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Abstract
We show the existence of homoclinic type solutions of second order Hamiltonian systems of
the type q̈(t) + ∇qV (t, q(t)) = f (t), where t ∈ R, the C1-smooth potential V : R×R

n →
R satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time
variable, and the forcing term f : R → R

n is sufficiently small in the space of square
integrable functions. The idea of our proof is to approximate the original system by time-
periodic ones, with larger and larger time-periods. We prove that the latter systems admit
periodic solutions ofmountain-pass type, and obtain homoclinic type solutions of the original
system from them by passing to the limit (in the topology of almost uniform convergence)
when the periods go to infinity.

Keywords Homoclinic type solutions · Hamiltonian systems · Approximative method

1 Introduction

During the past 2 decades there have been numerous applications of methods from the
calculus of variations to find periodic, homoclinic and heteroclinic solutions for Hamiltonian
systems. Many of the striking results that have been obtained by variational methods can be
found in the well-known monographs of Ambrosetti and Coti Zelati [3], Ekeland [8], Hofer
and Zehnder [9], Mawhin and Willem [16], as well as in the review articles of Rabinowitz
[19,20].
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The aim of this paper is to prove the existence of solutions of the second order Hamiltonian
system {

q̈(t) + ∇qV (t, q(t)) = f (t), t ∈ R,

lim
t→±∞ q(t) = lim

t→±∞ q̇(t) = 0, (1)

where the C1-smooth potential V : R × R
n → R satisfies a relaxed superquadratic growth

condition, its gradient Vq : R×R
n → R

n is uniformly bounded in the time variable on every
compact subset of Rn , and the norm of the forcing term f : R → R

n in the space of square
integrable functions is smaller than a bound that we state below in our main theorem.

As homoclinic type solutions are global in time, it is reasonable to use global methods
to find them rather than approaches based on their initial value problems. The homogenous
systems of (1), i.e. when f ≡ 0, have been studied extensively under the assumption of
superquadratic or subquadratic growth of the potential V (t, q) as |q| → ∞. Indeed, there
aremany results on homoclinic solutions for subquadraticHamiltonian systems (cf. e.g. [20]).
The first variational results for homoclinic solutions of first order Hamiltonian systems with
superquadratic growth were found by Coti Zelati et al. [6] for time-periodic Hamiltonians.
Corresponding results for second order Hamiltonian systems were obtained in [7,18]. Alama
and Li [1] showed that asymptotic periodicity in time actually suffices to get a homoclinic
solution, and Serra et al. [21] weakened their periodicity condition to almost periodicity in
the sense of Bohr. Finally, Hamiltonian systems with superquadratic non-periodic potentials
were investigated for example by Montecchiari and Nolasco [17], Ambrosetti and Badiale
[4], and by the second author of this paper in [11,13,14].

Our purpose is to generalize Theorem1.1 of [5],which dealswith the existence of solutions
of the inhomogeneous systems (1) under the rather restrictive assumption that the potential
V is of the special form

V (t, q) = −1

2
|q|2 + a(t)G(q),

where a : R → R is a continuous positive bounded function and G : Rn → R is of class C1

and satisfies the Ambrosetti–Rabinowitz superquadratic growth condition. Here, instead, the
potential is of the more general form

V (t, q) = −K (t, q) + W (t, q)

with C1-smooth potentials K and W such that

(C1) the maps ∇q K and ∇qW are uniformly bounded in the time variable t ∈ R on every
compact subset of Rn ,

(C2) there exist two positive constants b1, b2 such that for all t ∈ R and q ∈ R
n

b1|q|2 ≤ K (t, q) ≤ b2|q|2,
(C3) K (t, q) ≤ (q,∇q K (t, q)) ≤ 2K (t, q) for all t ∈ R and q ∈ R

n ,
(C4) ∇qW (t, q) = o(|q|) as |q| → 0 uniformly in t ∈ R,
(C5) there is a constant μ > 2 such that for all t ∈ R and q ∈ R

n\{0}
0 < μW (t, q) ≤ (q,∇qW (t, q)),

(C6) m := inf{W (t, q) : t ∈ R ∧ |q| = 1} > 0.

Here and subsequently, we denote by (·, ·) : Rn ×R
n → R the standard inner product in Rn

and by | · | its induced norm.
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Let us point out that under the above assumptions the Hamiltonian system (1) has the
trivial solution when the forcing term f vanishes. Therefore it is reasonable to suppose that
homoclinic type solutions exist when f is sufficiently small. Our main result affirms this
hypothesis and it also gives an answer to the question how large the forcing term can be.

Theorem 1.1 Set M := sup{W (t, q) : t ∈ R ∧ |q| = 1} and b̄1 := min{1, 2b1}. Let us
assume that M < 1

2 b̄1 and (C1) − (C6) are satisfied. If the forcing term f is continuous,
bounded, and moreover ⎛

⎝ ∞∫
−∞

| f (t)|2dt
⎞
⎠

1
2

<

√
2

4

(
b̄1 − 2M

)
, (2)

then the inhomogenous system (1) possesses at least one solution.

The idea of our proof, which we give in the following second section, is to approximate
the original system (1) by time-periodic ones, with larger and larger time-periods. We show
that the approximating systems admit periodic solutions of mountain-pass type, and obtain
a homoclinic type solution of the original system from them by passing to the limit (in the
topology of almost uniform convergence) when the periods go to infinity. Finally, we discuss
some examples of Theorem 1.1 in Sect. 3.

2 Proof of Theorem 1.1

For each k ∈ N, let Ek = W 1,2
2k (R,Rn) be the Sobolev space of 2k-periodic functions on R

with values in R
n and the standard norm

‖q‖Ek =
⎛
⎝ k∫

−k

(|q̇(t)|2 + |q(t)|2) dt
⎞
⎠

1
2

.

We begin with the following estimate that is crucial in the main part of our proof below.

Lemma 2.1 For every ζ ∈ R and q ∈ Ek we have

k∫
−k

W (t, ζq(t))dt ≥ m|ζ |μ
k∫

−k

|q(t)|μdt − 2km.

Proof Note at first that the assertion is obviously true if q = 0 or ζ = 0. Hence we can
assume in the rest of the proof that ζ �= 0 and q �= 0. Then it follows from (C5) that, for
every q �= 0 and t ∈ R, the function z : (0,+∞) → R defined by

z(ζ ) = W

(
t,
q

ζ

)
ζμ

is non-increasing. Hence, for every t ∈ R,

W (t, q) ≤ W

(
t,

q

|q|
)

|q|μ, if 0 < |q| ≤ 1 (3)

and

W (t, q) ≥ W

(
t,

q

|q|
)

|q|μ, if |q| ≥ 1. (4)
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We now fix ζ ∈ R\ {0}, q ∈ Ek\ {0} and set
Ak = {t ∈ [−k, k] : |ζq(t)| ≤ 1} ,

Bk = {t ∈ [−k, k] : |ζq(t)| ≥ 1} .

By (4), we get∫ k

−k
W (t, ζq(t))dt ≥

∫
Bk

W (t, ζq(t))dt ≥
∫
Bk

W

(
t,

ζq(t)

|ζq(t)|
)

|ζq(t)|μdt

≥ m
∫
Bk

|ζq(t)|μdt ≥ m
∫ k

−k
|ζq(t)|μdt − m

∫
Ak

|ζq(t)|μdt

≥ m|ζ |μ
∫ k

−k
|q(t)|μdt − 2km,

which completes the proof. �
Further, to prove Theorem 1.1, we need the following approximative method.

Theorem 2.2 (Approximative Method, [15]) Let f : R → R
n be a non-trivial, bounded,

continuous and square integrable map. Assume that V : R × R
n → R is a C1-smooth

potential such that ∇qV : R×R
n → R

n is uniformly bounded in t on every compact subset
of Rn, i.e.

∀ L > 0 ∃ C > 0 ∀ q ∈ R
n ∀ t ∈ R |q| ≤ L ⇒ |∇qV (t, q)| ≤ C .

Suppose that for each k ∈ N the boundary value problem{
q̈(t) + ∇qVk(t, q(t)) = fk(t),
q(−k) − q(k) = q̇(−k) − q̇(k) = 0,

where fk : R → R
n stands for the2k-periodic extensionof f |[−k,k) toRand Vk : R×R

n → R

denotes the 2k-periodic extension of V |[−k,k)×Rn toR×R
n, has a periodic solution qk ∈ Ek

and {‖qk‖Ek }k∈N is a bounded sequence in R. Then there exists a subsequence {qk j } j∈N
converging in the topology of C2

loc(R,Rn) to a function q ∈ W 1,2(R,Rn) which is a solution
of

q̈(t) + ∇qV (t, q(t)) = f (t), t ∈ R.

The approximative method was introduced by Rabinowitz [18] for homogenous second
order Hamiltonian systems with a time-periodic potential. Later, the second author of this
paper extended it to inhomogenous time-periodic Hamiltonian systems (see [10,12]), and
more recently, Robert Krawczyk generalized it to the case of aperiodic potentials.

Let us now consider for k ∈ N the boundary value problems{
q̈(t) − ∇q Kk(t, q(t)) + ∇qWk(t, q(t)) = fk(t),
q(−k) − q(k) = q̇(−k) − q̇(k) = 0,

(5)

where fk : R → R
n stands for the 2k-periodic extension of f |[−k,k) toR, and Kk : R×R

n →
R, Wk : R × R

n → R are the 2k-periodic extensions of K |[−k,k)×Rn and W |[−k,k)×Rn to
R × R

n .
As we have already mentioned in the introduction, our proof consists of two steps. First,

we show the existence of solutions of (5), and second, we use Theorem 2.2 to find a solution
of (1).
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For our first step, let us consider the functionals Ik : Ek → R given by

Ik(q) =
k∫

−k

(
1

2
|q̇(t)|2 + Kk(t, q(t)) − Wk(t, q(t))

)
dt +

k∫
−k

( fk(t), q(t))dt . (6)

Standard arguments show that Ik ∈ C1(Ek,R), and

I ′
k(q)v =

k∫
−k

(
(q̇(t), v̇(t)) + (∇q Kk(t, q(t)) − ∇qWk(t, q(t)), v(t))

)
dt+

k∫
−k

( fk(t), v(t))dt .

(7)
Moreover, the critical points of the functional Ik are classical 2k-periodic solutions of (5),
and we now show their existence by using the Mountain Pass Theorem. Let us recall the
latter result before proceeding with our proof.

Theorem 2.3 (Mountain Pass Theorem, [2]) Let E be a real Banach space and I : E → R

a C1-smooth functional. If I satisfies the following conditions:

(i) I (0) = 0,
(ii) every sequence

{
u j

}
j∈N in E such that

{
I (u j )

}
j∈N is bounded in R and I ′(u j ) → 0 in

E∗ as j → +∞ contains a convergent subsequence (the Palais–Smale condition),
(iii) there exist constants ρ, α > 0 such that I |∂Bρ(0) ≥ α,
(iv) there exists e ∈ E\B̄ρ(0) such that I (e) ≤ 0,

where Bρ(0) is the open ball of radius ρ about 0 in E, then I possesses a critical value c ≥ α

given by
c = inf

g∈�
max
s∈[0,1] I (g(s)), (8)

where

� = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e} .

We now denote by L∞
2k(R,Rn) the space of 2k-periodic essentially bounded functions

from R into R
n equipped with the norm

‖q‖L∞
2k

= ess sup {|q(t)| : t ∈ [−k, k]} .

It is well known that for each k ∈ N and q ∈ Ek

‖q‖L∞
2k

≤ √
2‖q‖Ek . (9)

The proof of (9) can be found for example in [10] (see Fact 2.8, p. 385).
Furthermore, we will write L2

2k(R,Rn) for the Hilbert space of 2k-periodic functions on
R with values in R

n and with the norm

‖q‖L2
2k

=
⎛
⎝ k∫

−k

|q(t)|2dt
⎞
⎠

1
2

.

Note that by (2),

‖ fk‖L2
2k

<

√
2

4

(
b̄1 − 2M

)
. (10)

The following lemma shows the existence of a solution of (5) and is the main part of the
first step of our proof.
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Lemma 2.4 For each k ∈ N, the functional Ik has a critical value of mountain pass type.

Proof We let k ∈ N be fixed and note at first that it is evident by (C2) and (C5) that Ik(0) = 0,
which shows (i) in Theorem 2.3.

For checking the Palais–Smale condition (ii), we consider a sequence {u j } j∈N ⊂ Ek such
that {Ik(u j )} j∈N is bounded in R and I ′

k(u j ) → 0 in E∗
k as j → ∞. Then there exists a

constant Ck > 0 such that for all j ∈ N

|Ik(u j )| ≤ Ck (11)

and
‖I ′

k(u j )‖E∗
k

≤ Ck . (12)

Now, we will first show that {u j } j∈N is bounded in the Hilbert space Ek . Using (6) and (C5)

we get

2Ik(u j ) ≥
∫ k

−k

(|u̇ j (t)|2 + 2Kk(t, u j (t))
)
dt − 2

μ

∫ k

−k
(∇qWk(t, u j (t)), u j (t))dt

+ 2
∫ k

−k
( fk(t), u j (t))dt .

From (7) and (C3) it follows that

I ′
k(u j )u j ≤

∫ k

−k

(|u̇ j (t)|2 + 2Kk(t, u j (t))
)
dt −

∫ k

−k
(∇qWk(t, u j (t)), u j (t))dt

+
∫ k

−k
( fk(t), u j (t))dt .

Thus

2Ik(u j ) − 2

μ
I ′
k(u j )u j ≥

(
1 − 2

μ

) ∫ k

−k

(|u̇ j (t)|2 + 2Kk(t, u j (t))
)
dt

+
(
2 − 2

μ

) ∫ k

−k
( fk(t), u j (t))dt,

and by (C2) we have

2Ik(u j ) − 2

μ
I ′
k(u j )u j ≥

(
1 − 2

μ

)
b̄1‖u j‖2Ek

+
(
2 − 2

μ

) ∫ k

−k
( fk(t), u j (t))dt .

Finally, aplying the Hölder inequality, as well as (10), (11) and (12), we obtain(
1 − 2

μ

)
b̄1‖u j‖2Ek

− 2Ck

μ
‖u j‖Ek −

√
2

4
(b̄1 − 2M)

(
2 − 2

μ

)
‖u j‖Ek − 2Ck ≤ 0.

Since μ > 2 we conclude that {u j } is bounded.
Going to a subsequence if necessary, we can assume that there exists a function u ∈ Ek

such that u j⇀u weakly in Ek as j → +∞. Hence u j → u uniformly on [−k, k], which
implies that (

I ′
k(u j ) − I ′

k(u)
)
(u j − u) → 0,

‖u j − u‖L2
2k

→ 0
(13)
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and ∫ k

−k
(∇q Kk(t, u j (t)) − ∇qWk(t, u j (t)), u j (t) − u(t))dt

−
∫ k

−k
(∇q Kk(t, u(t)) − ∇qWk(t, u(t)), u j (t) − u(t))dt → 0

as j → +∞. On the other hand, it is readily seen that

‖u̇ j − u̇‖2
L2
2k

= (I ′
k(u j ) − I ′

k(u))(u j − u)

−
∫ k

−k
(∇q Kk(t, u j (t)) − ∇qWk(t, u j (t)), u j (t) − u(t))dt

+
∫ k

−k
(∇q Kk(t, u(t)) − ∇qWk(t, u(t)), u j (t) − u(t))dt,

and consequently
‖u̇ j − u̇‖L2

2k
→ 0. (14)

By (13) and (14), we see that ‖u j − u‖Ek → 0, and thus Ik satisfies the Palais–Smale
condition.

To show (iii), we set

ρ =
√
2

2
.

Assume that q ∈ ∂Bρ(0) ⊂ Ek . Then ‖q‖L∞
2k

> 0 and ‖q‖L∞
2k

≤ 1 by (9). Let

Dk = {t ∈ [−k, k] : 0 < |q(t)| ≤ 1}.
Thus, we can apply (3) to obtain∫ k

−k
W (t, q(t))dt =

∫
Dk

W (t, q(t))dt ≤
∫
Dk

W

(
t,

q(t)

|q(t)|
)

|q(t)|μdt

≤ M
∫
Dk

|q(t)|2dt = M
∫ k

−k
|q(t)|2dt ≤ M‖q‖2Ek

= 1

2
M .

From this, (C2) and (2), we get

Ik(q) ≥ 1

2
b̄1‖q‖2Ek

− 1

2
M − ‖ fk‖L2

2k
‖q‖Ek

≥ 1

4
(b̄1 − 2M) −

√
2

2
‖ f ‖L2

=
√
2

2

(√
2

4
(b̄1 − 2M) − ‖ f ‖L2

)
≡ α > 0.

(15)

To complete the proof, we have to show (iv), i.e. we need to find ek ∈ Ek such that
‖ek‖Ek > ρ and Ik(ek) ≤ 0.

Let

b̄2 = max{1, 2b2}.
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Combining (6) and Lemma 2.1 gives

Ik(ζq) ≤ b̄2ζ 2

2
‖q‖2Ek

− m|ζ |μ
∫ k

−k
|q(t)|μdt + |ζ | · ‖ fk‖L2

2k
‖q‖Ek + 2km (16)

for all ζ ∈ R\{0} and q ∈ Ek\{0}.
We now let Q ∈ E1 be such that Q �= 0 and Q(−1) = Q(1) = 0. It follows from

(16) that ‖ζQ‖E1 > ρ and I1(ζQ) < 0 for ζ ∈ R\{0} large enough. Hence, if we define
e1(t) = ζQ(t) and for each k ≥ 2,

ek(t) =
{
e1(t) for t ∈ [−1, 1],
0 for t ∈ [−k,−1) ∪ (1, k], (17)

then ek ∈ Ek , and ‖ek‖Ek = ‖e1‖E1 > ρ as well as Ik(ek) = I1(e1) < 0.
In summary, it follows from Theorem 2.3 that the action functional Ik has a critical value

ck ≥ α given by
ck = inf

g∈�k
max
s∈[0,1] Ik(g(s)), (18)

where

�k = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek} .

�
In what follows, we let qk be a critical point for the corresponding critical value ck that

we have found in Lemma 2.4. The functions qk , k ∈ N, are solutions of (5) and as second
step of our proof of Theorem 1.1, we now want to apply Theorem 2.2 to this sequence of
functions.

Lemma 2.5 The sequence {‖qk‖Ek }k∈N ⊂ R is bounded.

Proof We set

M0 = max
s∈[0,1] I1(se1).

and conclude from (17) and (18) that
ck ≤ M0 (19)

for each k ∈ N. By assumption,

ck = Ik(qk) = Ik(qk) − 1

2
I ′
k(qk)qk =

∫ k

−k

(
Kk(t, qk(t)) − 1

2
(∇q Kk(t, qk(t)), qk(t))

)
dt

+
∫ k

−k

(
1

2
(∇qWk(t, qk(t)), qk(t)) − Wk(t, qk(t))

)
dt + 1

2

∫ k

−k
( fk(t), qk(t))dt .

Applying (C3) and (C5) we obtain

ck ≥
(μ

2
− 1

) ∫ k

−k
Wk(t, qk(t))dt + 1

2

∫ k

−k
( fk(t), qk(t))dt .

Furthermore, it follows from (6) and (C2) that∫ k

−k
Wk(t, qk(t))dt ≥ 1

2
b̄1‖qk‖2Ek

+
∫ k

−k
( fk(t), qk(t))dt − Ik(qk).
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Using that Ik(qk) = ck , the previous two inequalities give

1

2
b̄1‖qk‖2Ek

− μ − 1

μ − 2
‖ fk‖L2

2k
‖qk‖Ek − μ

μ − 2
ck ≤ 0,

which implies by (2) and (19) that

1

2
b̄1‖qk‖2Ek

−
√
2

4

(
b̄1 − 2M

) μ − 1

μ − 2
‖qk‖Ek − μ

μ − 2
M0 ≤ 0.

Hence there is M1 > 0 such that for each k ∈ N,

‖qk‖Ek ≤ M1.

�
Now, using Theorem 2.2 we see that there exists a solution q : R → R

n of (1) such that
q(t) → 0 as |t | → ∞.

All what is left to show for the proof of Theorem 1.1 is that actually q̇(t) → 0 as |t | → ∞.
This, however, follows from the inequality

|q̇(t)| ≤ √
2

(∫ t+ 1
2

t− 1
2

(|q̇(s)|2 + |q̈(s)|2) ds
) 1

2

, t ∈ R, (20)

which can be found in [10] [Inequality (28), p. 385]. Indeed, we just need to note that by (1),
(C2), (C4) and (2)

t+ 1
2∫

t− 1
2

|q̈(s)|2ds → 0, |t | → ∞.

If now |t | goes to∞ in (20) we see that |q̇(t)| → 0 as |t | → ∞. Consequently, q is a solution
of (1) and the proof of Theorem 1.1 is complete.

3 One-Dimensional Examples

In this section we present examples for n = 1 satisfying the assumptions of Theorem 1.1,
and the graphs of their approximating solutions qk of (5) for increasing values of k.

Example 3.1 Consider K : R × R → R, W : R × R → R and f : R → R given by

K (t, q) = t2 + 1

t2 + 2
q2,

W (t, q) = t2 + 12

3t2 + 27
q4

and

f (t) = 1

36
e−t2 ,

where t, q ∈ R. One can easily check that K ,W and f satisfy the assumptions of The-
orem 1.1. The Figs. 1, 2 and 3 show the graphs of numerical solutions qk of (5) for
k = 57, 100, 250.
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Fig. 1 A numerical solution of (5) for k = 57 in Example 1

Fig. 2 A numerical solution of (5) for k = 100 in Example 1

Fig. 3 A numerical solution of (5) for k = 250 in Example 1
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Fig. 4 A numerical solution of (5) for k = 10 in Example 2

Fig. 5 A numerical solution of (5) for k = 40 in Example 2

Example 3.2 Let K : R × R → R, W : R × R → R and f : R → R be given by

K (t, q) =
(
1

8
sin(t) + 1

8
sin(

√
2t) + 3

4

)
q2,

W (t, q) = 1

4
q4

and

f (t) = 1

32
e−t2 ,

where t, q ∈ R. It is immediate that K ,W and f satisfy the assumptions of Theorem 1.1.
The Figs. 4, 5 and 6 show the graphs of numerical solutions qk of (5) for k = 10, 40, 160.

Example 3.3 Consider K : R × R → R, W : R × R → R and f : R → R given by

K (t, q) = q2,
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Fig. 6 A numerical solution of (5) for k = 160 in Example 2

Fig. 7 A numerical solution of (5) for k = 100 in Example 3

Fig. 8 A numerical solution of (5) for k = 140 in Example 3
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Fig. 9 A numerical solution of (5) for k = 180 in Example 3

W (t, q) = 10

33
q4

(
arctg2

(
q2

t2 + 1

)
+ 1

)

and

f (t) = 1 + t2

10
e−t2 ,

where t, q ∈ R. Again, it is readily seen that K ,W and f satisfy the assumptions of
Theorem 1.1. The Figs. 7, 8 and 9 show the graphs of numerical solutions qk of (5) for
k = 100, 140, 180.
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