB′ : B(HBB′) → B(HB̃B̃′) the
reduced one-way quantum channel capacity is defined as:

Q(1) ↓ (ΛBB′) = inf
U
[Q(1)(U (ΛBB′))+∆Q] (7.30)

where U denotes unitary operations on Bob’s system with a possible transfer of subsystems
from Bob to Eve after action of ΛBB′ channel, i.e. U (ΛBB′(ρBB′)) = TrB′UBB′ΛBB′(ρBB′)

for some unitary UBB′ : B(HB̃B̃′)→ B(H̃B̃B̃′). ∆Q = 2supρBB′
S(TrBUBB′ΛBB′(ρBB′)) denotes

the defect parameter related to increase of entropy produced by the potential transfer of
B’-subsystem from Bob’s side to Eve.

.
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𝕀A 

Alice
 

|Ψ
+
 A(BB') 

 Ψ
+
|

 

 BB’ 

𝜌 ABB’ 

Alice
 

Bob
 

Eve
 

B’ B
 B’ B

 

𝑈BB’ 

Fig. 7.2 Alice sends BB’ part of the singlet state |Ψ+
A(BB′)⟩⟨Ψ

+
A(BB′)| through the channel ΛBB′ .

After this action, Bob can locally act with a unitary operation UBB′ on BB’-subsystem and
transfer the part B’ to the environment possessed by Eve.
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Theorem 7.3.2 [127] For any one-way quantum channel ΛBB′ : B(HBB′)→ B(HB̃B̃′) there
holds:

Q(ΛBB′)≤ Q ↓ (ΛBB′) (7.31)

where Q ↓ (ΛBB′) = limn Q(1) ↓ (Λ⊗n
BB′)/n denotes the reduced quantum capacity.

To prove this inequality for regularized quantum capacity and its reduced version it is
sufficient to derive the below lemma for a single copy case:

Lemma 7.3.3 For any one-way quantum channel ΛBB′ : B(HBB′) → B(H
B̃B̃′) there

holds:
Q(1)(ΛBB′)≤ Q(1) ↓ (ΛBB′) (7.32)

Proof. The proof of this lemma is straightforward with application of the observation
6.1.11 that for a state ρBB′ maximizing coherent information on the left hand side of the
observation the above formula holds also for a possible transfer of B’ to the environment. It
is worth recalling that an action of the unitary operator on a state does not change its entropy
and in a result the coherent information for any partition of the system.�

Further, one can complete the proof of the theorem in the asymptotic regime:
Proof. To prove the inequality of Theorem 7.3.2 asymptotically it suffices to notice

that statements of Lemma 7.3.3 hold also for the arbitrary chosen state ρn = ρ⊗n. Let
ρBB′

n be a state maximizing Q(ΛBB′) as an asymptotic regularization of coherent informa-
tion, i.e. Q(ΛBB′) = limn→∞

1
n Ic(ρ

BB′
n ,Λ⊗n

BB′) which one can represent as Ic(A⟩BB′) for the
aforementioned Choi-Jamiolkowski isomorphism between states and channels.

Basing on Observation 6.1.11, one can immediately derive for the maximizing state
ρBB′

n : 1
n Ic(A⟩BB′) ≤ 1

n [Ic(A⟩B) + 2S(ρB′
n )] where Ic(A⟩B) = Ic(TrB′ρBB′

n ,Λ⊗n
BB′) and ρB′

n =

TrBΛ
⊗n
BB′(ρBB′

n ).
However, if there exists a state σB

n for which Ic(σ
BB′
n ,Λ⊗n

BB′)> Ic(TrB′ρBB′
n ,Λ⊗n

BB′), then it
proves that right hand side of the inequality in the lemma can be only larger than in case of
the chosen state ρBB′

n which completes the proof.
Finally, the subadditivity of entropy can be applied to verify that in case of the regular-

ized one-way quantum channel capacity its defect parameter cannot be larger than ∆Q =

2supρBB′
S(TrBΛBB′(ρBB′)), since supσBB′

S(TrBΛ
⊗n
BB′(σBB′)) ≤ supρn

BB′
S(TrBnΛ

⊗n
BB′(ρn

BB′)) ≤
nsupρBB′

S(TrBΛBB′(ρBB′). �

Example 7.3.4 Let us consider the graph state [88] |G ⟩ of a 3n+1-qubit system associated
with a mathematical graph G = {V ,E }, composed of a set V of 3n+1 vertices and a set E
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7.4 Super-activation of quantum channel capacities 93

of edges {i, j} connecting each vertex i with some other j:

|G ⟩=
⊗

i, j∈E

CZi j|G0⟩ (7.33)

where 3n+1 qubits are initialized in the product state |G0⟩=
⊗

i∈V |ψi⟩ with |ψi⟩= 1√
2
(|0i⟩+

|1i⟩). Afterwards, one applies a maximally-entangling control-Z (CZ) gate to all pairs {i, j}
of qubits joined by an edge:

CZi j = |0i0 j⟩⟨0i0 j|+ |0i1 j⟩⟨0i1 j|+ |1i0 j⟩⟨1i0 j|− |1i1 j⟩⟨1i1 j|. (7.34)

If Alice takes no more than n qubits from the graph system that will use to establish
communication with Bob who uses other n qubits in this graph state, then the state ρAB

2n (with
n qubits on Alice side and n qubits on Bob’s side) is symmetric extendible to a state ρAB

3n which
means that the channel isomorphic with this state has a zero capacity. A natural symmetric
extension of ρAB

2n is a state ρAB
3n = TrB′|G ⟩⟨G | resulting from tracing out an arbitrary chosen

qubit B’ from graph G . However, if Alice takes n qubits and Bob takes n+1 qubits from the
graph system, the resulting state ρAB

2n+1 is not symmetric extendible anymore.
Now we will search for the one-way quantum channel capacity of a channel ΛBB′ , iso-

morphic due to the Choi-Jamiolkowski isomorphism, with a state ρABB′
2n+1 = (I ⊗ΛBB′)|Ψ⟩⟨Ψ|.

As above, after discarding B′ 1-qubit system the state would become symmetric extendible
and we obtain Q(ΛBB′)≤ 2.

The power of the above results appears especially in application of Theorem 7.3.2 to any
channel reducible to anti-degradable channel which Choi-Jamiolkowski representation is
symmetric extendible [123] or channels reducible to degradable channels which have known
capacity [154].

7.4 Super-activation of quantum channel capacities

For completeness of the presentation, we consider in this section a matter of additivity
of quantum capacities whether there exist quantum channels for which: Q(Λ1 ⊗Λ2) >

Q(Λ1)+Q(Λ2). The existential proof of non-additivity of quantum channel capacities is
based on finding such two channels which have zero quantum capacities but in pair can
transfer faithfully quantum information with non-zero rate. The idea [153] is based on
pairing two quantum channels, namely, a symmetric extendible channel and a private binding
channel.
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7.4 Super-activation of quantum channel capacities 94

The following powerful theorem proved in [153] is a basis for offering a positive answer
to this question and relates a quantum privacy concept with quantum channel capacity:

Theorem 7.4.1 For any quantum channel Λ, there holds:

Qss(Λ) = sup
Λsym

Q(Λ⊗Λsym)≥
1
2

P(Λ) (7.35)

where Λsym is any symmetric extendible channel.

For capacity Qss(Λ) of quantum channels Λ assisted with unlimited supply of symmetric
extendible channels Λsym, there holds:

Theorem 7.4.2 [154] For all channels Λ : B(HA′)→ B(HB):

Qss(Λ) = Q(1)
ss (Λ) = sup

|ψAA′CD⟩
Ic(A⟩BC)ω (7.36)

where ω = IACD ⊗Λ(|ψAA′CD⟩⟨ψAA′CD|) with optimization over all states |ψAA′CD⟩ invariant
under permutation of C and D.

It is worth mentioning that for any channel Λ: Qss(Λ)≥ Q(Λ).
The quantum channel used in the proof of the non-additive inequality is an example

of zero-capacity quantum channel with positive privacy (an example of a binding channel
generating private bound entangled states), i.e. the four-dimensional private channel ΛH [104]
and is paired with a 1/2-erasure channel Λerasure which leaves the input state ρ unchanged
with probability 1

2 and generates a maximally mixed stated otherwise, i.e. Λerasure(ρ) =
1
2ρ + 1

2I.
The channel ΛH has as an input a tensor product of two qubits and has the following

Kraus matrices Mk (in Kraus representation: ΛH(ρ) = ∑k MkρM†
k and ∑k MkM†

k = I):

{
√

q
2
I⊗|0⟩⟨0|,

√
q
2

σZ ⊗|1⟩⟨1|,
√

q
4

σZ ⊗σY ,

√
q
4
I⊗σX ,

√
1−qσX ⊗X0,

√
1−qσY ⊗X1}

(7.37)
where q =

√
2

1+
√

2
and σX ,σY ,σZ stand for Pauli matrices and:

X0 =

(
1
2

√
2+

√
2 0

0 1
2

√
2−

√
2

)
,X1 =

(
1
2

√
2−

√
2 0

0 1
2

√
2+

√
2

)
(7.38)

The private capacity P(ΛH) of this channel is lower bounded by 0.02 as follows [104]:

I(X ;B)− I(X ;E)≥ 1−q logq− (1−q) log(1−q)> 0.02 (7.39)
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7.4 Super-activation of quantum channel capacities 95

which in result gives also a bound on the quantum capacity of this private channel assisted
with a symmetric extendible erasure channel: Q(ΛH ⊗Λerasure)> 0.01. This clearly indicates
non-additivity of quantum channel capacity and proves a great importance of a concept of
symmetric extendibility for a theory of quantum channels.
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Chapter 8

Quantum privacy

8.1 Quantum private states and secret key

The concepts of quantum privacy and quantum secret key have their roots in classical
communication theory and classical cryptography which have a long tradition. Many classical
quantities in this discipline, in similarity to classical channels theory, are redefined to a
quantum version.

In a classical and quantum realm, a secret key shared between two parties Alice and Bob
allows them to perform private communication over a public channel. A public channel
denotes possibility of accessing the communication by other parties, e.g. an adversary Eve
who tries to attack cryptographically their communication and overhear their messages. Thus,
whenever Alice and Bob start with a state ρAB, one can always consider its extension to the
third adversary party Eve ρABE who can try to influence the state by operations on her side.

Thus, in the ideal scenario, the secret key shared between Alice and Bob is decoupled
from Eve’s system in a state ρE and is used by Alice and Bob to encode a message in
cryptographically secure way. Then the extended state representing a classical key has a
form:

ρ
(d)
ABE = (

d

∑
i=1

1
d
|ii⟩AB⟨ii|)⊗ρE (8.1)

It is so-called ccq-state, i.e. a classical-classical-quantum state.
Quantum states, from which one can extract secret key, are called private states or p-dits

[96, 103, 48–51]. As we can observe in the following definition, the private states have a
characteristic singlet-like key part and the shield part:
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8.1 Quantum private states and secret key 97

Definition 8.1.1 [103] A private state or a p-dit is a state γABA′B′ ∈ B(HA ⊗HB ⊗HA′ ⊗
HB′) (for dimensions dA = dB = d):

γABA′B′ =
1
d

d−1

∑
i, j=0

|ii⟩AB⟨ j j|⊗UiρA′B′U†
j (8.2)

where the arbitrary state of a subsystem A’B’ (a shield) is ρA′B′ and Ui are unitary operators.
For d = 2, the state is called a p-bit.

In this case, Alice and Bob can achieve a secret key from the key part (AB part) of the
state. The shield protects in some sense the secure correlations between Alice and Bob
from unwanted influence of the adversary party Eve. In a trivial scenario, the shield can
vanish and the private state shared between Alice and Bob is just a maximally entangled state
|Ψ⟩= 1√

d ∑
d−1
i=0 |ii⟩.

In analogy to distillation of quantum entanglement, one can formulate distillation of a
private state [96, 103] from a given state ρAB which could be finally a resource for extraction
of a classical secret key [Fig. 8.1].

In the following we find a formal definition of the process of p-dit distillation from any
quantum state:

Definition 8.1.2 [103] For a bipartite state ρAB ∈ B(HA ⊗HB) consider a sequence Pn

of LOCC operations such that Pn(ρ
⊗n
AB ) = ρn where ρn ∈ B(H

(n)
A ⊗H

(n)
B ). Then the set

P =
⋃

∞
n=1{Pn} is called a p-dit distillation protocol of the state ρAB if:

lim
n→∞

∥ρn − γdn∥= 0. (8.3)

with a p-dit γdn which key part is of dimension dn ×dn. For a chosen distillation protocol P ,
its rate is defined as:

R(P) = lim
n→∞

sup
logdn

n
(8.4)

Then the distillable key of the state ρAB is defined as:

KD(ρAB) = sup
P

R(P), (8.5)

where supremum is over all possible distillation protocols P .

We take supremum over all accessible protocols to Alice and Bob to find the most optimal
one which extracts a maximal possible number of private states (if any). We can also define a
rate at which a protocol is able to distill a classical secret key:
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Alice
 

𝜌AB

⨂n 

LOCC
 

Bob
 

… 

Alice
 

Bob
 

C
la

ssica
l C

o
m

m
u

n
ica

tio
n

 

𝛾ABA’B’
 

A’
 

A
 

B
 

B’
 

Fig. 8.1 Spatially separated Alice and Bob share n pairs of quantum states ρAB. They
operate on the pairs with local quantum operations and engage also a public channel of
communication, e.g. a mobile, to communicate classically. After action of this key distillation
protocol, they achieve a private states γABA′B′ .
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8.1 Quantum private states and secret key 99

Definition 8.1.3 [96, 103] For a tripartite state ρABE ∈ B(HA ⊗HB ⊗HE) consider a
sequence Pn of LOPC operations such that Pn(ρ

⊗n
ABE) = ρn where ρn ∈ B(H

(n)
A ⊗H

(n)
B ⊗

H
(n)

E ) is a ccq-state (classical-classical-quantum state) with dimH
(n)

A = dimH
(n)

B = dn:

ρn =
dn−1

∑
i, j=0

pi j|i j⟩⟨i j|AB ⊗ρ
E
i j (8.6)

Then the set P =
⋃

∞
n=1{Pn} is called a classical key distillation protocol of the state ρABE if:

lim
n→∞

∥ρn −ρ
′
dn
∥= 0, (8.7)

where

ρ
′
dn
=

1
dn

(
dn−1

∑
i=0

|ii⟩AB⟨ii|)⊗ρ
E
n (8.8)

and ρE
n are arbitrary states in B(H

(n)
E ).

For a chosen distillation protocol P , its rate is defined as:

R(P) = lim
n→∞

sup
logdn

n
(8.9)

Then the distillable classical key of the state ρAB is defined as:

CD(ρABE) = sup
P

R(P), (8.10)

where supremum is over all possible distillation protocols P .

There holds a fundamental equivalence between the rates of the two aforementioned
protocols, namely, the distillable key of a state ρAB is equal to classical secret key of a state
ρAB, which is a subject of the following theorem [96, 103]:

Theorem 8.1.4 For any bipartite state ρAB ∈ B(HA ⊗HB), there holds:

KD(ρAB) =CD(ρAB) (8.11)

Since we can distill a secret key from any state which is distillable (i.e. the output state
of the protocol is a singlet state), it is a trivial observation that any entanglement distillable
states are key distillable states. Yet, it was not obvious for many years whether one can
distill a secret key from bound entangled states (as mentioned previously, entangled PPT
states from which no pure maximal entanglement can be distilled by any 2-LOCC quantum

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8.1 Quantum private states and secret key 100

protocol). The answer to this issue is positive and proved in [103, 97], following by the
example:

Example 8.1.5 (PPT private states) We present a bound entangled state γABA′B′ from which
one can distill a key, i.e.: K→(γABA′B′)> 0:

γABA′B′ =


p
2 (τ0 + τ1) 0 0 p

2 (τ1 − τ0)

0 (1
2 − p)τ0 0 0

0 0 (1
2 − p)τ0 0

p
2 (τ1 − τ0) 0 0 p

2 (τ0 + τ1)

 (8.12)

The state is PPT for p ≤ 1
3 and l

√
1−p

p (d − 1) ≥ d, τ0 = ρ⊗l
s and τ1 = [(ρa +ρs)/2]⊗l are

extreme Werner states, so-called hiding states, where ρs =
2

d2+d PSym and ρa =
2

d2−d PAsym.
PSym and PAsym denote projectors on symmetric and antisymmetric subspace respectively. It
is crucial to note that to achieve security, one needs to engage large l and n to approximate a
perfect key.

One-way secret key distillation

In analogy to one-way distillable entanglement D→, we can consider one-way distillable
key K→ where Alice and Bob can use quantum local operations and only one-way classical
communication from Alice to Bob. This is an alternative representation of K→ to the
definition 8.1.2 with LOCC constrained only to one-way LOCC. As proved in [48–50], the
one-way distillable key K→ for a state ρAB can be formulated as a regularization of one-copy
formula K(1)

→ in terms of quantum conditional mutual information.
A one-way secret key distillation protocol is defined for cqq-states ρABE (which is actually

a broader class than a set of ccq-states) and reflects the fact that Alice starts with some POVM
operations on her side and then sends the result to Bob. Thus, the state is [48]:

ρABE = ∑
x∈X

P(x)|x⟩A⟨x|⊗ρ
x
BE (8.13)

and the protocol operates on n copies naturally:

ρ
⊗n
ABE = ∑

xn
Pn(xn)|xn⟩A⟨xn|⊗ρ

xn

BE (8.14)

where xn = x1x2 . . .xn and
|xn⟩= |x1⟩⊗ |x2⟩⊗ . . . |xn⟩ (8.15)
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8.1 Quantum private states and secret key 101

ρ
xn

BE = ρ
x1
BE ⊗ρ

x2
BE ⊗ . . .ρxn

BE (8.16)

The one-way secret key distillation protocol consists of (in similarity to entanglement
distillation)[48]:
1. Alice acts with a quantum operation T : xn −→ (l,m) on her subsystem ρ

(n)
A :

T(ρ(n)
A ) = ∑

xn
P(C = l,K = m|An = xn)|l⟩⟨l|⊗ |m⟩⟨m| (8.17)

She uses the state of the system K = m as a key and sends information about C = l to
Bob. 2. For each C = l (communicated by Alice to Bob via a classical channel), there
exists a quantum POVM operation Dl performed by Bob on his part: Dl = {D(l)

m }M
m=1. In a

consequence, he achieves his version of the key K′ with a probability:

P(K′ = m|C = l,An = xn) = Tr[D(l)
m ρ

xn
B ]. (8.18)

We call it an (n,ε)-protocol [48, 49] if it acts on n copies of the state shared between
Alice and Bob and meets the following conditions (the number of possible messages sent by
Alice is bounded L ≤ 2nF for some constant F):
1.

P(K ̸= K′)≤ ε (8.19)

2.

∥
K−1

∑
m=0

P(K = m)|m⟩⟨m|−
K−1

∑
m=0

1
K
|m⟩⟨m|∥1 ≤ ε (8.20)

3. And there exists a state ρ0 such that for all m:

∥∑
xn,l

P(An = xn,C = l|K = m)|l⟩⟨l|⊗ρ
xn
E −ρ0∥1 ≤ ε (8.21)

The achievable rate R is possible if for all n there exist (n,ε)-protocols such that for
n → ∞ one gets: ε → 0 an 1

n logM → R. The one-way distillable key is then defined as
[48, 49]:

K→(ρ) = sup{R : R achievable}. (8.22)

These results lead I. Devetak and A. Winter to a lower bound on the one-way distillable
key and more general formula for one-way key distillation in terms of quantum conditional
mutual information:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8.2 Shareability of quantum correlations vs. quantum privacy 102

Theorem 8.1.6 [48] For any ccq-state ρABE , there holds:

K→(ρABE)≥ I(X : B)− I(X : E) (8.23)

As stated above, one can use [48, 49] a general tripartite state ρABE to generate a secret
key between Alice and Bob. Alice engages a particular strategy to perform a quantum
measurement (POVM) described by Q = (Qx)x∈X which leads to: ρ̃ABE = ∑x |x⟩⟨x|A ⊗
TrA(ρABE(Qx)⊗ IBE). Therefore, starting from many copies of ρABE we obtain many copies
of cqq-states ρ̃ABE and we can restate the theorem defining one-way secret key K→:

Theorem 8.1.7 [48] For every state ρABE:

K→(ρ) = lim
n→∞

K(1)
→ (ρ⊗n)

n
(8.24)

with
K(1)
→ (ρ) = max

Q,T |X
I(X : B|T )− I(X : E|T ) (8.25)

where the maximization is over all POVMs Q = (Qx)x∈X and channels R such that T = R(X)

and the information quantities refer to the state:

ωTABE = ∑
t,x

R(t|x)P(x)|t⟩⟨t|T ⊗|x⟩⟨x|A ⊗TrA(ρABE(Qx)⊗ IBE). (8.26)

The range of the measurement Q and the random variable T may be assumed to be bounded
as follows: |T | ≤ d2

A and |X | ≤ d2
A where T can be taken a (deterministic) function of X .

8.2 Shareability of quantum correlations vs. quantum pri-
vacy

As already mentioned and in analogy to the case of entanglement distillation, no one-way
secret key can be distilled from symmetric extendible states:

Observation 8.2.1 If a bipartite state ρAB has a symmetric extension ρABB′ , so that ρABB′ =

ρAB′B and ρAB = TrB′ρABB′ , then for the one-way distillable key there holds:

K→(ρAB) = 0. (8.27)

Proof of the above theorem is immediate and follows again from quantum entanglement
monogamy (cf. [26, 30]), and could be conducted in a similar way as in case of one-way
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8.2 Shareability of quantum correlations vs. quantum privacy 103

distillable entanglement. If Alice sends classical information to Bob and they distill key in
the protocol, then the state can not have symmetric extension since Bob’s colleague, say
Brigitte (corresponding to index B’) could also receive the same message from Alice and
finally could share the same key with Alice too.

As all symmetric extendible state do not posses any private key, we can expect that in
close neighborhood to the set of such states all other states can have only a small amount
of distillable private key. That would have to be true assuming at least local continuity of
private key K→(·) in such a neighborhood. To anylyze this subject, we start reminding an
important theorem about entropic inequalities for conditional entropies of sufficiently close
states in terms of a trace norm:

Theorem 8.2.2 [4] For any two states ρAB and ρ̃AB on HAB = HA ⊗HB, let ε ≡∥ ρAB −
ρ̃AB ∥1 and let dA be the dimension of HA , then the following estimate holds:

|S(A|B)−S(Ã|B̃)| ≤ 4ε logdA +2η(1− ε)+2η(ε) (8.28)

In particular, the right hand side of (8.28) does not explicitly depend on the dimension of
HB.

Basing one the above results and the definition of K→, we prove continuity of the quantity
K(1)
→ (ρ) for one copy of a state ρ and further, consider behavior of the measure in the

asymptotic regime:

Lemma 8.2.3 [128] For any two states ρ and ρ̃ on HA B = HA ⊗HB, let ε ≡∥ ρ − ρ̃ ∥1

and let dA be the dimension of HA , then the following estimate holds:

|K(1)
→ (ρ)−K(1)

→ (ρ̃)| ≤ 8ε logdA +4η(1− ε)+4η(ε) (8.29)

Proof. One can put for the quantity K(1)
→ (ρ) = S(BC)− S(ABC)− S(EC) + S(AEC) =

−S(A|BC)+ S(A|EC) and respectively for ρ̃ there holds K(1)
→ (ρ̃) = −S(Ã|B̃C)+ S(Ã|ẼC).

Further, engaging the results of (8.28) it is easy to conduct the following implications for a
chain of inequalities:

|K(1)
→ (ρ)−K(1)

→ (ρ̃)|=
= |[S(Ã|B̃C)−S(A|BC)]+ [S(A|EC)−S(Ã|ẼC)]|
≤ |S(Ã|B̃C)−S(A|BC)|+ |S(A|EC)−S(Ã|ẼC)|
≤ 2[4ε logdA +2η(1− ε)+2η(ε)]

�
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8.2 Shareability of quantum correlations vs. quantum privacy 104

Since it is not possible to distill any secret key by means of one-way communication and
local operations from all symmetric extendible states, one can easily derive the following:

Corollary 8.2.4 [128] For any state ρ on HAB = HA ⊗HB being in distance ε to the
nearest symmetric extendible state σ̃ in sense of a trace norm: ε = infσ∈Ω ∥ ρ − σ̃ ∥1 where
Ω denotes a convex set of symmetric extendible states on HA B, there holds:

K(1)
→ (ρ)≤ 8ε logdA +4η(1− ε)+4η(ε) (8.30)

Example 8.2.5 As an example of application of the above corollary we will consider two
states very close to one another in sense of a trace norm ∥ · ∥1 from which one is symmetric
extendible and the another is non-symmetric extendible. This shows that for one-copy
applications the theorem can be used operationally to estimate one-way secret key rate of
quantum states. Following results of [126], let us consider two arbitrary instances of a state
on HAB ∼= Cd ⊗Cd:

ϒ(ε) = [
d

2d −1
+ ε/2]P++[

1
2d −1

− ε

2(d −1)
]

d−1

∑
i=1

|i 0⟩⟨i 0| (8.31)

which is non-symmetric extendible for ε > 0. Namely, one can put into the inequality (8.29)
two states ϒ(ε = 0) and ϒ(ε > 0). Since for all symmetric extendible states ρ there holds:
K(1)
→ (ρ) = 0, then:

K(1)
→ (ϒ(ε > 0))≤ 8ε logdA +4η(1− ε)+4η(ε).

where ε ≤ 2(dA−1)
2dA−1 .

It is proved [165] that in any open set of distillable states, all asymptotic entanglement
measures E(ρ) are continuous as a function of a single copy of ρ , even though they quantify
the entanglement properties of ρ⊗N in the large N limit.
However, the aforementioned theorem does not cast any light on the behavior of function
K→(·) on the boundary of a set of all one-way distillable states adjacent to symmetric
extendible states just due to the open conjecture 6.1.13. Motivated by this insight we put
an open question in the following form for ε-neighborhood of symmetric extendible states
having zero one-way secret key rate:

Conjecture 8.2.6 [128] For any state ρ on HAB = HA ⊗HB being in distance ε to the
nearest symmetric extendible state σ̃ in sense of a trace norm: ε = infσ∈Ω ∥ ρ − σ̃ ∥1 where
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8.3 Reduced secret key 105

Ω denotes a convex set of symmetric extendible states on HA B, there holds:

K→(ρ)≤ 8ε logdA +4η(1− ε)+4η(ε) (8.32)

8.3 Reduced secret key

In this section we propose a new reduced measure [127] of the one-way secret key that
simplify in many cases an analysis of one-way security of quantum states.

In the following we define a modified version of the one-way secret key rate K→ basing on
the results of [145, 96] for reduced intrinsic information and reduced entanglement measure.

Definition 8.3.1 For the one-way secret key rate K(1)
→ (ρABB′) of a bipartite state ρABB′ ∈

B(HA ⊗HBB′) shared between Alice and Bob the reduced one-way secret key rate K(1)
→ ↓

(ρABB′) is defined as:

K(1)
→ ↓ (ρABB′) = inf

U
[K(1)

→ (U (ρAB))+∆K→] (8.33)

where U denotes unitary operations on Bob’s system with a possible transfer of subsystems
from Bob to Eve, i.e. U (ρAB) = TrB′(I ⊗UBB′)ρABB′ for some unitary UBB′ . ∆K→ = 4S(ρ̃B′)

denotes the defect parameter related to the increase of entropy produced by the transfer of
B’-subsystem from Bob’s side to Eve and ρ̃B′ = TrAB(I ⊗UBB′)ρABB′ .

The reduced one-way secret key rate is an upper bound on K→ which we prove now for
every cqq-state ρ:

Theorem 8.3.2 [127] For every cqq-state ρABE there holds:

K→(ρ) = lim
n→∞

K(1)
→ (ρ⊗n)

n
≤ K→ ↓ (ρ) (8.34)

where K→ ↓ (ρ) = limn→∞
K(1)
→ ↓(ρ⊗n)

N .Particularly, for the identity operation U = id on Bob’s
side one obtains: K→(ρABB′)≤ K→(ρAB)+4S(ρB′).

To prove this theorem one can start showing how the formula behaves for one-copy secret
key:

Lemma 8.3.3 For every cqq-state ρABE there holds:

K(1)
→ (ρ)≤ K(1)

→ ↓ (ρ) (8.35)
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8.3 Reduced secret key 106

Proof.
Since {

I(A : B|C) = S(AC)+S(BC)−S(ABC)−S(C)

I(A : E|C) = S(AC)+S(EC)−S(AEC)−S(C)

then:
K(1)
→ (ρ) = max

Q,C|A
[S(BC)−S(ABC)−S(EC)+S(AEC)]

To prove the thesis of this lemma it suffices to show that:

K(1)
→ (ρA(BB′)E)≤ K(1)

→ (ρAB(B′E))+4S(B′) (8.36)

due to the fact that in case of application of U without discarding subsystem B′ one obtains
an equality. We denote by ρAB(B′E) transition of B′-subsystem to the environment. Both parts
(Alice and Bob) use the maximizing 1-LOCC protocol to find the secret key rate, thus, we
omit further the maximization symbol for K(1)

→ which reflects a choice of the maximizing
protocol by Alice and Bob, and can rewrite the inequality 8.36 as:

S(BB′C)−S(ABB′C)−S(EC)+S(AEC)≤
S(BC)−S(ABC)−S(B′EC)+S(AB′EC)+4S(B′)

It is easy to note that application of unitary operations on Bob’s side do not change the
inequality mainly due to the property of unitary invariancy of the von Neumann entropy. To
simplify the proof one can decompose this inequality into following two inequalities:{

S(BB′C)−S(ABB′C)≤ S(BC)−S(ABC)+2S(B′)

S(B′EC)−S(AB′EC)≤ S(EC)−S(AEC)+2S(B′)
(8.37)

or equivalently considering the assumption that the initial state is of cqq-type and ’A’ repre-
sents classical distribution {pi} we can rewrite the first inequality into the form:

S(∑
i

piρ
BB′C
i )−H(pi)−∑

i
piS(ρBB′C

i )−S(∑
i

piρ
BC
i )

+H(pi)+∑
i

piS(ρBC
i )≤ 2S(B′)

and similarly for the second inequality which gives in result a more compact structure:{
χ(∑i piρ

BB′C
i )−χ(∑i piρ

BC
i )≤ 2S(B′)

χ(∑i piρ
B′EC
i )−χ(∑i piρ

EC
i )≤ 2S(B′)
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8.3 Reduced secret key 107

However, the above was proved in Observation 2.7.1 about the Holevo function [127] that
completes the proof. �

Finally, we will extend this result in the asymptotic regime proving Theorem 8.3.2:
Proof. To prove Theorem 8.3.2 it suffices to notice that (8.35) holds under 1-LOCC and

an arbitrary chosen U for any ρn = ρ⊗n. Moreover, existence of the defect parameter ∆K→

enables regularization of the reduced one-way secret rate since in the asymptotic regime
after application of unitary operations on Bob side one can apply subadditivity of entropy to
estimate entropy of the transferred B’ part which implies K→(ρABB′)≤ K→(ρAB)+4S(ρB′).
�

It is interesting that our results reflect E-nonlockability of the secret key rate [34] which
means that the rate cannot be locked with information on Eve’s side.

Monogamy of entanglement has been used to prove that for some region the quantum
depolarizing channel has zero capacity even if does not destroy entanglement [26] which
is a particular application of symmetric extendibility of states to evaluation of the quantum
channel capacity. The following examples will show application of the concept:

Example 8.3.4 As an example of application of Theorem 8.3.2 we present a state which
after discarding a small B’ part on Bob’s side becomes a symmetric extendible state [126].
This example is especially important since the presented state does not possess [127] any
symmetric extendible component in its decomposition for symmetric and non-symmetric
parts, thus, one cannot use the method [122] to find an upper bound on K→ by means of
linear optimization. Let us consider a bipartite quantum state shared between Alice and Bob
on the Hilbert space HA ⊗HB ∼= Cd+2 ⊗Cd+2:

ρAB =
1
2


ϒAB 0 0 A

0 0 0 0
0 0 0 0

A † 0 0 ϒAB

 (8.38)

where A is an arbitrary chosen operator so that ρAB represents a correct quantum state.
This matrix is represented in the computational basis |00⟩, |01⟩, |10⟩, |11⟩ held by Alice and
Bob and possess a canonical maximally-entangled state structure. Whenever one party (Alice
or Bob) measures the state, the state decoheres and off-diagonal elements vanish which leads
to a symmetric extendible state [126]:

ϒAB =
d

2d −1
P++

1
2d −1

d−1

∑
i=1

|i 0⟩⟨i 0| (8.39)
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8.3 Reduced secret key 108

from which no entanglement nor secret key can be distilled by means of 1-LOCC [55, 56,
122, 126]. Therefore, applying Theorem 8.3.2 one derives K→(ϒAB) = 0 and K→(ρAB) ≤
K→ ↓ (ρAB) = 4.

Example 8.3.5 Let us consider again the graph state [88] |G ⟩=
⊗

i, j∈E CZi j|G0⟩ of a 3n+1-
qubit system associated with a mathematical graph G = {V ,E }, composed of a set V of
3n+1 vertices and a set E of edges {i, j} connecting each vertex i with some other j: where
3n+1 qubits are initialized in the product state |G0⟩=

⊗
i∈V |ψi⟩ with |ψi⟩= 1√

2
(|0i⟩+ |1i⟩).

If Alice takes no more than n qubits from the graph system that will use to establish
communication with Bob who uses other n qubits in this graph state, then they will be not
able by any means to set secure one-way communication. This results from the fact that the
state ρAB

2n (with n qubits on Alice side and n qubits on Bob’s side) is symmetric extendible
to a state ρAB

3n which means that K→(ρAB
2n ) = 0. A natural symmetric extension of ρAB

2n is a
state ρAB

3n = TrB′|G ⟩⟨G | resulting from tracing out an arbitrary chosen qubit B’ from graph
G . However, if Alice takes n qubits and Bob takes n+1 qubits from the graph system, the
resulting state ρAB

2n+1 is not symmetric extendible anymore. Exemplary, for n = 2 this state
has spectral representation:

ρ
AB
2n+1 =

1
2
(|φ0⟩⟨φ0|+ |φ1⟩⟨φ1|) (8.40)

where |φ0⟩ = |0A⟩|0B⟩+ |1A⟩|1B⟩, |φ1⟩ = |0A⟩|1B⟩− |1A⟩|0B⟩ and {|0⟩A = |00− 01− 10−
11⟩A, |1⟩A = |00+ 01+ 10− 11⟩A, |0⟩B = |001+ 010+ 100− 111⟩B, |1⟩B = |000− 011−
101− 110⟩B}. This state is isomorphic to a qubit bipartite state and meets the condition
[123, 124] for C2 ⊗C2 Bell-diagonal states to be symmetric extendible: 4

√
det(ρAB) ≥

Tr(ρ2
AB)−

1
2 . One can easily show the isomorphism of ρAB

2n+1 for any n with a qubit bipartite
state structure (8.40). Thus, for one-way secret key of the state there holds: K→(ρAB

2n+1)≤
K→ ↓ (ρAB

2n+1) = 4, since after discarding one qubit B’ on Bob’s side his system would become
symmetric extendible.

Dual picture for one-way distillable entanglement and private informa-
tion.

Our results for one-way secret key and quantum channel capacity lead immediately to similar
reduced formula for private information and one-way entanglement distillation quantities.

The private capacity [50, 51] P(Λ) of a quantum channel is equal to regularization of
private information:

P(Λ) = lim
n→∞

P(1)(Λ⊗n)

n
(8.41)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8.3 Reduced secret key 109

where a single-letter formula is:

P(1)(Λ) = max
X ,ρA

x

(I(X ,B)− I(X ,E)) (8.42)

with maximization over classical random variables X and input quantum states ρA
x depending

on the value of X.
Absorbing T into X variable in Theorem 8.1.71 leads to definitions for private information

and private capacity [51], thus, following Lemma 7.3.3, we can derive an upper bound on
private information and private capacity via their reduced counterparts:

Definition 8.3.6 [127] For a one-way quantum channel ΛBB′ : B(HBB′) → B(HB̃B̃′) the
reduced private information is defined as:

P(1) ↓ (ΛBB′) = inf
U
[P(1)(U (ΛBB′))+∆P] (8.43)

where U denotes unitary operations on Bob’s system with a possible transfer of subsystems
from Bob to Eve, i.e. U (ΛBB′(ρBB′))=TrB′UBB′ΛBB′(ρBB′). ∆P = 4supρBB′

S(TrBUBB′ΛBB′(ρBB′))

denotes the defect parameter related to increase of entropy produced by the transfer of B’-
subsystem from Bob’s side to Eve.

Theorem 8.3.7 [127] For a one-way quantum channel ΛBB′ : B(HBB′) → B(HB̃B̃′) there
holds:

P(ΛBB′)≤ P ↓ (ΛBB′) (8.44)

where P ↓ (ΛBB′) = limn P ↓(1) (Λ⊗n
BB′)/n denotes the reduced private capacity.

The proof can be conducted in analogy to Theorem 7.3.2 and Lemma 7.3.3, however, for
regularization of reduced private information it is crucial to derive the below lemma for a
one-copy case:

Lemma 8.3.8 [127] For every one-way quantum channel ΛBB′ : B(HBB′)→ B(HB̃B̃′) there
holds:

P(1)(ΛBB′)≤ P(1) ↓ (ΛBB′) (8.45)

Proof. To prove this lemma it suffices to absorb variable T into X in Theorem 8.1.7. for the
definition of private information and conduct the proof in analogy to the proof of Lemma
7.3.3 for a channel ΛBB′ and a chosen state ρ sent through it. �

1Vide chap. Quantum Privacy.
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8.3 Reduced secret key 110

Finally, we can state an observation about the private capacity of a quantum channel
Λ being Choi-Jamiolkowski isomorphic with a symmetric extendible state ρAB, i.e. ρAB =

[I⊗Λ]|Ψ+⟩⟨Ψ+|, basing on the results for the secret key:

Observation 8.3.9 If a one-way quantum channel Λ is Choi-Jamiolkowski isomorphic with
a bipartite state ρAB having a symmetric extension ρABB′ , so that ρABB′ = ρAB′B and ρAB =

TrB′ρABB′ , then for the private capacity of this channel, there holds:

P(Λ) = 0. (8.46)

Proof of the above theorem is immediate and follows from the definition of the secret
key. As already observed, absorbing T into X variable in Theorem 8.1.72 leads to definitions
for private information and private capacity [51], thus, a zero secret key for a symmetric
extendible state ρAB implies a zero private capacity for a channel isomorphic with this state
(we have indeed a dual picture between the secret key and the private capacity be means of
the Choi-Jamiolkowski isomorphism).

Alternatively, one can justify that due to the extendibility of the channel Λ isomorphic
with ρAB, extendible to three parties ρABE shared between Alice, Bob and Eve, after action of
a local filter on Alice side FA: ρ̃ABE = [FA ⊗ IBE ]ρABE [FA ⊗ IBE ], we get the same ensembles
of states (AAB and AAE) shared between the pairs: Alice and Bob, and the pair: Alice and Eve
respectively. Due to additivity of the property of symmetric extendibility and the closeness
of the set of symmetric extendible states under 1-LOCC, we can extend this result to the
asymptotic regime for any symmetric extendible states ρn

AB. This implies the zero private
capacity.

2Vide chap. Quantum Privacy.
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Chapter 9

Quantum entanglement in time

Recent years have proved a great interest of quantum entanglement monogamy concept
showing its usability in quantum communication theory, especially in domain of one-way
communication and its applications to quantum secure key generation [123, 124, 122, 112,
48, 119, 126, 127]. While spatial quantum correlations and especially their non-locality
became a central subject of quantum information theory and their applications to quantum
computation, potentiality of application of temporal non-local correlations is poorly analyzed.
The crucial issue relates to the very nature of time and temporal correlations phenomenon
with their understanding within the framework of modern quantum and relativistic theories.

Non-local nature of quantum correlations in space has been accepted as a consequence of
violation of local realism, expressed in Bell’s theorem [12] and analyzed in many experiments
[5, 70]. As an analogy for a temporal domain, violation of macro-realism [118] and Legett-
Garg inequalities [117] seem to indicate non-local effects in time and are a subject of
many experimental considerations [146, 6, 114, 155]. However, the open problem relates
to the mathematical structures that could represent quantum states correlated in time in
similarity to multipartite quantum states in space. In this chapter we analyze a variation of
the consistent histories approach [77–80] with a concept of entangled histories [109, 110]
built on a tensor product of projective Hilbert spaces that can be considered as a potential
candidate of mathematical structures representing quantum states correlated in time. In
particular, we focus on showing that entangled histories demonstrate monogamous properties
reflecting the phenomenon in case of spatial quantum entanglement. It is worth mentioning
that the two-state-vector formalism (TSVF) [2] brings another perspective on representation
of quantum correlations in time broadly discussed in the literature.

However, it is crucial to note that in this context many ’obvious’ facts about structure and
behavior of spatial correlations and tensor algebra of spatial quantum states cannot be easily
transferred into the temporal domain as the tensor structure of temporal correlations is richer
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9.1 Entangled consistent histories theory 112

due to the binding evolution between instances of ’time’ and the observation-measurement
phenomenon that is also a subject of this chapter.

The outline of this chapter is as follows: in first section, we present the well known
concepts of consistent histories approach [79] and present new concepts of entangled histories
[40, 41] which are substantial for further considerations on monogamies and entanglement in
time as such [130]. In the following sections, we introduce partial trace on quantum histories
and show that quantum entanglement in time is monogamous for a particular history [129].
Monogamy of quantum entanglement in time for a particular history seems to be an inherent
feature of quantum correlations in time and as such is the opposite to symmetric extendibility
of a history in time, in similarity to monogamy of quantum entanglement in space. In the final
section, the Tsirelson bound on quantum correlations in time is derived from the entangled
histories [129, 130].

We believe that further research on temporal correlations and time evolution will be
substantial for development of quantum information theory including applications to quantum
cryptography or quantum computation but also to quantum gravity theory.

9.1 Entangled consistent histories theory

The decoherent histories theory (or consistent histories theory) has a long tradition [85–
87, 77–82, 109, 110] and is built on the ground of well known and broadly applied Feynman’s
path integrals theory [69] for calculation of probability amplitudes of quantum processes,
especially in quantum field theory or quantum electrodynamics. It is presented also as a
generalization of quantum mechanics applied to closed systems such as the universe as a
whole and discussed as a necessary element of future quantum gravity theory [85].

For readers interested in deepening this matter, it might be useful to refer to the literature
[79, 85–87, 74]. In this section we focus on introduction to the concept of a consistent history
and its recent modification, an entangled history [40, 41]. We present also a proposal of a
temporal partial trace operator [130] acting on C ∗-Algebra of history operators as a tool
necessary to achieve reduced histories, in similarity to a partial trace operator acting on a
multipartite quantum state.

For the sake of the concept of a consistent history, it is substantial to note that for an
evolving system (e.g. a non-relativistic particle being in an initial state |ψ0⟩ which evolution
is governed by the Hamiltonian H), we can ask questions about the states of the system
at different times t1 < t2 < ... < tn. It could be performed during the repeating measuring
process where a question at time tx could be represented naturally by a projector Px. The
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9.1 Entangled consistent histories theory 113

alternatives at a given time tx form an exhaustive orthogonal set of projectors {Pαx
x } where:

∑
αx

Pαx
x = I (9.1)

Pαx
x Pα̃x

x = δαxα̃xP
αx
x (9.2)

and I stands for the identity operator.
Therefore, the alternative histories could be represented by the sets of alternative operators
{Pα1

1 }, {Pα2
2 },. . . , {Pαn

n } at different times t1 < t2 < ... < tn. A particular history is then
represented as a tensor product Pro j(H ) ∋ |H) = Pαn

n ⊙Pαn−1
n−1 ⊙ . . .⊙Pα1

1 (⊙ operation
behaves here just like the tensor operation ⊗). This could be perceived that the system had a
property Pαi

i at time ti [79].
We could interpret that during this process we project the global state of the system onto

the n-fold tensor product
⊙n

i=1 Pαi
i achieving a consistent wave function which can be used

to deduce probabilities of the events [130] in accordance with the Born rule.
The fundamental tool introduced in the consistent history framework which connects

different times is the bridging operator [77] B(t2, t1). It is a counterpart of an unitary
evolution operation having the following properties:

B(t2, t1)† = B(t1, t2) (9.3)

B(t3, t2)B(t2, t1) = B(t3, t1) (9.4)

and can be represented for a unitary quantum evolution as B(t2, t1) = exp(−iH(t2 − t1))
(with the evolution governed be a Hamiltonian H).

Since we assumed for a given time that ∑αx Pαx
x = I, for the sample space of consis-

tent histories |Hα) = Pαn
n ⊙Pαn−1

n−1 ⊙ . . .⊙Pα1
1 ⊙Pα0

0 (α = (αn,αn−1, . . . ,α0)) there holds

∑α |Hα) = I.
Further, the consistent histories formalism introduces the chain operator K(|Hα)) which

can be directly associated with a time propagator of a given quantum process:

K(|Hα)) = Pαn
n B(tn, tn−1)P

αn−1
n−1 . . .B(t2, t1)P

α1
1 B(t1, t0)P

α0
0 (9.5)

The operator K : Pro j(Htn ⊗Htn−1 ⊗ . . .⊗Ht0) −→ Pro j(Ht0 → Htn) performs mapping
of a history from Pro j(Htn ⊗Htn−1 ⊗ . . .⊗Ht0) onto an operator performing the map
Ht0 → Htn (e.g. P = |φtn⟩⟨φt0|).
Equipped with this operator, one can associate a history |Hα) with its weight:

W (|Hα)) = TrK(|Hα))†K(|Hα)) (9.6)
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9.1 Entangled consistent histories theory 114

being by Born rule a counterpart of relative probability and can be interpreted as a probability
of a history realization.

As an example, suppose that the system is in a state |ψ0⟩ ∈ H at time t0 and evolves to
time t2 under the bridging operator B(t1, t0), then applying the Born rule one can determine
the probability that the system at time t1 has a property Pt1 :

Pr(Pt1, t1) = ∥Pt1B(t1, t0)|ψ0⟩∥2 (9.7)

= ⟨ψ0|B†(t1, t0)Pt1B(t1, t0)|ψ0⟩ (9.8)

= Tr(B†(t1, t0)Pt1B(t1, t0)[ψ0]) (9.9)

(9.10)

where [ψ0] = |ψ0⟩⟨ψ0| as discussed further.
The set of histories is coarse-grained as the alternatives are defined for chosen times, yet

not for every possible time [85, 86]. It means that the set of potential histories is partitioned
into the set of mutually exclusive classes called coarse-grained histories, those which are
observable during the process of measurements. Coarse graining of measurements is a
natural feature of "standard" quantum mechanics. The consistent histories theory describes
also fine-grained histories and relations between the sets of coarse-grained and fine-grained
histories, however, this is not a subject of this presentation and it does not change generality
of the following conclusions.

Recent years show also an extensive discussion about a subject of so-called consistency
or decoherence of allowed histories [85–87] which is directly related to the degree of
interference between pairs of histories in the set of histories. The consistent histories
framework assumes that the family 1 of histories is consistent, i.e. one can associate with a
union of histories a weight equal to the sum of weights associated with particular histories
included in the union [40, 41]. This implies the following consistency condition (α and β

are indexes of the histories from the same history family):
(Hα |Hβ )≡ TrK(|Hα))†K(|Hβ )) = 0 f or α ̸= β

(Hα |Hβ ) = 0 or 1

∑α cα |Hα) = I f or cα ∈ C
(9.11)

There are different conditions for the so-called decoherence functional TrK(|Hα))†K(|Hβ ))

discussed, including the weaker condition that TrK(|Hα))†K(|Hβ ))≈ δαβ P(α) (medium
decoherence and P(α) standing for probability of a history |Hα)) or the linear positivity

1The family of consistent histories is such a set of histories F = {|Hα)}α=(αn,αn−1,...,α0) that ∑α |Hα) = I
and any pair of histories from the set meets the consistency condition.
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9.1 Entangled consistent histories theory 115

condition by Goldstein and Page [75] but as observed by F. Wilczek [40, 41], it is unclear at
this moment if the variants are significant.

It is helpful to assume normalization of histories with non-zero weight which enables
normalization of probability distributions for history events, i.e.: |H̃) = |H)√

(H|H)
[40, 41, 130].

If the observed system starts its potential history in a pure state Pt0 = |Ψ0⟩⟨Ψ0|, then a
consistent set of its histories create a tree-like structure (Fig. 9.1). Further, the consistency
condition implies that the tree branches are mutually orthogonal.

Pt0 

Pt1,1 
Pt1,2 

Pt2,1 
Pt2,2 

Pt2,3 
Pt2,4 

Pt2,7 
Pt2,6 

Pt2,5 

Fig. 9.1 If the observed evolution is initiated in a state [Pt0] = |Ψ0⟩⟨Ψ0|, then the history family
can be represented as a tree-like structure where each branch represents a potential history.
The branches are mutually orthogonal due to the consistency condition. The exemplary red
branch represents history |H) = Pt2,3 ⊙Pt1,1 ⊙Pt0 .

The consistent history framework does not consider non-locality in space or time as such
[83], however, since the space of histories spans the complex vector space, we can consider
complex combinations of history vectors, i.e. any history can be represented as [40]:

|Ψ) = ∑
i

αi|H i) (9.12)

where αi ∈ C and F ∋ |H i) represents a consistent family of histories which is actually a
complex extension of the consistent histories framework and αi parameters are normalized
to give a normalized history as mentioned above.
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9.1 Entangled consistent histories theory 116

Having defined above, the histories space can be also equipped with an inner semi-definite
product [77] between any two histories |Ψ) and |Φ):

(Ψ|Φ) = Tr[K(|Ψ))†K(|Φ))]. (9.13)

It is fundamental to note that a history |Hα) can be consistent or inconsistent (physically
not realizable) basing on the associated evolution B of the system [79] as its consistency is
verified by means of the aforementioned inner product engaging bridging operators. Thus,
a temporal history is always associated with evolution and for completeness, there should
be considered a pair consisting of a family of histories and the bridging operators {F ,T}.
Whenever we analyze features of a spatial pure quantum state, it is assumed that all necessary
knowledge is hidden in the vector |ψ⟩ so actually we analyze only one-element history
objects [ψ] = |ψ⟩⟨ψ| from a perspective of a temporal local frame.

Example 9.1.1 Let us consider now a family of inconsistent histories on three times for an
evolution of a 1

2 -spin particle assuming that the bridging operator is trivial, i.e. B = I:

|H0) = [z−]⊙ I⊙ I

|H1) = [z+]⊙ [x+]⊙ [z+]

|H2) = [z+]⊙ [x+]⊙ [z−]

|H3) = [z+]⊙ [x−]⊙ [z+]

|H4) = [z+]⊙ [x−]⊙ [z−]

(9.14)

with the operators projecting e.g. on the spin up in z-direction: [z+] = (1+σ3)/2 etc. Then
clearly the consistency condition is not kept as:

(H1|H3) = Tr(K(|H1))†K(|H3))) (9.15)

= Tr
1+σ1

2
1+σ3

2
1−σ1

2
1+σ3

2
1+σ3

2

=
1
16

Tr(1+σ1 + iσ2 +σ3)(1−σ1 − iσ2 +σ3)

=
1
4
̸= 0

Example 9.1.2 We consider also, as an example, histories of a decaying particle [41]. For
this example, we assume that the particle decays emitting a photon either at time t1 with a
probability amplitude α or at time t2 with a probability amplitude β .
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9.2 Towards monogamy of quantum entanglement in time 117

In case of emitting the photon at time t1, an auxiliary system associated with the particle will
change its state from |0⟩ to |1⟩. If the particle decays at t2 time, then the auxiliary system
changes its state from |0⟩ to |2⟩.

We additionally assume a trivial (B = I) evolution for both systems otherwise. Thus the
history state for such a bipartite system consisting of the particle P and the auxiliary system
A can be represented as:

|HPA) = α|Dt1)⊗|1)+β |Dt2)⊗|2) (9.16)

with the local histories for the auxiliary system A:

|1) = [1]⊙ [1]⊙ . . .⊙ [1]⊙ [1]︸︷︷︸
t1

⊙[0] . . .⊙ [0] (9.17)

|2) = [2]⊙ [2]⊙ . . .⊙ [2]︸︷︷︸
t2

⊙[0]⊙ [0] . . .⊙ [0]

We will measure then at some time t > t2 the auxiliary system A in a basis {|φ0⟩= 1√
2
(|0⟩+

|1⟩), |φ1⟩ = 1√
2
(|0⟩ − |1⟩)}, post-selecting on P = |φ1⟩⟨φ1| and tracing out the auxiliary

system afterwards. Then the remaining particle would be in a history state:

|HP) = α|Dt1)+β |Dt2) (9.18)

9.2 Towards monogamy of quantum entanglement in time

We consider in this section a concept of entanglement in time basing on the entangled con-
sistent histories framework. In particular, we discuss monogamous character of quantum
entanglement in time for a particular history in similarity to monogamy of quantum entangle-
ment in case of a spatial singlet, leaving a general discussion for all classes of histories and
allowable evolutions as a subject of further research.

Since the algebra of histories with ⊙ operation is a form of tensor algebra, it inherits
the properties of a standard tensor algebra with ⊗ operation and all mathematical questions
valid for vectors representing spatial correlations are mathematically valid for temporal
correlations although not necessarily having similar physical interpretation [130].

Quantum entanglement for spatial correlations shared between two parties A and B, say
Alice and Bob, denotes that the state ρAB ∈ B(HA ⊗HB) of their bipartite system cannot
be represented as a convex combination ρAB = ∑i piρ

i
A ⊗ρ i

B (which represents a separable
state). The maximally entangled state of a bipartite system shared between Alice and Bob in
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9.2 Towards monogamy of quantum entanglement in time 118

space, so-called singlet, is represented as |ΨAB⟩= 1√
d ∑i |ii⟩. For the sake of spatial quantum

entanglement, it is crucial to define the reductions of multipartite states and their extensions.
To find a reduced state ρA of a local state possessed e.g. by Alice, it is necessary to trace out
Bob’s system from the bipartite state ρAB which is performed by the partial trace operation:

ρA = TrBρAB = ∑
i
⟨iB|ρAB|iB⟩ (9.19)

where the operation can be performed in a computational basis |iB⟩ of B-subsystem.
We will conduct further a similar reasoning for reductions of entangled histories, defining

an operation of a partial trace over chosen times of a particular history state.
Now, it is substantial to note that any history |Y )=Fn⊙ . . .⊙F0 can be extended to I⊙Y as

identity I represents a property that is always true and does not introduce additional knowledge
about the system. Conversely, if one considers reduction of a history to smaller number of
time frames, then information about the past and future of the reduced history is lost. Let us
consider the potential history of the physical system |Ytn...t0) = Fn⊙Fn−1⊙ . . .⊙F2⊙F1⊙F0

on times {tn . . . t0}, then at time t1 the reduced history is |Yt1) = F1. That was the trivial
case of factorizable history, in analogy to factorizable quantum states in space, e.g. for
|φABE⟩ = |φA⟩⊗ |φB⟩⊗ |φE⟩, the reduction over E results in |φAB⟩ = |φA⟩⊗ |φB⟩. To find
reductions over complex superpositions of histories, it is necessary to define a partial trace
operator over a history.

In analogy to partial trace for spatial quantum states, we introduced in [130] a partial
trace operation on a history state in accordance with general rules of calculating partial traces
on tensor algebras:

Definition 9.2.1 For a history |Ytn...t0) acting on a space H = Htn ⊗ ·· ·⊗Ht0 , a partial
trace over times {t j . . . ti+1ti} ( j ≥ i) is:

Trt j...ti+1ti|Ytn...t0)(Ytn...t0|=
dimF

∑
k=1

(ek|Ytn...t0)(Ytn...t0|ek) (9.20)

where F = {|ek)} creates an orthonormal consistent family of histories on times {t j . . . ti+1ti}
and the strong consistency condition for partial histories holds for base histories, i.e.
(ei|e j) = Tr[K(|ei))

†K(|e j))] = δi j.

We proposed further a general form of maximally entangled history in similarity to a
singlet state of a bipartite system |Ψ+⟩= 1√

N ∑
N
i=1 |i⟩⊗ |i⟩, 2 ≤ N < ∞:
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9.2 Towards monogamy of quantum entanglement in time 119

Proposition 9.2.2 [130] A history state ’maximally entangled’ in time is represented by:

|Ψ) =
1√
N

N

∑
i=1

|ei)⊙|ei), 2 ≤ N < ∞ (9.21)

with a trivial bridging operator I and {|ei)} creating an orthonormal consistent histories
family.

It is important to note that one can always employ such a bridging operator that |Ψ) could
become intrinsically inconsistent which means it would be dynamically impossible [79], thus,
an identity bridging operator is associated with the above state.

Further, one could also introduce τGHZ and τW states substantial for studies of multi-
partite correlations and their applications (e.g. for secret key generation, quantum algorithms
or spin networks) in analogy to spatial |GHZ⟩ and |W ⟩ states with trivial bridging operators:

|τGHZ) = 1√
2
(|e0)

⊙N + |e1)
⊙N)

|τW ) = 1√
N
(|e1)⊙|e0)⊙·· ·⊙ |e0)+

|e0)⊙|e1)⊙·· ·⊙ |e0)+ · · ·+ |e0)⊙|e0)⊙·· ·⊙ |e1))

(9.22)

Example 9.2.3 Let us consider as an example potential entangled histories of a spin-1
2

particle at three times {t3, t2, t1} evolving trivially by B = I. In the following, we present an
exemplary family of entangled history states which span a space of potential histories:

|H1) =
√

2([z+]⊙ [x+]⊙ [z+]+ [z−]⊙ [x−]⊙ [z+])

|H2) =
√

2([z−]⊙ [x+]⊙ [z+]+ [z+]⊙ [x−]⊙ [z+])

|H3) =
√

2([z+]⊙ [x+]⊙ [z−]+ [z−]⊙ [x−]⊙ [z−])

|H4) =
√

2([z−]⊙ [x+]⊙ [z−]+ [z+]⊙ [x−]⊙ [z−])

(9.23)

If we consider a state |Φ) = 1√
2
|H1)+ 1√

2
|H2), then a particle, measured at time t1 and

having a spin up in a direction z+, can evolve within the history |H1) with probability
P(|H1)) = 1

2 and be in the history |H2) with probability P(|H2)) = 1
2 .

Noteworthily, one can also find in the space of histories S = span{|H1), |H2), |H3), |H4)}D
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9.2 Towards monogamy of quantum entanglement in time 120

the following GHZ-like vector [40] (normalized for |α|2 + |β |2 = 1):

|Ψ) =
α√

2
|H1)+

α√
2
|H2)+

β√
2
|H3)+

β√
2
|H4)

= α[z+]⊙ [z+]⊙ [z+]+β [z−]⊙ [z−]⊙ [z−]

(9.24)

It is worth mentioning that recently [40, 41] the concept of Bell-like tests have been pro-
posed for experimental analysis of entangled histories. We further consider the Mach-Zehnder

interferometer (Fig. 9.2 where H = 1√
2

[
1 1
1 −1

]
) to discuss the matter of monogamy of

quantum entanglement in time [130].
In the following let us consider an intrinsically consistent history on times {t3, t2, t1, t0}:

|Λ) = α([ϕ3,1]⊙ It2 ⊙ [ϕ1,1]+ [ϕ3,2]⊙ It2 ⊙ [ϕ1,2])⊙ [ϕ0] (9.25)

where α stands for the normalization factor, [ϕi, j] = |ϕi, j⟩⟨ϕi, j| and potentiality of the history
means that one can construct a history observable Λ̂ = |Λ)(Λ|. Now, after tracing out the
time t2, one gets the reduced history on times t1 and t3:

|Λ1) = α̃([ϕ3,1]⊙ [ϕ1,1]+ [ϕ3,2]⊙ [ϕ1,2]) (9.26)

which displays entanglement in time apparently. Noticeably, we have to show that to
be in agreement with the partial trace definition and Feynman propagators’ formalism
[69], the history |Λ1) cannot be extracted from the following |τGHZ)-like state |Ψ), i.e.
|Λ1)(Λ1| ̸= Trt2|Ψ)(Ψ| [130].

We stress that the history state |Ψ) is also allowed in the setup of the aforementioned
interferometer (Fig. 2) as a potential history:

|Ψ) = γ([ϕ3,1]⊙ [ϕ2,1]⊙ [ϕ1,1]+ [ϕ3,2]⊙ [ϕ2,2]⊙ [ϕ1,2]) (9.27)

We observe that the reduced history [ϕ3,1]⊙ [ϕ1,1] is correlated with [ϕ2,1] and not with
[ϕ2,2]. Thus, we cannot simply add the histories: [ϕ3,1]⊙ [ϕ1,1]+[ϕ3,2]⊙ [ϕ1,2] as a reduction
of |Ψ) over time t2. It would imply decorrelation with the next instance of the history in such a
case, i.e. it could be always expanded to a history e.g. [ϕtx ]⊙ ([ϕ3,1]⊙ [ϕ1,1]+[ϕ3,2]⊙ [ϕ1,2]).
This result is in agreement with the Feynman’s addition rule for probability amplitudes since
this scenario would mean e.g. existence of detectors in the consecutive step performing
measurements of the light states.
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9.2 Towards monogamy of quantum entanglement in time 121

Moreover, we can apply a similar reasoning for presenting a monogamous feature of
quantum entanglement in time to the argument in sec. (3.2) Quantum entanglement is
monogamous, where we showed that a singlet ρAB = |Ψ+⟩⟨Ψ+| can have only factorizable
extensions of a form ρABE = ρAB ⊗ρ . Imagine that for a maximally entangled history (9.2.2)
ρt1t2 = |Ψ)(Ψ| on times {t1, t2} there exists a purification to a history state |Ht1t2t3t4) then in ac-
cordance with the partial trace definition (9.2.1), the maximally entangled history would have
to be a reduction of |Ht1t2t3t4)(Ht1t2t3t4 |, i.e. |Ψ)(Ψ|= ∑i(ei|⊙ It1t2|Ht1t2t3t4)(Ht1t2t3t4|It1t2 ⊙|ei)

for some consistent history family F = {|ei)} on times {t3, t4} but due to the consis-
tency condition, one gets |Ψ) only if |Ht1t2t3t4) = |Ht3t4)⊙|Ψ) (for some history |Ht3t4) =

∑i γi|ei), where γi are complex numbers), otherwise the reduction would be a mixture
of some consistent histories from the family. One can also observe immediately that
|Ψ)(Ψ| = ∑i(ei| ⊙ It1t2|Ht1t2t3t4)(Ht1t2t3t4|It1t2 ⊙ |ei) implies that for any family base vector
|ei), |Ψ) = γi(ei|⊙ It1t2|Ht1t2t3t4) (for some complex amplitude γi) and (ei|⊙(Ψ|Ψ′)⊙|ei) = 0
for any orthogonal |Ψ) and |Ψ′). Thus, |Ht1t2t3t4) = ∑i γi|ei)⊙|Ψ).

In general, any extension of such a maximally entangled history is of a form ρt1t2tX =

ρtX ⊙ρt1t2 where ρtX = ∑i αi|ei)(ei| for some consistent history family F = {|ei)} on times
tX .

It is important to note that these considerations are related to |Ψ)(Ψ| - observable and
the particular history |Ψ). Yet, other histories in the Mach-Zehnder interferometer are also
accessible. It shows clearly a physical sense of quantum entanglement in time and further a
concept of its monogamy for a particular entangled history.

Therefore, basing on the above observations, we find temporal monogamy phenomenon
for a particular entangled history of similar nature to the spatial monogamy of quantum
states [43]. On the ground of consistent histories approach, it implies that we cannot build a
tripartite (i.e. defined on three different times) history state ρt3t2t1 where ρt3t2 = ρt2t1 = |Ψ)(Ψ|
and Trt1ρt3t2t1 = ρt3t2 .

Besides the aforementioned reasoning derived from Feynman’s quantum paths, one can
refer to a broadly used explanation [43] for spatial monogamy of entanglement between
parties ABC (or further {t3, t2, t1} for temporal correlations). As mentioned in previous
section, it states that A cannot be simultaneously fully entangled with B and C since then
AB would be entangled with C having a mixed density matrix that contradicts purity of the
singlet state shared between A and B.

For the history spaces one can build naturally C ∗-Algebra of history operators equipped
with a partial trace operation (9.20) and follow the same reasoning for entangled histories.
We can summary these considerations with the following corollary about monogamy of
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|j1,1 

|j0 |j1,2 

|j2,1 

|j2,2 

|j3,2 

|j3,1 

Fig. 9.2 The Mach-Zehnder interferometer with an input state |ϕ0⟩ - a vacuum state is
omitted which does not change further considerations. The beam-splitters can be represented
by Hadamard operation acting on the spatial modes. One can analyze the interferometer
via four-times histories on times t0 < t1 < t2 < t3 for the interferometer process: |ϕ0⟩ →

1√
2
(|ϕ1,1⟩+ |ϕ1,2⟩)→ 1√

2
(|ϕ2,1⟩+ |ϕ2,2⟩)→ 1√

2
(|ϕ3,1⟩+ |ϕ3,2⟩).

temporal entangled histories [130]:

Corollary 9.2.4 There does not exist any such a history |H) ∈ Pro j(H ⊗n) so that for three
chosen times {t3, t2, t1} one can find reduced histories |Ψt3t2) =

1√
2
(|e0)⊙|e0)+ |e1)⊙|e1))

and |Ψt2t1) =
1√
2
(|e0)⊙|e0)+ |e1)⊙|e1)).

This corollary holds for any finite dimension n and also for general entangled states of
the form 9.21.

As a consequence, there does not exist such a temporal observable Λ̂A1A2A3 so that
A1A2 parties are maximally entangled and A2A3 are maximally entangled simultaneously on
times {t3, t2, t1}. However, in principle there exist observables of different histories that do
not commute and cannot be observed at the same reference frame by an observer that are
maximally entangled between A1A2 and A2A3 [131].

Further, we discuss as an example a simplified scheme for experimental generation of
|GZH)-like state in time. Recently F. Wilczek et al. [42] have proposed an experimental test
for entangled histories in laboratory using a modified Mach-Zehnder interferometer which
proves a physical sense of these considerations.
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9.2 Towards monogamy of quantum entanglement in time 123

Example 9.2.5 We present below a protocol for generation of |τGHZ) state that can be
implemented in laboratory on the Mach-Zehnder interferometer with a set of detectors [42]:

|τGHZ) =
1√
2
([z+]⊙ [z+]⊙ [z+]− [z−]⊙ [z−]⊙ [z−]) (9.28)

We start with a bipartite system at time t0 consisting of a spin-1
2 particle P being in a state

|φ0⟩= 1√
2
(|z+⟩+ |z−⟩) (|φ0⟩= |x+⟩) and a reference system R, consisting of three qubits in

a state |000⟩ which actually can be even perceived as a clock for the process. Thus, at time
t0 the system PR is in a state (for states at each particular time, we write down the spatial
state of the system in |·⟩ notation):

t0 : |Ψt0⟩PR =
1√
2
[(|z+⟩+ |z−⟩)]|000⟩ (9.29)

Then, at a later time t1 we act on the system with the CNOT unitary operation where the
control system is the particle and negation is performed on the first qubit of the reference
system R (the CNOT operation changes the reference qubit if the controlled state is |z−⟩),
basing on the state of the particle (we will repeat this action on times t2 on the second qubit,
and at t3 on the third qubit):

t1 : |Ψt1⟩PR =CNOTPR1 ⊗ IR2R3|Ψt0⟩PR =
1√
2
|z+⟩|000⟩+ 1√

2
|z−⟩|100⟩ (9.30)

where CNOTPR1 acts on the particle and the first qubit of the reference system.
At time t2 we act on the particle and the second qubit of the reference system achieving:

t2 : |Ψt2⟩PR =CNOTPR2 ⊗ IR1R3|Ψt1⟩PR =
1√
2
|z+⟩|000⟩+ 1√

2
|z−⟩|110⟩ (9.31)

Finally, at time t3 we repeat this operation but on the particle and the third qubit of the
reference system:

t3 : |Ψt3⟩PR =CNOTPR3 ⊗ IR1R2|Ψt2⟩PR =
1√
2
|z+⟩|000⟩+ 1√

2
|z−⟩|111⟩ (9.32)

After this step, we can measure the reference system in the computational basis {|000⟩, |001⟩, . . . , |111⟩}.
If we measure the reference system projecting on |000⟩ then particle has been in the history
[z+]⊙ [z+]⊙ [z+]. If we project it on |111⟩, then the history of the particle (with which we
correlate) has been in [z−]⊙ [z−]⊙ [z−].
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9.3 Tsirelson bound on Leggett-Garg Inequalities from entangled histories 124

Finally, if we measure the reference system on 1√
2
(|000⟩− |111⟩), the particle has been

in the history state |τGHZ) = 1√
2
([z+]⊙ [z+]⊙ [z+]− [z−]⊙ [z−]⊙ [z−]).

9.3 Tsirelson bound on Leggett-Garg Inequalities from en-
tangled histories

For many years have been studied the violation of local realism (LR) [12] and macrorealism
(MR) [118] in relation to quantum theories in experimental setups where measurement
outputs are tested against violation of Bell inequalities for LR and Leggett-Garg inequalities
(LGI) [117] for MR. For quantum theories, the former raises as a consequence of non-
classical correlations in space while the latter as a consequence of non-classicality of dynamic
evolution. Macrorealism consists of the following assumptions about the reality:

Macrorealism. A physical object is at any ’given’ time at a definite quantum state.
Noninvasive measurability. It is possible to determine the state of the object without any

effect on the state and the subsequent evolution.
Induction. The properties of an ensemble of quantum states are determined by the initial

conditions exclusively (and not by the final conditions.)
In this section we recall the result [130] that entangled histories approach gives the same

well-known Tsirelson bound [38] on quantum correlations for LGI as quantum entangled
states in case of bi-partite spatial correlations for CHSH-inequalities which saturates the
inequalities by quantum mechanical probability distributions.

We take a temporal version of CHSH inequality which is a modification of Legett-
Garg inequalities. Then Alice performs a measurement at time t1, choosing between two
dichotomic observables {A(1)

1 ,A(1)
2 }. Bob performs a measurement at time t2 choosing

between {B(2)
1 ,B(2)

2 }.
Then, for such a scenario the Leggett-Garg inequality can be represented in the following

form [25]:
SLGI ≡ c12 + c21 + c11 − c22 ≤ 2 (9.33)

where ci j = ⟨A(1)
i ,B(2)

j ⟩ stands for the expectation value of consecutive measurements per-
formed at time t1 and t2.

Since history operators build a C ∗-Algebra for normalized histories from projective
Hilbert spaces equipped with a well-defined inner product, one can provide reasoning about
bounding the LGI purely on the space of entangled histories, and achieve the quantum bound
2
√

2 of CHSH-inequality specific for spatial correlations.
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9.3 Tsirelson bound on Leggett-Garg Inequalities from entangled histories 125

The importance of this analytical result is due to the fact that previously it was derived
basing on convex optimization methods by means of semi-definite programming [27] and by
means of correlator spaces [71] (related to probability conditional distributions of consecutive
events).

We will now recall the theory by B.S. Cirel’son about bounds on Bell’s inequalities that
is broadly used for finding quantum bounds on spatial Bell-inequalities:

Theorem 9.3.1 [38] The following conditions are equivalent for real numbers ckl , k =

1, . . . ,m, l = 1, . . . ,n:

1. There exists C ∗-Algebra A with identity, Hermitian operators A1, . . . ,Am,B1, . . . ,Bn ∈ A

and a state f on A so that for every k, l:

AkBl = BlAk; I≤ Ak ≤ I; I≤ Bl ≤ I; f (AkBl) = ckl. (9.34)

2. There exists a density matrix W such that for every k, l:

Tr(AkBlW ) = ckl and A2
k = I; B2

l = I. (9.35)

3. There are unit vectors x1, . . . ,xm,y1, . . . ,yn in a (m+n)-dimensional Euclidean space such
that:

⟨xk,yl⟩= ckl. (9.36)

For a temporal setup one considers measurements A= I⊙A(1) (measurement A occurring
at time t1) and B= B(2)⊙ I, which will in an exact analogy to the proof of the above theorem
for a spatial setup [130].

The history with ’injected’ measurements could be represented as |H̃) = αAB|H)A†B†

where α stands for a normalization factor. The history observables are history state operators
which are Hermitian and their eigenvectors can generate a consistent history family[40].

For an exemplary observable A = ∑i ai|Hi)(Hi|, its measurement on a history |H) gener-
ates an expectation value ⟨A⟩= Tr(A|H)(H|) (i.e. the result ai is achieved with probability
|(H|Hi)|2) in analogy to the spatial case.

Thus, one achieves a history |H̃) as a realized history with measurements and the expec-
tation value of the history observable ⟨A⟩.

It is noticeable that |H̃) and |H) are both compatible histories, i.e. related by a linear
transformation. Thus basing on these results, we can state the following lemma:
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9.3 Tsirelson bound on Leggett-Garg Inequalities from entangled histories 126

Lemma 9.3.2 [129] For any history density matrix W and Hermitian history dichotomic
observables Ai = I ⊙A(1)

i and B j = B(2)
j ⊙ I where i, j ∈ {1,2} the following bound holds:

SLGI = c11 + c12 + c21 − c22 (9.37)

= Tr((A1B1 +A1B2 +A2B1 −A2B2)W )

≤ 2
√

2

Proof. The proof of this observation can be performed in similar to the spatial version of
CHSH-Bell inequality under assumption that the states are represented by entangled history
states and for two possible measurements {A(1)

1 ,A(1)
2 } at time t1 and two measurements

{B(1)
1 ,B(1)

2 } at time t2. These operators can be of dimension 2× 2 meeting the condition
A2

i = B2
j = I. Therefore, they can be interpreted as spin components along two different

directions. In consequence, it is well-known that the above inequality is saturated for 2
√

2
for a linear combination of tensor spin correlation that holds also for temporal correlations.
Additionally, one could also apply for this temporal inequality reasoning based on the
following obvious finding [38] that holds also for the temporal scenario due to the structure
of C ∗-Algebra of history operators with ⊙-tensor operation:

A1B1 +A1B2 +A2B1 −A2B2 ≤ (9.38)
1√
2
(A2

1 +A2
2 +B2

1 +B2
2) ≤ 2

√
2I

�

Despite its long tradition, the field of entangled consistent histories becomes now a new
promising arena for discussion of the entanglement phenomenon in time. It is possible
mainly due to extension of the paradigm of the consistent (decoherent) histories into the
realm of complex superpositions of decoherent histories allowing occurrence of the quantum
entanglement between two ’potential’ histories of an evolving object.

We have to recall at this point that the consistent histories framework is a ’local’ theory
as already emphasized by R. Griffiths [79, 80, 83] and as such is in some opposition to the
modifications proposed by F. Wilczek, J. Cotler et al. and the author of this thesis. However,
as already proved these modifications have a well-established physical sense [42]. This slight
but of a great importance enhancement of the theory of consistent histories opens brand a
new exciting research field in quantum entanglement in time. It will be of utmost meaning for
further development of quantum information processing, quantum field theory and quantum
gravity theory.
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Chapter 10

Conclusions

Recent years have seen enormous advances in quantum information theory proving it has
been well established as a basis for a concept of quantum computation and communication.
They have proved also a great interest of symmetric extendibility concept showing its usability
in quantum communication theory, especially in domain of one-way communication which
was a subject of this PhD thesis. A natural relation between monogamy of entanglement and
symmetric extendibility concept was established [55, 56, 161] with an important application
to analysis of Bell inequalities for multipartite settings where some of the parties possess the
same sets of measurement settings.

Much work [1, 15, 17, 16, 10, 48–50] has been performed to understand how to operate
on quantum states and distill entanglement enabling quantum data processing or establish
quantum secure communication between two or more parties. One of the central problems
of the quantum communication field is to estimate efficiency of communication protocols
establishing secure communication between involved parties or distilling quantum entan-
glement [145, 96, 97, 48–50, 153]. Most simple communication scenarios are those that do
not use classical side channel or use it only in one-way setup. The challenge for the present
theory is to determine good bounds on such quantities like the secret key rate or quantum
channel capacity and distillable entanglement of a quantum state, that allow to estimate the
communication capabilities. We engaged the concept of symmetric extendibility of quantum
states to simplify this discussion by introduction of new upper bounds on these quantum
quantities [126, 123, 124, 122, 112, 127] and new entanglement monotones, and parameters.

It seems also that symmetric extendibility is fundamental for studies on recovery and en-
tanglement breaking channels including its neighborhood [119] as well as for such measures
like squashed entanglement and quantum discord [136] or analysis of directed communi-
cation in 1D/2D spin chains [89]. Recently a great attention has been paid to the so-called
k-extendible maps [136, 35, 23] and recovery maps [68, 24] where it is proved that small
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value of squashed entanglement implies closeness to highly extendible states. These results
and the results presented in this dissertation show importance of symmetric extendibility no-
tion for analysis of one-way quantum communication rates and sufficiently prove importance
of the notion for quantum communication theory.

In particular, the key results presented in the PhD thesis include:
- It has been proved that due to the Choi-Jamiolkowski isomorphism between quantum

states and quantum channels, the convex optimization methods can be used as a quick test of
non-zero quantum channel capacity. This result can be achieved in particular for quantum
channels having hight entanglement transmission and having zero-way quantum capacity.
We discussed symmetric extendibility in a context of quantum channel capacities and their
super-activation.

- We analyzed the geometry of the convex set of symmetric extendible states having
symmetric extensions of k-rank. We proved that the set is closed under action of 1-LOCC
operations, and even if the parties engaged into a quantum protocol apply 1-LOCC to multiple
copies of the symmetric extendible state, then they cannot go beyond the set.

- We discussed the entanglement measures and introduced new one-way entanglement
monotone based on the best symmetric extendible approximation. We introduced new
entanglement parameter based on relative entropy proving that it is a new upper bound on
one-way distillable entanglement.

- In this thesis we provided efficient upper bounds avoiding a massive overestimation of
communication rates. We considered two pairs of quantities: private capacity P, quantum
one-way secret key K→ and one-way quantum channel capacity Q→, one-way distillable
entanglement D→ providing new efficient upper bounds. We proved that in some cases the
bounds explicitly show that the corresponding quantity is relatively small if compared to
sender and receiver systems. The main method is again the fact that all the above quantities
vanish on some classes of systems. Moreover, we introduced ’defect’ parameters ∆ for the
reduced quantities resulting from possible transfer of sub-systems on receivers’ side which
are (sub)additive and hence, can be exploited in case of composite systems and regularization.

- We analyzed symmetric extendibility of composite systems introducing the extendible
number notion for a quantum state as the characteristic number assessing extendibility of a
quantum state.

- We analyzed the relations between symmetric extendibility and monogamy of quantum
entanglement and the Bell theorem, discussing also separability of quantum states in a context
of their symmetric extendibility.

- The challenge for the present quantum information theory in domain of one-way
communication is to better understand behavior of all quantum states in the region of non-
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symmetric extendibility and in particular in a region of non-positive coherent information
[48] where no known one-way protocol for distillation of entanglement and private key exists.
Inspired by these findings, we proposed further an important conjecture about distillability
of all non-symmetric extendible states and analyzed behavior of a secret key rate in a
neighborhood of symmetric extendible states. This would substantially simplify the full
characterization of two-qubit states in terms of their privacy and distillability. In relation to
this question, we analyzed Werner states in the domain of non-positive coherent information,
which would indicate one-way NPT bound entangled features in the case that the conjecture
was not true.

- We also studied the behavior of the private key in the neighborhood of symmetric
extendible states, showing that for one copy a quantum state close to the symmetric extendible
state can possess only a small number of private keys.

- We showed that the concept of monogamy of quantum entanglement can be transferred
to the domain of temporal correlations and as such opens a new research area for applications
of the tools presented in this thesis.

- We proved that in the paradigm of the entangled consistent histories, a particular history
is monogamous in similarity to a quantum state entangled in space. Further, we derived the
Tsirelson bound on the temporal Leggett-Garg inequalities basing on the entangled histories
which is the first such a derivation in the literature.

The symmetric extendibility concept built on symmetry of quantum states finds out to
be one of the central concept for the quantum information theory, especially in domain of
one-way communication. Due to its natural relation to monogamy of quantum entanglement
which is a key resource in quantum information processing, the symmetric extendibility of
quantum entangled states has a chance to be one of the building blocks of further research
in this area. In a context of symmetric extendibility of quantum states, future research can
be focused on complete characterization of non-symmetric extendible two-qubit states and
their distillability, but also on development of new entanglement measures based on the
concept and analysis of symmetric extendibility of two-qudit states. As aforementioned, the
symmetric extendibility is also fundamental for the theory of k-extendible channels which
is now a new stream in the theory of quantum channels. For quantum privacy, it would
be fundamental to develop better methods of detection of symmetric extendibility of given
correlations shared between Alice and Bob. Finally, monogamy of quantum entanglement in
time opens a new research field for development of the symmetric extendible concepts in
domain of quantum correlations in time which now is a brand new research field.
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