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ABSTRACT 

In the present study, a single general formulation has been presented for the analysis of 

various shell-shaped structures. The proposed model is comprehensive and a variety of theories 

can be used based on it. The cross-section of the shell structure can be arbitrarily analyzed with 

the presented equations. In other words, various types of shell structures, including cylindrical, 

conical, spherical, elliptical, hyperbolic, parabolic, and any non-geometric structure with 
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functional cross-section, can be modeled mechanically with only one partial differential 

equation system. The obtained equations have been solved by applying SAPM semi-analytical 

solution method. In order to present a comprehensive research, dynamic nonlinear analysis is 

considered. The variation of material properties through the thickness has been assumed as 

functionally graded and its effect on the strength of the shell structure with the functional cross-

section has been investigated. The numerical results have been compared with available papers 

and also with FEM results for some structures that there is no paper available for validation. 

Different types of shell structures have been studied in terms of cross-sectional shape and 

properties. Finally, the effects of some important factors on the results such as boundary 

conditions, nonlinear analysis, dynamic analysis, and rotation of the structure around its central 

axis have been conducted thoroughly. This study and its original governing equations can be 

considered as a comprehensive reference for mechanical analysis of various shell structures 

with functional cross-sectional shape. 

Keywords: Shell structures; Functional cross-section; Functionally graded material (FGM); 

SAPM methodology 

1. Introduction 

Mechanical analysis of shells has been a major part of more than three decades of 

research. Among them, cylindrical, spherical, and conical shells due to their application in 

various fields of engineering and advanced industries are among the topics of interest to 

researchers. In the classification of structures, spherical and cylindrical shells with very 

momentous applications in the field of engineering are of great importance. For example, 

cylindrical shells have a wide range of industrial applications, including centrifuges, turbines, 

dryers, tanks, electrical insulators, heat exchanger tubes, boilers, storage tanks, and so on. 

Spherical shells are also widely used in many structures, such as missiles, radar warheads, and 
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submarines. Conical shells, on the other hand, are broadly used because of the structural 

advantages they have in their geometry. For instance, they are employed in the oil, gas, and 

petrochemical industries. Therefore, the mathematical modeling of such structures is a 

significant issue. 

Functionally graded materials (FGMs) are composite materials with a heterogeneous 

microstructure whose physical features vary softly along a given dimension based on the 

volume fraction. This special property is obtained by a uniform change in the volume ratio of 

their constituents. The microstructural phases of functionally graded materials have different 

functions from each other and cause a multi-structural state in functionally graded materials. 

With the intermittent and gradual change of the volume fraction of the ingredients of the 

functionally graded materials, these materials show the properties of a continuous substance. 

The most common type of these materials is ceramics and metals. As well as providing thermal 

protection and corrosion resistance on one surface, it also provides resistance to mechanical 

loads to the end of the other surface [1–5]. The idea of designing FGMs was first proposed by 

Japanese scientists as high-temperature resistant materials and was discussed at the first FGM 

conference [6–10]. FGMs, especially in shell form, are increasingly used in aerospace and other 

industries that require high strength and rigidity with low density. As the use of these materials 

in structures expanded, the need for further research on them became more apparent to 

researchers. Hence, the study of the mechanical behavior of FGM shells is a vital issue that 

must be addressed. 

In the class of cylindrical shells, Shen [11–12] presented a thermo-mechanical post-

stability study for FGM shells with a circular section regarding Donnell shell theory. The critical 

loads were determined by a singular perturbation technique. Amabili [13] examined nonlinear 

natural frequencies of cylindrical shells with circular cross-section while different shell theories 
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were taken into validation. Arciniega and Reddy [14] studied the nonlinear bending of shells 

composed of FGMs on the basis of the first-order theory of shear deformations. A shell element 

within the finite element method helped out to make the shell domain. Najafizadeh and 

Isvandzibaei [15] showed the importance of higher-order elasticity theories for vibrational 

modeling of shells composed of FGM in cylindrical coordinates. Darabi et al. [16] by imposing 

an axial periodic loading, inspected the dynamic stability of an FGM shell by making use of 

Donnell’s theory. Shen [17] calculated the torsional critical load of shells produced by FGMs 

in a circular geometry. The temperature as an external factor was studied. A higher-order 

elasticity model was employed and numerical outcomes were attained by a singular perturbation 

method.  Matsunaga [18] demonstrated the buckling and vibrational behavior of FGM shells 

with a circular cross-section. A higher-order elasticity model was utilized on the basis of two-

dimensional assumptions in order to obtain governing equations. Kurylov and Amabili [19] 

investigated different boundary conditions for cylindrical shells put through nonlinear 

vibrations. Khalili et al. [20] on the basis of a novel modified three-dimensional elasticity model 

studied natural frequencies of a cylindrical shell. The shell had isotropic elastic behavior with 

homogeneity. The analytical solution established numerical results. Jin et al. [21] succeed to 

apply the Haar wavelet method on the model of cylindrical shells. Their shear deformable model 

involved FGMs properties. Mohammadi et al. [22] proposed a nano-sized shear deformable 

FGM shell with the cylindrical domain. The well-known nanoscale approach, which is a 

nonlocal strain gradient model supported the small-scale properties. Chen et al. [23] in the 

framework of FGM composition, implemented a cylindrical shell into a static buckling state, 

and probed the bifurcation behavior of the specimen. Sofiyev [24] studied buckling of 

cylindrical shells with visco-elastic material properties subjected to axial dynamic load. The 

elastic behavior for the cross-section was considered to be orthotropic. Hasrati et al. [25] 

presented a new solution technique based on the numerical process in order to investigate 
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natural and excitation frequencies of a cylindrical shell on the basis of geometrical nonlinearity. 

Khorsand et al. [26] enhanced the resistance of the cylindrical shells based upon a multi-

directional FGM. Thermal gradient impressed the model and the functionality was undertaken 

with axial and radial directions. Ansari and Torabi [27] presented a semi-analytical solution for 

considering the post-stability of an FGM cylindrical shell when the graphene platelet played the 

role of a reinforcer. Malikan et al. [28] computed the capacity of torsional stability of a nano-

sized shell containing magnetic properties in three dimensions by employing first-order shear 

deformation shell theory (FSDST). Karami and Janghorban [29] analyzed a supported 

nanoscale shell with simple boundaries in terms of FGMs property based on a quasi-three-

dimensional shell model. Mohamadi et al. [30] conducted a nonlinear frequency analysis on 

axially moving the shells with cylindrical solid and circular cross-section inserted into simple 

boundary conditions. The shell motion equations were achieved on the basis of axial moving. 

For more considerations, one can find other interesting published works performed on 

cylindrical shells with a circular cross-section in [31–45]. 

In the category of spherical shells, Voyiadjis and Woelke [46] presented a modified 

elasticity theory to study the mechanics of thick spherical shells. Bich and Tung [47] considered 

the nonlinear behavior of an FGM spherical shell in the thermal environment subjected to an 

outer static pressure acted uniformly. Bich et al. [48] based on a nonlinear investigation, derived 

the classical model for FGM spherical shells by incorporating Donnell assumptions. Their study 

also consisted of thermal environment influences. Zaera et al. [49] investigated natural 

frequencies and vibration modes of a closed spherical shell in a nano-size based on the stress 

nonlocality model. Civalek [50] explored the geometrically nonlinear behavior of a spherical 

shell in static and dynamic conditions. The shell was held by a polymeric medium inclusive of 

shear and transverse stiffness. Fantuzzi et al. [51] expanded cylindrical as well as spherical shell 

panels into two- and three-dimensional analyses in the thin and thick cases. The shells were 
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deemed to be made by FGMs. The solution procedure was feasible with the aid of the finite 

element method and simply-supported ends conditions. Ghavanloo et al. [52] derived a shell 

model for fullerene molecules in order to compute the natural frequencies and vibration modes 

of the problem. Shinde and Sayyad [53] investigated a spherical shell assuming orthotropic 

elasticity and a fifth-order shear deformable shell model was assessed. Dastjerdi et al. [54] 

carried out a quasi-model for the human eye based on the viscoelastic spherical shell structures 

in the context of the first-order shell deformable model. There can be read some other articles 

in the case of shells with spherical geometry [55–56]. 

On studies of conical shells, Malekzadeh and Heydarpour [57] reviewed vibration modes 

and natural frequencies of an FGM shell with truncated conic geometry under rotation. The 

FSDST gave them constitutive equations and the differential quadrature method (DQM) came 

to their aid to solve the problem. Kamarian et al. [58] reinforced a conical shell with the help of 

carbon nanotubes and calculated vibration modes of the composite shell based on the FSDST 

deformable sample. Dai et al. [59] analyzed free vibration of a conical shell while it rotated 

around its vertical axis by taking into consideration the influences of Coriolis and centrifugal 

forces. Ansari et al. [60] estimated an FGM conical shell on the basis of graphene platelet as a 

reinforcer in a post-stability condition. Sofiyev [61] studied a composite truncated conical shell 

in static stability and vibrational conditions. The carbon nanotubes were embedded into the shell 

as a reinforcer and the mathematical model of the problem was performed regarding FSDST. 

Fu et al. [62] evaluated porosity in an FGM conical shell exposed to the thermo-dynamic 

environment. The first-order shear deformation shell approach and generalized differential 

quadrature technique created the mathematical process. Further interesting papers done for 

mechanics of conical shells can be seen in [63–70]. 
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In the theme of special shell structures, Jiang and Redekop [71] studied the mechanical 

response of toroidal shells. The linear elastic behavior was supposed to be orthotropic. The shell 

was placed in both static and dynamic conditions and the mathematical model was solved with 

regard to the differential quadrature technique. The shell thickness was also presumed to be 

variable. Wang and Redekop [72] discussed natural frequencies of a shell with a toroidal section 

within moderately thick and thick hypotheses by FSDST and DQM. Shariyat and Asgari [73] 

analyzed nonlinear stability due to temperature for a bidirectional FGM shell with variable 

thickness and a circular section. Tornabene et al. [74] using the generalized differential 

quadrature method studied natural frequencies of elliptic and oval cylindrical shells. The shells 

were supposed to be composite material and the clamped-free end conditions were also 

surveyed. Bich and Ninh [75] studied a toroidal shell part made of FGMs counting classical 

shell theory in a post-stability status in regard to the environmental effects such as temperature 

variations. Their model was also reinforced by means of a polymer foundation. Torabi and 

Ansari [76] explored for frequency behavior of an FGM revolving shell based on an 

isoparametric super element within the framework of the three-dimensional finite element 

method. Dastjerdi et al. [77] developed shell studies by formulating a mathematical model of a 

torus-shaped shell on the base of FSDST. The materials properties were applied as FGMs and 

the system was also affected by hygro-thermal impacts of the environment. The numerical 

results were obtained by means of an innovative semi-analytical technique. Vuong and Duc 

[78] based on a nonlinear formulation, measured natural frequencies of a toroidal shell made of 

FGMs considering moderately thickness for the shell. Reddy’s third order-shear deformation 

shell theory was utilized to create the mathematical model. Runge–Kutta method granted 

numerical results. 

In the field of open-shell structures, Altenbach and Eremeyev [79] developed studies of 

open-shell structures into the nanoscale including surface effects. Tornabene [80] researched 
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the FGM doubly-curved shells with arbitrarily oriented rotation under critical speed. Different 

higher-order elasticity theories were examined to model the problem. 

In the area of combined shells, Caresta and Kessissoglou [81] calculated natural 

frequencies of a shell constituted with cylindrical and conical geometries with respect to 

classical shell theories. 

Mathematical analysis and modeling of shells has many problems and complexities. In 

addition, the number and methods presented add to these difficulties, and it is natural that the 

problems of shell analysis will be different due to their curvature in each shell. So far, most of 

the research done on shells has been limited to mathematical modeling of each shell separately. 

But in this paper, a mathematical model is presented by which all cylindrical, conical, revolved, 

and spherical shells with circular and elliptical sections, and curved cones can be mechanically 

simulated. In fact, with the mathematical model presented in this study, there is no need to 

model each shell separately with different models. In mechanical analysis, according to the 

physical characteristics of the problem and the loading, we use a nonlinear model when large 

deformations are considered. Therefore, in this paper, based on the first-order shear deformation 

shell theory, the mathematical model was investigated by considering the effect of nonlinear 

terms on the geometry of the shell. Environmental effects are one of the vital factors in the 

performance of industrial components made of different shells. These effects can be the result 

of fluid movement in a cylindrical or conical shell or a wet working environment with 

temperature changes in the shells. On the other hand, shells are usually physically affected by 

various loads such as static loading or excitation due to external dynamic loads. The study of 

the behavior and static model of shells can be an important field of application in the design of 

structures. Therefore, by considering the changes in temperature and humidity of the 

environment, a static load was also applied to the problem. Then, the governing differential 
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equations were simulated assuming different abutment conditions and transformed into a 

nonlinear system of algebraic equation using a semi analytical method. Finally, the algebraic 

equations were solved using the Newton-Raphson method. We tested the correctness of the 

solution method with the help of FEM commercial software. The effect of changing various 

parameters including temperature, humidity, shell thickness, external static load, etc. on the 

elastic behavior of the shells was studied. Most importantly, the behavior of the shells was 

compared under the same conditions. 

2. Geometrical definition 

In this research, the governing equations of shell structures with any desired cross-section 

are extracted and the results are obtained numerically for the stresses created in the structure as 

well as the resulting deformations. As mentioned, the cross-section of the shell structure can be 

selected as desired, and with a single set of partial differential equations, each geometrical shape 

of the shell structure can be mechanically modeled. Therefore, this research is very instructive 

and due to the fact that there is no limit in the type of geometry, the proposed formulation can 

be considered for use by other researchers working in the field of mechanical analysis of shell 

structures. The cross-section of the geometric structure of the studied shell is a function in the 

form of 𝑧 = 𝑓(𝑟) which will rotate around the 𝑧 axis. The rotation angle can change up to 360 

degrees. Fig. 1 shows the geometric structure studied in this research. 
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Fig. 1. Structure created by rotation of a profile 𝑧 = 𝑓(𝑟) around 𝑧 axis 0 < 𝛾 ≤ 360° 

According to Fig. 1, 𝑓(𝑟) determines the final shape of the shell structure. For example, 

if 𝑓(𝑟) is chosen so that 𝑟 = 𝑘 (𝑘 is a constant number), the final obtained structure will be a 

cylindrical structure with a radius of rotation 𝑅 = 𝑘. Fig. 2 shows the structure of these 

cylinders. Also, if the function 𝑓(𝑟) represents a straight line, the resulting structure will be a 

complete or frustum cone structure (Fig. 3). The angle 𝛾 can be calculated as 𝛾 = tan (
𝑟2−𝑟1

𝑧1
). 
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Fig. 2. Cylindrical structure by considering the cross-section function as 𝑟 = 𝑘 in which 

𝑘 is an arbitrary constant real number 
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Fig. 3. Frustum cone structure by considering the cross-section function as 𝑓(𝑟) =

(
𝑧1

(𝑟1−𝑟2)
) 𝑟 + (

𝑧1𝑟2

(𝑟2−𝑟1)
) 

Therefore, it is observed that a very wide range of shell structures (even spherical and 

elliptical structures) can be modeled in this way. For example, in spherical and elliptical 

structures the value of 𝑓(𝑟) is equal to √𝑅2 − 𝑟2 and (
𝑏

𝑎
)√𝑎2 − 𝑟2 respectively where 𝑅, 𝑎 and 

𝑏 are the radius of the sphere, major and minor axis of the ellipse (Figs. 4 and 5). 

 

Fig. 4. Spherical structure by considering the cross-section function as 𝑓(𝑟) =

√𝑅2 − 𝑟2 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 5. Elliptical structure by considering the cross-section function as 𝑓(𝑟) =

(
𝑏

𝑎
)√𝑎2 − 𝑟2 

The general conclusion is that according to the present study, a large number of structures 

with different geometries can be studied practically and with just one formulation. Factors such 

as environmental influences (temperature and humidity), material type (hyper-elastic, 

viscoelastic or FGM composite) and type of loading can be considered in the extraction steps 

of the governing equations. Even the effects of small-scale analysis on micro- and nano-

structures can be examined after extracting the original equations. The introduced model can be 

very practical and will be very comprehensive, regardless of the type of analysis. For example, 

by making changes in the obtained equations from this method (as mentioned earlier) small-

scale analysis can also be considered. In this regard, further discussion will be done. A very 

practical problem could be the analysis of a cooling tower in power plant systems that usually 

have an exponential cross-section. If there is a cooling tower, the main question is whether the 
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materials used in it, which can be ordinary composite materials or even a functionally graded 

materials (FGM), will be able to withstand the weight of the structure or not? (Fig. 6). 

 

Fig. 6. Geometry of a cooling tower with exponential cross-section under its own 

weight 𝑞𝑧 

Also, in the section on extracting the governing equations, it will be stated that the 

obtained equations have been extracted in a completely dynamic way. Therefore, the introduced 

equations have a very high generality for modeling mechanical phenomena. 

3. Mathematical modeling of shell with desired cross-section 

A cross-section is assumed as the function 𝑧 = 𝑓(𝑟) that revolves around the 𝑧 axis with 

a definite 𝛾 angle (Fig. 1 shows this section). The thickness of the structure is equal to ℎ. Two 

conditions can be considered to apply the thickness ℎ. 
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1. The thickness ℎ is assumed to be constant along the axis 𝑟. In this case, the function 

ℎ(𝑟), which indicates the thickness of the structure in the direction 𝑟, will be constant 

and equal to ℎ𝑟. For a better and clearer expression of this issue, Fig. 7 is presented. 

 

Fig. 7. Thickness of cross-section in condition one 

2. Since the cross-section of the structure is presented as a curve 𝑧 = 𝑓(𝑟), it is 

considered that the thickness of the structure in the direction n (normal and 

perpendicular to the cross-section) is not constant. According to Fig. 8, as there is an 

increase in the 𝑧 direction, the thickness of the structure increases to 𝑛. The amount 

of mentioned increase also depends on the cross-sectional curvature of the structure. 

In other words, the smaller the slope of the cross-sectional curve, the lower the normal 

thickness (perpendicular) in that area. For the maximum slope (vertical structure or 

parallel to the 𝑧-axis) the thickness in the 𝑟 direction will be equal to the thickness of 

𝑛 direction. 
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Fig. 8. Thickness of cross-section in condition two 

If the cross-section of the structure is considered as a straight line (the geometry of the 

structure is conical), the thickness in the n direction will be equal in all parts of the structure. 

As a result, there will be a general relationship between thickness ℎ𝑟 (thickness in the direction 

of 𝑟) and thickness ℎ𝑛 (thickness in the direction of n), which can be obtained according to Fig. 

9 as the following equation. 

ℎ𝑛 =
ℎ𝑟

cos𝛾
 (1) 
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Fig. 9. Thickness of frustum conical structure 

But in general, if the cross-section of the structure is curved (condition 2), to obtain the 

function ℎ𝑛 in the direction of 𝑟, or, in other words, ℎ𝑛(𝑟) is done in details as follows. 

According to Fig. 8, the function 𝑓1 represents the relationship between 𝑧 and 𝑟 or 

represents the shape of the cross-sectional curve that is arbitrarily assumed. The function 𝑓2 can 

be obtained given that the curve 𝑓1 is transferred in the direction 𝑛 with a constant thickness 𝐻. 

The method of calculating 𝑓2 is that a desired point (for example point A) with coordinates 𝑟1 

and 𝑧1 on the curve 𝑓1 is considered. The slope of the line perpendicular to this point can be 

obtained as the following equation. 

𝑆𝑡 =
𝑑𝑓1

𝑑𝑟
, 𝑆𝑝 = −

1

(
𝑑𝑓1
𝑑𝑟
)
 (2) 
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In the above relation 𝑆𝑡 is the slope of the tangent line and 𝑆𝑝 is the slope of the line 

perpendicular to the curve 𝑓1. The coordinates 𝑟1 and 𝑧1 of point A on the curve 𝑓1 can now be 

calculated on the curve 𝑓2 with the slope of the line 𝑆𝑝. 

𝑟2 = 𝑟1 ±
𝐻(

𝑑𝑓1
𝑑𝑟
)

√1+(
𝑑𝑓1
𝑑𝑟
)
2
, 𝑧2 = 𝑧1 ±

𝐻

√1+(
𝑑𝑓1
𝑑𝑟
)
2
 (3) 

Therefore, the 𝑓2 curve can be defined with respect to the 𝑓1 curve, in which 𝑟 and 𝑧 are 

transferred according to the equations introduced above. Also, the horizontal distance between 

the two curves 𝑓1. and 𝑓2, which represents ℎ𝑛(𝑟), can be defined at any point by the value of 

±
𝐻(

𝑑𝑓1
𝑑𝑟
)

√1+(
𝑑𝑓1
𝑑𝑟
)
2
. The positive and negative signs (±) for ℎ𝑛(𝑟) function represent the geometric 

location of 𝑓2 curve on both sides of 𝑓1 curve. 

4. Extraction of the governing equations of the desired shell structure 

In the previous section, the geometrical equations of the shell structure with the desired 

cross-section were expressed. Hereafter, strain field, stress tensor, and the final mechanical 

governing equations will be formulated. 

A rotating shell structure with a functional cross-section (𝑧 = 𝑓(𝑟)) is considered in the 

hygro-thermal environment as shown in Fig. 10. The structure rotates around the z-axis with 

constant angular velocity 𝜔 as 𝜔 =
𝑑𝜃

𝑑𝑡
. It means that there is not any angular acceleration and 

𝛼 =
𝑑𝜔

𝑑𝑡
= 0. 
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Fig. 10. Schematic view of a rotating shell structure with functional cross-section shape 

𝑧 = 𝑓(𝑟) in hygro-thermal environment 

As shown in Fig. 10, the geometric location of point 𝐴 on the shell can be introduced 

using the definition of a cylindrical coordinate system as the following equations. 

{
𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃
𝑧 = 𝑧

 (4) 

It should be noted that here the radius 𝑟 is no longer constant, unlike a cylinder whose 

cross-sectional radius is constant and equal to 𝑅. The value of 𝑟 will change in the 𝑧 direction. 

If the function 𝑧 = 𝑓(𝑟) is considered, it is sufficient to obtain the changes 𝑟 relative to 𝑧  by 

calculating the inverse of the function 𝑓(𝑟) to obtain the function 𝑟 = 𝑓(𝑧). The volume 

differential according to Fig. 10 can be written as 𝑑𝑉 = 𝑟𝑑𝜃𝑑𝑟𝑑𝑧 where 𝑟 = 𝑓(𝑧). As a result, 

the volume differential will be 𝑑𝑉 = 𝑓(𝑧)𝑑𝜃𝑑𝑟𝑑𝑧. 
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The governing equations are now derived from a cylindrical coordinate system in which 

the radius of the cylinder is no longer constant and follows the function 𝑟 = 𝑓(𝑧). The strain 

field has been obtained before in a cylindrical coordinate system with ∇⃗⃗ �⃗⃗�  definition in which 

the vector of �⃗⃗�  is the displacement vector as �⃗⃗� = 𝑈𝑟�̂�𝑟 + 𝑈𝜃�̂�𝜃 + 𝑈𝑧�̂�𝑧 [82]. Therefore, by 

defining the strain tensor as a matrix equation, the strain components can be obtained in the new 

cylindrical coordinate system. 

휀⃡ =
1

2
[∇⃗⃗ �⃗⃗� + (∇⃗⃗ �⃗⃗� )

𝑇
+ ∇⃗⃗ �⃗⃗� ⋅ (∇⃗⃗ �⃗⃗� )

𝑇
] (5) 

∇⃗⃗ �⃗⃗� = [
𝜕

𝜕𝑟
�̂�𝑟

1

𝑟

𝜕

𝜕𝜃
�̂�𝜃

𝜕

𝜕𝑧
�̂�𝑧] [

𝑈𝑟�̂�𝑟
𝑈𝜃�̂�𝜃
𝑈𝑧�̂�𝑧

] =

[
 
 
 
 
 

𝜕𝑈𝑟
𝜕𝑟

𝜕𝑈𝜃
𝜕𝑟

𝜕𝑈𝑧
𝜕𝑟

1

𝑟
(
𝜕𝑈𝑟
𝜕𝜃

− 𝑈𝜃)
1

𝑟
(
𝜕𝑈𝜃
𝜕𝜃

+ 𝑈𝑟)
1

𝑟

𝜕𝑈𝑧
𝜕𝜃

𝜕𝑈𝑟
𝜕𝑧

𝜕𝑈𝜃
𝜕𝑧

𝜕𝑈𝑧
𝜕𝑧 ]

 
 
 
 
 

 

휀⃡𝑖𝑗 = [

휀𝑟𝑟 휀𝑟𝜃 휀𝑟𝑧
휀𝜃𝑟 휀𝜃𝜃 휀𝜃𝑧
휀𝑧𝑟 휀𝑧𝜃 휀𝑧𝑧

] − (𝛼𝑇𝛥𝑇 + 𝛽𝐻𝛥𝐻) [
1 0 0
0 1 0
0 0 1

] (6) 

휀𝑟𝑟 = (
𝜕𝑈𝑟
𝜕𝑟
) +

1

2
(
𝜕𝑈𝑟
𝜕𝑟
)
2

               2휀𝑟𝜃 = 2휀𝜃𝑟 =
1

𝑟
(
𝜕𝑈𝑟
𝜕𝜃

− 𝑈𝜃) + (
𝜕𝑈𝜃
𝜕𝑟

) +
1

𝑟
(
𝜕𝑈𝑟
𝜕𝑟
) (
𝜕𝑈𝑟
𝜕𝜃

) 

2휀𝑟𝑧 = 2휀𝑧𝑟 = (
𝜕𝑈𝑟
𝜕𝑧

+
𝜕𝑈𝑧
𝜕𝑟
)         휀𝜃𝜃 =

1

𝑟
(
𝜕𝑈𝜃
𝜕𝜃

+ 𝑈𝑟) +
1

2𝑟2
((
𝜕𝑈𝑟
𝜕𝜃

)
2

+ 𝑈𝑟
2) 

2휀𝜃𝑧 = 2휀𝑧𝜃 =
1

𝑟

𝜕𝑈𝑧
𝜕𝜃

+
𝜕𝑈𝜃
𝜕𝑧

        휀𝑧𝑧 =
𝜕𝑈𝑧
𝜕𝑧

 

In the above equations, 휀⃡ is the strain tensor and (∇⃗⃗ �⃗⃗� )
𝑇
 is the transposed of the ∇⃗⃗ �⃗⃗�  matrix. 

𝛼𝑇 and 𝛽𝐻 are the thermal expansion and moisture coefficients. The environment temperature 

and humidity differences are expressed by 𝛥𝑇 and 𝛥𝐻. By considering the Hook stress law 

(𝜎𝑖𝑗 = 𝐶: 휀⃡𝑖𝑗), the values of structural stresses in the new cylindrical coordinate system will be 

obtained by defining the function 𝑟 = 𝑓(𝑧). The matrix 𝐶 is the elastic stiffness characteristic 

of the structure material, which is introduced as the following matrix. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


𝐶 =
𝐸(𝑟)

1−(𝜈(�̅�))2

[
 
 
 
 
 
 
 
 
1 𝜈(𝑟) 0 0 0 0
𝜈(𝑟) 1 0 0 0 0

0 0
1−𝜈(𝑟)

2
0 0 0

0 0 0
1−𝜈(𝑟)

2
0 0

0 0 0 0
1−𝜈(𝑟)

2
0

0 0 0 0 0
1−𝜈(𝑟)

2 ]
 
 
 
 
 
 
 
 

 (7) 

In matrix 𝐶, 𝐸 and ν are Young's elasticity modulus and Poisson's ratio coefficient that 

varies along the thickness direction. In other words, the structure material in this study is 

considered as functionally graded material (FGM). The definition of 𝐸(�̅�) and 𝜈(�̅�) can be given 

by the following equations [83–86]. 

𝐸(𝑟) = (𝐸1 − 𝐸2) (
𝑟

ℎ
+
1

2
) + 𝐸2; 𝜈(𝑟) = (𝜈1 − 𝜈2) (

𝑟

ℎ
+
1

2
) + 𝜈2    (−

ℎ

2
≤ 𝑟 ≤

ℎ

2
) (8) 

In the above equations 𝐸1 and 𝜈1 are Young's elasticity modulus and Poisson's ratio 

coefficient on the inner surface of the structure. Also, 𝐸2 and 𝜈2 are mentioned values on the 

outer surface of the structure according to Fig. 10. Parameter 휁 represents the intensity of slope 

variations from internal to external material characterizations. 

In this research, the principle of minimum potential energy has been used to derive the 

governing equations and boundary conditions as the following general relation. 

𝛿𝛱 = 𝛿𝑃 + 𝛿𝑃𝑓 + 𝛿𝑃𝑘1 + 𝛿𝑃𝑘2 = 0 (9) 

𝛿𝑃 = ∫ (∭𝜎𝑖𝑗𝛿휀𝑖𝑗𝑑𝑉
𝑉

)𝑑𝑡
𝑡

0

   𝑖, 𝑗 = 𝑟, 𝜃, 𝑧   (V is the volume) 

𝛿𝑃𝑓 = −∫ (∭(𝑞𝑟𝛿𝑈𝑟 + 𝑞𝜃𝛿𝑈𝜃 + 𝑞𝑧𝛿𝑈𝑧)𝑑𝑉
𝑉

)𝑑𝑡
𝑡

0

 

𝛿𝑃𝑘1 = −
𝛿

2
∫ (∭ 𝜌((

𝜕𝑈𝑟
𝜕𝑡
)
2

+ (
𝜕𝑈𝜃
𝜕𝑡
)
2

+ (
𝜕𝑈𝑧
𝜕𝑡
)
2

)
𝑉

𝑑𝑉)
𝑡

0

𝑑𝑡 
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𝛿𝑃𝑘2 = −∫ (∭−𝜌𝑟(�̇�2)𝛿𝑈𝑟𝑑𝑉
𝑣

)
𝑡

0

𝑑𝑡 

In the above equation, 𝑃 , 𝑃𝑓, 𝑃𝑘1 and 𝑃𝑘2 are the strain energy changes, the energy 

changes due to the application of external loads on the shell, the kinetic energy changes, and 

the energy changes due to the dynamic motion of the structure (in case of dynamic motion of 

the structure), respectively. According to Fig. 10, the volume and area differential 𝑑𝑉 and 𝑑𝐴 

are calculated as follows: 

𝑑𝐴 = 𝑟𝑑𝜃𝑑𝑠, 𝑑𝑉 = 𝑟𝑑𝜃𝑑𝑠𝑑𝑟 (10) 

(𝑑𝑠)2 = (𝑑𝑧)2 + (𝑑𝑟)2 = (𝑑𝑧)2 (1 + (
𝑑𝑟

𝑑𝑧
)
2

) → 𝑑𝑠 = (√(1 + (
𝑑𝑟

𝑑𝑧
)
2

))𝑑𝑧, (11) 

The cross-section profile follows the function 𝑧 = 𝑓(𝑟). Consequently, it can be possible 

to calculate 𝑟 = 𝑔(𝑧) in which 𝑔 is the inverse of function 𝑓 as 𝑔(𝑧) = 𝑓−1. As a result, 𝑑𝐴 

and 𝑑𝑉 will be reformulated in below: 

𝑑𝐴 = 𝑟 (√(1 + (
𝑑𝑔(𝑧)

𝑑𝑧
)
2

))𝑑𝑧𝑑𝜃, 𝑑𝑉 = 𝑟 (√(1 + (
𝑑𝑔(𝑧)

𝑑𝑧
)
2

))𝑑𝑧𝑑𝜃𝑑𝑟, 𝑦(𝑧) =

√(1 + (
𝑑𝑔(𝑧)

𝑑𝑧
)
2

) → 𝑑𝐴 = 𝑟𝑦(𝑧)𝑑𝑧𝑑𝜃, 𝑑𝑉 = 𝑟𝑦(𝑧)𝑑𝑧𝑑𝜃𝑑𝑟 (12) 

The expansion of 𝑃 , 𝑃𝑓, 𝑃𝑘1 and 𝑃𝑘2 in Eq. (9) are presented below: 

𝛿𝑃 = ∫ (∭ (𝜎𝑟𝑟𝛿휀𝑟𝑟 + 𝜎𝑟𝜃𝛿휀𝑟𝜃 + 𝜎𝑟𝑧𝛿휀𝑟𝑧 + 𝜎𝜃𝑟𝛿휀𝜃𝑟 + 𝜎𝜃𝜃𝛿휀𝜃𝜃 + 𝜎𝜃𝑧𝛿휀𝜃𝑧𝑉

𝑡

0
+𝜎𝑧𝑟𝛿휀𝑧𝑟 +

𝜎𝑧𝜃𝛿휀𝑧𝜃 + 𝜎𝑧𝑧𝛿휀𝑧𝑧)𝑑𝑉)𝑑𝑡 = ∫ (∭ (𝜎𝑟𝑟𝛿휀𝑟𝑟 + 𝜎𝑧𝑧𝛿휀𝑧𝑧 + 𝜎𝜃𝜃𝛿휀𝜃𝜃 + 2𝜎𝑟𝜃𝛿휀𝑟𝜃 + 2𝜎𝑟𝑧𝛿휀𝑟𝑧 +𝑉

𝑡

0

2𝜎𝜃𝑧𝛿휀𝜃𝑧) 𝑑𝑉) 𝑑𝑡 = ∫ (∭ (𝜎𝑟𝑟𝑟𝑦(𝑧) ((
𝜕𝛿𝑈𝑟
𝜕𝑟
)+ (

𝜕𝑈𝑟
𝜕𝑟
) (

𝜕𝛿𝑈𝑟
𝜕𝑟
)) + 𝜎𝑧𝑧𝑟𝑦(𝑧) (

𝜕𝛿𝑈𝑧
𝜕𝑧
) +

𝑉

𝑡

0

𝜎𝜃𝜃𝑦(𝑧) ((
𝜕𝛿𝑈𝜃
𝜕𝜃

+ 𝛿𝑈𝑟)+
1

𝑟
((
𝜕𝑈𝑟
𝜕𝜃
) (

𝜕𝛿𝑈𝑟
𝜕𝜃
)+𝑈𝑟𝛿𝑈𝑟)) + 𝜎𝑟𝜃𝑦(𝑧) ((

𝜕𝛿𝑈𝑟
𝜕𝜃

− 𝛿𝑈𝜃)+ 𝑟 (
𝜕𝛿𝑈𝜃
𝜕𝑟
)+
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((
𝜕𝑈𝑟
𝜕𝑟
) (

𝜕𝛿𝑈𝑟
𝜕𝜃
)+ (

𝜕𝛿𝑈𝑟
𝜕𝑟
) (

𝜕𝑈𝑟
𝜕𝜃
))) + 𝜎𝑟𝑧𝑟𝑦(𝑧) (

𝜕𝛿𝑈𝑟
𝜕𝑧
+
𝜕𝛿𝑈𝑧
𝜕𝑟
) + 𝜎𝜃𝑧𝑦(𝑧) (

𝜕𝛿𝑈𝑧
𝜕𝜃

+ 𝑟
𝜕𝛿𝑈𝜃
𝜕𝑧
))𝑑𝑧𝑑𝜃𝑑𝑟)𝑑𝑡

 (13) 

𝛿𝑃𝑓 = ∫ (∭ (𝑞𝑟𝛿𝑈𝑟 + 𝑞𝜃𝛿𝑈𝜃 + 𝑞𝑧𝛿𝑈𝑧)𝑔(𝑧)𝑦(𝑧)𝑑𝑧𝑑𝜃𝑑𝑟𝑉
)𝑑𝑡

𝑡

0
 (14) 

𝛿𝑃𝑘1 = −
𝛿

2
∫ (∭ 𝜌((

𝜕𝑈𝑟

𝜕𝑡
)
2
+ (

𝜕𝑈𝜃

𝜕𝑡
)
2
+ (

𝜕𝑈𝑧

𝜕𝑡
)
2

)
𝑉

𝑑𝑉) 𝑑𝑡
𝑡

0
= −∫ (∭ 𝜌((

𝜕𝑈𝑟

𝜕𝑡

𝜕𝛿𝑈𝑟

𝜕𝑡
) +

𝑉

𝑡

0

(
𝜕𝑈𝜃

𝜕𝑡

𝜕𝛿𝑈𝜃

𝜕𝑡
) + (

𝜕𝑈𝑧

𝜕𝑡

𝜕𝛿𝑈𝑧

𝜕𝑡
))𝑔(𝑧)𝑦(𝑧)𝑑𝑧𝑑𝜃𝑑𝑟) 𝑑𝑡 (15) 

𝛿𝑃𝑘2 = −∫ (∭ −𝜌𝑟(�̇�2)𝛿𝑈𝑟𝑔(𝑧)𝑦(𝑧)𝑑𝑧𝑑𝜃𝑑𝑟𝑣
)

𝑡

0
𝑑𝑡 (16) 

According to the stationary principle of minimum potential energy, potential energy 

variations should be equal to zero. Finally, by summing the effects of 𝛿𝑈𝑟 , 𝛿𝑈𝜃 and 𝛿𝑈𝑧 

variables, the dynamic governing equations of the shell structure with functional cross-section 

can be introduced as the following 3 equations. 

𝛿𝑈𝑟: 𝑔(𝑧)𝑦(𝑧)
𝜕𝜎𝑟𝑟

𝜕𝑟
+ 𝑦(𝑧)

𝜕𝜎𝑟𝜃

𝜕𝜃
+

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝜎𝑟𝑧) + 𝑦(𝑧)(𝜎𝑟𝑟 − 𝜎𝜃𝜃) + 𝑔(𝑧)𝑦(𝑧)𝑞𝑟 =

𝑔(𝑧)𝑦(𝑧)𝜌
𝜕2𝑈𝑟

𝜕𝑡2
− (𝑔(𝑧))

2
𝑦(𝑧)𝜌𝜔2 (17) 

𝛿𝑈𝜃: 𝑔(𝑧)𝑦(𝑧)
𝜕𝜎𝑟𝜃

𝜕𝑟
+ 𝑦(𝑧)

𝜕𝜎𝜃𝜃

𝜕𝜃
+

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝜎𝜃𝑧) + 2𝑦(𝑧)𝜎𝑟𝜃 + 𝑔(𝑧)𝑦(𝑧)𝑞𝜃 =

𝑔(𝑧)𝑦(𝑧)𝜌
𝜕2𝑈𝜃

𝜕𝑡2
 (18) 

𝛿𝑈𝑧: 𝑔(𝑧)𝑦(𝑧)
𝜕𝜎𝑟𝑧

𝜕𝑟
+ 𝑦(𝑧)

𝜕𝜎𝜃𝑧

𝜕𝜃
+

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝜎𝑧𝑧) + 𝑦(𝑧)𝜎𝑟𝑧 + 𝑔(𝑧)𝑦(𝑧)𝑞𝑧 =

𝑔(𝑧)𝑦(𝑧)𝜌
𝜕2𝑈𝑧

𝜕𝑡2
 (19) 

The above partial differential equations give three-dimensional results. Although the 

introduced equations provide accurate 3D results, solving the above equation system itself is a 

big challenge. Also, for structures whose thickness is smaller than other dimensions (even for 

moderately thick structures), there is no need to use 3D analysis, and often plate and shell 
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theories are used, which provide relatively accurate results with a very good approximation. In 

these theories, it is assumed that the strain variations through the thickness are negligible (휀𝑟𝑟 =

0). As can be seen, the displacement vector �⃗⃗�  is general and any kind of displacement field can 

be used in the above equations. In this research, the first-order shear deformation theory (FSDT) 

has been utilized to analyze the shell structure with any desired cross-section. FSDT 

displacement field is considered because of its efficiency and obtaining appropriate results with 

simple formulation has already been proven by many researchers [54, 77 and 82]. But as 

mentioned before, any kind of displacement field can be used in strain equations. The 

displacement field of FSDT for the �⃗⃗�  vector is given by the following equations. 

{

𝑈𝜃(�̅�, 𝜃, 𝑧, 𝑡) = 𝑢0(𝜃, 𝑧, 𝑡) + 𝑟𝜓1(𝜃, 𝑧, 𝑡)

𝑈𝑧(�̅�, 𝜃, 𝑧, 𝑡) = 𝑣0(𝜃, 𝑧, 𝑡) + 𝑟𝜓2(𝜃, 𝑧, 𝑡)

𝑈𝑟(�̅�, 𝜃, 𝑧, 𝑡) = 𝑤0(𝜃, 𝑧, 𝑡)
 (20) 

In the above equations 𝑢0, 𝑣0, 𝑤0 are the transfer displacement functions. 𝜓1 and 𝜓2 are 

the rotation functions around the 𝑧 and 𝜃 axes, respectively. By repeating the computational 

process similar to the previous case (extraction of Eqs. (17–19)) and using the principle of 

minimum potential energy, the 5 governing equations based on FSDT theory will be obtained 

as follows: 

𝛿𝑢0: 𝑦(𝑧)𝑁𝑟𝜃 + 𝑦(𝑧)
𝜕𝑁𝜃𝜃

𝜕𝜃
+

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝑁𝑧𝜃) − 𝑔(𝑧)𝑦(𝑧) (𝐼1

𝜕2𝑢0

𝜕𝑡2
+ 𝐼2

𝜕2𝜓1

𝜕𝑡2
) = 0 (21) 

𝛿𝑣0: 𝑦(𝑧)
𝜕𝑁𝑧𝜃

𝜕𝜃
+

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝑁𝑧𝑧) − 𝑔(𝑧)𝑦(𝑧) (𝐼1

𝜕2𝑣0

𝜕𝑡2
+ 𝐼2

𝜕2𝜓2

𝜕𝑡2
) = 0 (22) 

𝛿𝑤0: 𝑦(𝑧)
𝜕𝑁𝑟𝜃

𝜕𝜃
− 𝑦(𝑧)𝑁𝜃𝜃 +

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝑁𝑟𝑧) +

𝑦(𝑧)

𝑔(𝑧)

𝜕

𝜕𝜃
(𝑁𝜃𝜃

𝜕𝑤0

𝜕𝜃
) −

𝑦(𝑧)

𝑔(𝑧)
(𝑁𝜃𝜃𝑤0) +

𝑦(𝑧)
𝜕

𝜕𝜃
(𝑁𝑧𝜃

𝜕𝑤0

𝜕𝑧
) +

𝜕

𝜕𝑧
(𝑦(𝑧)𝑁𝑧𝜃

𝜕𝑤0

𝜕𝜃
) +

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝑁𝑧𝑧

𝜕𝑤0

𝜕𝑧
) + 𝑔(𝑧)𝑦(𝑧)𝑞𝑟 −

𝐼1(𝑔(𝑧))
2
𝑦(𝑧)𝜔2 − 𝐼1𝑔(𝑧)𝑦(𝑧)

𝜕2𝑤0

𝜕𝑡2
= 0 (23) 
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𝛿𝜓1: 𝑦(𝑧)𝑀𝑟𝜃 − 𝑔(𝑧)𝑦(𝑧)𝑁𝑟𝜃 + 𝑦(𝑧)
𝜕𝑀𝜃𝜃

𝜕𝜃
+

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝑀𝑧𝜃) − 𝑔(𝑧)𝑦(𝑧) (𝐼2

𝜕2𝑢0

𝜕𝑡2
+

𝐼3
𝜕2𝜓1

𝜕𝑡2
) = 0 (24) 

𝛿𝜓2: 𝑦(𝑧)
𝜕𝑀𝑧𝜃

𝜕𝜃
− 𝑔(𝑧)𝑦(𝑧)𝑁𝑟𝑧 +

𝜕

𝜕𝑧
(𝑔(𝑧)𝑦(𝑧)𝑀𝑧𝑧) − 𝑔(𝑧)𝑦(𝑧) (𝐼2

𝜕2𝑣0

𝜕𝑡2
+ 𝐼3

𝜕2𝜓2

𝜕𝑡2
) = 0 (25) 

The definition of stress and moment resultants (𝑁𝑖𝑗 and 𝑀𝑖𝑗  (𝑖, 𝑗 = 𝑟, 𝜃, 𝑧)) and also 

moment of inertia 𝐼𝑖 (𝑖 = 1. .3) in above equations are presented below. 

{
  
 

  
 (𝑁𝑧𝑧, 𝑁𝑧𝜃 , 𝑁𝜃𝜃 , 𝑁𝑟𝜃 , 𝑁𝑟𝑧) = ∫ (𝜎𝑧𝑧, 𝜎𝑧𝜃 , 𝜎𝜃𝜃, 𝜎𝑟𝜃, 𝜎𝑟𝑧)𝑑𝑟

ℎ

2

−
ℎ

2

(𝑀𝑧𝑧, 𝑀𝑧𝜃 , 𝑀𝜃𝜃 , 𝑀𝑟𝜃) = ∫ (𝜎𝑧𝑧, 𝜎𝑧𝜃 , 𝜎𝜃𝜃, 𝜎𝑟𝜃)𝑟𝑑𝑟
ℎ

2

−
ℎ

2

(𝐼1, 𝐼2, 𝐼3) = ∫ 𝜌(1, 𝑟, 𝑟2)𝑑𝑟
ℎ

2

−
ℎ

2

 (26) 

The obtained dynamic governing equations have been solved by using SAPM method. 

The details for SAPM method can be studied in many references [2–3 and 5]. Applying SAPM 

method is very simple and gives accurate results. There are so many advantages that the authors 

decided to use this methodology for solving the set of governing equations (Eqs. (21–25)). 

5. Numerical results 

5.1. Validation of the results 

First of all, the results obtained from the presented formulation should be validated and 

compared with the other available literatures. If the formulation and solving methodology are 

correct, they should give appropriate results. For this purpose, the results of a conical shell 

structure made of FGM material 𝐴𝑙2𝑂3 have been compared with the results of reference [87 

and 88]. The properties of conical structure can be seen as follow: 

𝐸𝑐 = 380 𝐺𝑃𝑎; 𝐸𝑀 = 70 𝐺𝑃𝑎; 𝜈𝑐 = 𝜈𝑀 = 0.3; 휁 = 2 (27) 
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The results of normalized central deflection (�̅� =
𝑤ℎ3𝐸𝑐

𝑞𝑧𝐿
4 ) can be observed in Table 1 for 

different amounts of angle of the semi-vertex of the cone (𝛼) and the length to thickness ratio 

(𝐿/ℎ). As it can be observed, the results of present paper are in a good agreement with the 

results of other references. Consequently, the applied formulation and solution method in this 

research are reliable and give appropriate results. 

Table 1. The normalized central deflection (�̅�) results of a FGM conical shell under 

uniform loading 

𝛼 𝐿/ℎ Reference �̅� 𝛼 𝐿/ℎ Reference �̅� 

11.25° 

10 

ANSYS [87] 0.0195000 

22.5° 

10 

ANSYS [87] 0.024100 

[87] 0.0196000 [87] 0.0242000 

FSDT [88] 0.0200570 FSDT [88] 0.0247490 

GFSDT [88] 0.0200300 GFSDT [88] 0.0247060 

UTSDT [88] 0.0200300 UTSDT [88] 0.0247140 

GUTSDT [88] 0.0199520 GUTSDT [88] 0.0246710 

Present Paper 0.0200664 Present Paper 0.0247586 

20 

ANSYS [87] 0.0088500 

20 

ANSYS [87] 0.0114000 

[87] 0.0088400 [87] 0.0114000 

FSDT [88] 0.0090231 FSDT [88] 0.0161200 

GFSDT [88] 0.0089951 GFSDT [88] 0.0158400 

UTSDT [88] 0.0090271 UTSDT [88] 0.0161700 

GUTSDT [88] 0.0089991 GUTSDT [88] 0.0158900 

Present Paper 0.0090301 Present Paper 0.0161269 

45° 

10 

ANSYS [87] 0.0354000 

60° 

10 

ANSYS [87] 0.0433000 

[87] 0.0356000 [87] 0.0439000 

FSDT [88] 0.0361210 FSDT [88] 0.0442780 

GFSDT [88] 0.0361080 GFSDT [88] 0.0442810 

UTSDT [88] 0.0361080 UTSDT [88] 0.0443500 

GUTSDT [88] 0.0361190 GUTSDT [88] 0.0443540 

Present Paper 0.0361383 Present Paper 0.0442993 

20 

ANSYS [87] 0.0200000 

20 

ANSYS [87] 0.0297000 

[87] 0.0202000 [87] 0.0300000 

FSDT [88] 0.0203510 FSDT [88] 0.0301270 

GFSDT [88] 0.0203300 GFSDT [88] 0.0301290 

UTSDT [88] 0.0203620 UTSDT [88] 0.0301530 

GUTSDT [88] 0.0203410 GUTSDT [88] 0.0301440 

Present Paper 0.0203616 Present Paper 0.0301404 
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5.2. Elliptical structure analysis 

The material specification for numerical analysis can be seen in Table 2 (stainless steel 

304). The material properties for all numerical analyses are the same from now on, however, 

the geometrical properties are different for each problem and will be mentioned in its own 

analysis. 

Table 2. Material properties of the structure for numerical analysis 

Young's elasticity 

modulus (𝐸) (GPa) 

Poisson ratio (𝜈) Density (𝜌) (
𝑘𝑔

𝑚3) 

Thermal expansion 

coefficient (𝛼𝑇) (
1

℃
) 

190 0.29 8000 17.3 × 10−6 

One of the most important advantages of using the equations presented in this research is 

the analysis of elliptical structures. As mentioned earlier, the section obtained from the 

revolving of a function can have any desired shape (Fig. 5). If the cross-sectional equation is 

considered according to the following equation, an ellipse is obtained from the period of the 

function 𝑓(𝑟): 

(
𝑧

𝑏
)
2
+ (

𝑟

𝑎
)
2
= 1 (28) 

The geometrical sizes are 𝑎 = 1.2𝑚; 𝑏 = 1𝑚; ℎ = 0.01𝑚 and the structure under the 

normal uniform loading as 𝑞𝑛 = 5 𝑀𝑃𝑎. The results of the present study and the FEM software 

can be seen in Figs. 11 and 12 for the resulting deformations and the stresses. As can be seen, 

the results are in good agreement with the results obtained from the software, which shows the 

strength of using the analysis presented in this study. Analysis of elliptical structures has always 

been a great challenge for researchers and it is observed that due to the complex relationships 

and the presence of elliptic integrals in the obtained equations, simulation and study of elliptical 

structures is much more complex than other shell structures. However, the comprehensive 
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equations presented in this study have a good ability for the mechanical analysis of elliptical 

structures. 

 

Fig. 11. Deflection results of elliptical shell according to presented analysis in this study 
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Fig. 12. FEM Software results of elliptical shell 

As mentioned before, the analysis of elliptical structure has always been associated with 

many challenges. In the previous conclusion, a comparison between the results obtained in this 

study and the software based on FEM was done and the accuracy of the results was discussed. 

Two other factors influencing the results of an elliptical structure will now be examined. The 

effect of ambient temperature and rotational speed of the elliptical structure on its deformation 

and deflection can be seen in two Figs. 13 and 14. The geometrical and material specifications 

of the structure are the same as Figs. 11 and 12. The horizontal axis of the two graphs in Figs. 

13 and 14 is the dimensionless parameter of the size of the elliptical structure (𝑎/𝑏) (Fig. 5). If 

𝑎 = 𝑏, the elliptical structure will become a spherical structure. The farther the value of 𝑎 is 

from 𝑏, the farther the shape of the resulting structure will be from the spherical case, and the 

greater the geometric asymmetry of the problem. 

According to Fig. 13, it is observed that with increasing ambient temperature, the 

deformation of the structure increases, and also with increasing the dimensionless parameter 

(𝑎/𝑏), it is observed that the deflection of the structure will increase. The mentioned increase 

is almost linearly (with a small difference) in exchange for the increase of the parameter (𝑎/𝑏). 

The slope of the diagram in Fig. 13 will increase with increasing ambient temperature, in other 

words, the higher the ambient temperature, the greater the effect of increasing the size (𝑎/𝑏) on 

increasing the deformation of the structure. 

Fig. 14 shows the effect of the rotational speed of the elliptical structure with the same 

conditions as in Fig. 13. Increasing the rotational speed of the structure will also increase the 

resulting dynamic deformations in the structure. Also, the effect of rotational speed on the high 

speeds of the structure is more important. It can be seen that according to Fig. 14, as the 

rotational speed of the structure increases, increasing the size parameter (𝑎/𝑏) will have a 
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greater effect on the intensity of the increase of deflection results. And the results will have a 

nonlinearly upward trend. 

 

Fig. 13. Deflection results of elliptical structure versus (𝑎/𝑏) parameter for different 

amounts of 𝛥𝑇 
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Fig. 14. Effect of angular rotation speed on deflection results of elliptical structure 

versus (𝑎/𝑏) parameter 

More results can be obtained about elliptical structures according to the relationships 

presented in this study. Due to the comprehensiveness of the basic equations in this research, 

their use to obtain various results for differentiated elliptical structures and can be a good 

reference for researchers who study the mechanical behavior of shell structures in different 

comparisons. 

5.3. Analysis of spherical, conical and functional cone structures 

In this part, three spherical, conical, and functional cone shell structures will be simulated. 

The schematic diagram of the three structures and analysis can be seen in Fig. 15. As can be 

observed, the three structures are common at the beginning and end boundaries and only the 

type of curve is different between them. The results of the present study can be seen for the 

deformations in three Figs. 16 to 18 and the von Mises stresses in Figs. 19 to 21. Also, the 
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results obtained from the software for the three structures analyzed for comparison are shown 

in Figs. 22 to 27. The radius and thickness of spherical structure is 𝑅 = 1𝑚 and ℎ = 0.01𝑚 

respectively. The structures are under the uniform transverse loading 𝑞𝑟 = 5 𝑀𝑃𝑎. By 

comparing the results of the analysis presented in this research with the software results, a 

suitable match between the results can be observed. Other results obtained in this section 

include that the spherical structure is more resistant among the three structures analyzed. In 

other words, the farther away from the spherical structure and the closer we get to the functional 

cone, the resistance decreases. Sufficient confidence has now been obtained in the accuracy and 

precision of the results and the effect of other parameters on the results should be examined. 

 

Fig. 15. Schematic view of spherical, conical and functional shell structures 
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Fig. 16. Deflection of spherical shell structures 

 

Fig. 17. Deflection of conical shell structures 
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Fig. 18. Deflection of functional shell structures 

 

Fig. 19. von Mises stress of spherical shell structures 
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Fig. 20. von Mises stress of conical shell structures 

 

Fig. 21. von Mises stress of functional shell structures 
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Fig. 22. Deflection FEM results of spherical shell structures 

 

Fig. 23. Deflection FEM results of conical shell structures 
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Fig. 24. Deflection FEM results of functional shell structures 

 

Fig. 25. von Mises FEM stress results of spherical shell structures 
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Fig. 26. von Mises FEM stress results of conical shell structures 

 

Fig. 27. von Mises FEM stress results of functional shell structures 

5.4. Investigation of effective parameters 
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As mentioned earlier, the basic equations introduced in this study are generalized and are 

extracted in a dynamic state. One of the important and influential factors in the dynamic analysis 

of a shell structure is the effect of the rotational speed of the structure on its strength and also 

the deformations that occur in it. Other factors affecting the results will be discussed in the 

following numerical results. For the three structures discussed above, if they rotate around the 

central axis of the rotation, it is expected to be increased the deformations created in them and 

decreased the strength of the structure. 

Figs. 28 and 29 show the dimensionless deflections, as well as the dimensionless von 

Mises stresses in the structure relative to the changes in rotational velocity. Hereafter, the 

structure's geometrical and material specifications are the same as the previous analysis in Figs. 

16–21. In fact, 𝑤𝜔 represents the amount of deflection created in a rotating structure with a 

rotational velocity 𝑛 relative to the state in which the structure is considered stationary and 

without rotation. The same is true for von Mises dimensionless stresses. It is observed that with 

increasing rotational speed 𝑛, the values of 𝑤𝜔 and 𝜎𝜔 increase with an accelerating slope and 

ascending. The changes are nonlinear, in other words, the higher the rotational speed, the greater 

the effect on productivity and dimensionless stress. 

𝑤𝜔 =
𝑤𝑛≠0

𝑤𝑛=0
; 𝜎𝜔 =

𝜎𝑛≠0

𝜎𝑛=0
 (29) 

In the case of the three spherical, cone, and functional cone structures, the effect of the 

rotational speed on the results in the spherical structure will be greater than the rest of the 

structures. At the beginning of the changes, it is observed that the results for all three structures 

will be almost the same with a good approximation. But as the speed of the rotation increases, 

the results diverge. It is noteworthy that the results for rotational velocity changes for both 

spherical and functional cone structures are almost identical and will differ slightly. However, 

at a rotation speed of about 3000 𝑟𝑝𝑚, it is observed that the dimensionless deflection for the 
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spherical structure is about 2.6, which is about 2.1 for the conical and functional conical 

structures. The difference between the two results shows a reduction of about twenty percent. 

Another important point is that the results for Figs. 28 and 29 show almost the same behavior. 

In other words, the effect of rotational speed will be the same for dimensionless deflection 

results and dimensionless stresses. In general, according to the above, it can be concluded that 

the rotational speed of a structure has a significant effect on increasing the deformation of the 

structure as well as reducing its strength, which must be considered to prevent it. 

 

Fig. 28. Dimensionless deflection results (𝑤𝜔) versus the angular rotation speed (𝑛) for 

spherical, conical and functional shell structures 
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Fig. 29. Dimensionless von Mises results (𝜎𝜔) versus the angular rotation speed (𝑛) for 

spherical, conical and functional shell structures 

In order to increase the accuracy of the results, especially in the case of large 

deformations, nonlinear analysis has been used in this study. Although the use of nonlinear 

analysis increases the accuracy of the results, in a situation where the results of nonlinear and 

linear analysis will not be much different and given that the speed of calculations in nonlinear 

analysis will be much higher than linear analysis, Linear results can be used with high accuracy. 

In the previous section, the effect of the rotational speed of the structure on the results of 

deformation and stress of von Mises was investigated. Now, considering the conditions of the 

previous problem, the results of both linear and nonlinear analyzes for deformations can be seen 

in Fig. 30. The dimensionless parameter 𝑅𝑠 represents the ratio of the results of the deformation 

in the nonlinear analytical mode to the linear analysis (𝑅𝑠 =
𝑤𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

𝑤𝑙𝑖𝑛𝑒𝑎𝑟
). As can be expected, the 

results of the nonlinear analysis should be less than the results of linear analysis. Therefore, the 
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change interval of 𝑅𝑠 will be 0 < 𝑅𝑠 < 1. According to Fig. 30, it can be seen that the changes 

of 𝑅𝑠 for the functional cone structure will be more severe than the other two structures. 

Comparing the two spherical and conical structures, as can be seen, nonlinear analysis is more 

important for the spherical structure with a small difference (by increasing the rotational speed 

of the structure). In the case of the functional cone structure, at the beginning of the rotational 

velocity changes, the slope of the changes is gentle and descending, and from the rotational 

velocity 𝑛 = 1000 𝑟𝑝𝑚 onwards, the slope of the changes suddenly experiences a sharp drop. 

The difference between the results of linear and nonlinear analysis at the rotational speed 𝑛 =

3000 𝑟𝑝𝑚 for the structure of a functional cone is about ten percent. This value is significant 

and if the linear analysis is used, there will be a lot of error in the results and there is no choice 

but to use nonlinear analysis. Even at zero rotational velocities, and when the structure is static 

and loaded statically, about 3.5% of the difference between the results of linear and nonlinear 

analyzes is observed in the case of a functional cone structure. Of course, according to Fig. 30, 

the remarkable result is that in the case of two spherical and conical structures, according to the 

loading conditions of the problem, the results of the two linear and nonlinear analyzes are not 

much different (a topic mentioned earlier) and due to simplicity in the linear analysis, the results 

of linear analysis can be used, the results to which can be obtained faster. The results obtained 

in this section can be expected in advance because, as mentioned earlier and concluded, the 

deformation of the functional cone structure is much greater than the other two structures 

(spherical and conical) under the same loading conditions and due to large deformations created 

in it, the results of two linear and nonlinear analyzes for functional cone must be more distant 

from each other than the other two structures, which is the same conclusion in this section 

according to Fig. 30. 
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Fig. 30. Nonlinear to linear results of deflection (𝑅𝑠) versus the angular rotation speed (𝑛) for 

spherical, conical and functional shell structures 

Environmental factors such as ambient temperature have a significant effect on 

determining the mechanical strength of a structure, which is expected to decrease with 

increasing ambient temperature due to increased deformation of the structure from its resistance 

to mechanical loads. Of course, this issue should be carefully considered in the form of different 

structures. Figs. 31, 32 for this purpose show the dimensional changes and dimensionless von 

Mises stress for the three spherical, conical and functional cone structures in exchange for 

increasing the temperature difference. It is observed that with increasing the temperature 

difference of the system, the results of dimensionless deflection and stress increase. Here, 

dimensionless deflections and stresses indicate those in the case where there is a temperature 

difference in the structure compared to the case where the temperature difference is zero. It is 

observed that the changes in both Figs. 31, 32 are linear, although in the case of the functional 

cone structure between the two temperatures 100 < 𝛥𝑇 < 200 °𝐶 there is a slight deviation 
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from the linear state, the slope of the changes will be similar to 𝛥𝑇 < 100 °𝐶 (A slight increase 

in slope is observed). By comparing the results of the three structures in question, it is observed 

that the ambient temperature has the greatest effect on the spherical structure and has the least 

effect on the functional cone structure. Therefore, in spherical structures, the effects of 

temperature changes should be considered more. For example, at a temperature difference of 

400 °𝐶, the temperature of the environment affects deformations created in the spherical 

structure about 7 times compared to 𝛥𝑇 = 0, which is about 5 times in the case of the conical 

structure and in relation to the functional conical structure, it is about 3.5 percent increase in 

deformation rate. Dimensional von Mises stress changes relative to dimensionless deflections 

(Fig. 32 versus Fig. 31) show a reduction of approximately 50%. In other words, increasing the 

ambient temperature causes the structure to deform, which at the same time increases the stress 

in the structure. But the increase in deformation will be about twice as much as the increase in 

thermal stresses created in the structure. 

 

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

0 50 100 150 200 250 300 350 400

w
t

ΔT (°𝐶)

Functional

Conical

Spherical

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 31. Nondimensional thermal deflection (𝑤𝑡) versus the temperature differences (𝛥𝑇) for 

spherical, conical and functional shell structures 

 

Fig. 32. Nondimensional thermal stress (𝜎𝑡) versus the temperature differences (𝛥𝑇) for 

spherical, conical and functional shell structures 

In this study, the effects related to the functional grading property of the composite 

material (FGM) have also been considered. The functional grading of the material from ceramic 

to metal within the thickness of the structure is considered. The metal and ceramic amounts of 

the Young's elasticity modulus are assumed as 𝐸𝑀 = 190 𝐺𝑃𝑎 and 𝐸𝑐 = 0.85 𝐺𝑃𝑎 and the 

Poisson's ratio for both of the ceramic and metal properties are the same as 𝜈𝑐 = 𝜈𝑀 = 0.29. 

Figs. 33, 34 show the dimensionless deflections and stresses of von Mises with respect to the 

increase of the 휁 parameter, which indicates the intensity of the changes from the ceramic to the 

metal state in the FGM material. Figs. 33, 34 show the mentioned effects for different values of 

temperature changes, which are observed (according to Fig. 33) by increasing the 휁-parameter, 
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first the dimensionless deflection 𝑤  increases with a steep slope and from the value of 휁 = 10 

onwards, the changes of 𝑤  will be accompanied by a gentle slope and the intensity of the 

changes will decrease and practically increasing the value of 휁 will no longer affect the increase 

of 𝑤 . 

𝑤 =
𝑤𝜁≠0

𝑤𝜁=0
; 𝜎 =

𝜎𝜁≠0

𝜎𝜁=0
 (30) 

The behavior of the structure (here considered as spherical structure) shows almost a trend 

of change in exchange for different temperature differences. However, it is observed that as the 

temperature difference increases, the dimensionless deflections value of 𝑤  will decrease. Of 

course, the decrease in 𝑤  in exchange for the increase in 𝛥𝑇 is not linear and is accompanied 

by a decrease (because the decrease in 𝑤  from 𝛥𝑇 = 0 to 𝛥𝑇 = 100 °𝐶 is approximately equal 

to the decrease in 𝑤  from 𝛥𝑇 = 100 °𝐶 to 𝛥𝑇 = 300 °𝐶). In other words, with increasing the 

same values of the 𝛥𝑇, the rate of decrease of the 𝑤  parameter is not the same. The contents 

of the diagrams in Fig. 34 are exactly the opposite of Fig. 33. In other words, the value 휁 for 

dimensionless von Mises stress 𝜎  (the ratio of von Mises stress for 휁 ≠ 0 to the stress for the 

value 휁 = 0) will decrease and the decreasing value of 𝜎  for a larger temperature difference 

(here 𝛥𝑇 = 300 °𝐶) will be more severe. It is important to note that the dimensionless stress 𝜎  

is almost equal to a unit with a very small difference of 휁 for two values of temperature 

difference 𝛥𝑇 = 0 and 𝛥𝑇 = 100 °𝐶. In other words, it can be said that the von Mises stress in 

these two cases for different values of the parameter 휁 is equal to the von Mises stress of the 

structure in the case that 휁 = 0. It can be said that the stresses created in the FGM structure for 

the low-temperature difference are independent of the value of 휁 and the only difference 

between the results is obtained when the structure is exposed to an environment with high-
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temperature differences, in which case the thermal stresses created in the structure will be 

impressive. 

 

Fig. 33. Nondimensional deflection (𝑤 ) versus the increase of 휁 parameter in FG material for 

different temperature differences (𝛥𝑇) 
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Fig. 34. Nondimensional von Mises stress (𝜎 ) versus the increase of 휁 parameter in FG 

material for different temperature differences (𝛥𝑇) 

In general, countless structures can be studied using the basic equations mentioned in this 

study and also the effect of factors affecting the problem that can be very diverse. The main 

advantage of the basic equations presented in the current study is the ability to analyze any type 

of shell structure with different geometries, which neutralizes the researchers' use of coordinate 

systems and the relevant formulation of each coordinate system, and any type of analysis can 

be entered in this research and obtained the specific results of those conditions. 

6. Conclusions and remarks 

In this research, a general solution and comprehensive formulation for mechanical 

dynamic analysis of different types of shell structures with any desired geometry are presented. 

Therefore, it is no longer necessary to use the system of different coordinates related to different 

types of geometry, and with a formula system that is partial differential equations, any shell 
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structure can be examined mechanically. The cross-section of the shell structure is considered 

as an arbitrary function with any relation as 𝑧 = 𝑓(𝑟). This arbitrary function rotates around the 

z-axis (the angle of rotation is considered from zero to 2𝜋) and a shell structure forms. The 

governing equations are obtained using the principle of minimum potential energy and are 

solved by the efficient SAPM method. The most important parts of this research are the 

following: 

 Analysis of any shell structure with a variety of geometric shapes. 

 Analysis of the elliptical structure using the equations presented in this study, 

which previously the analysis of this type of structures has been associated with 

many challenges. 

 Nonlinear analysis has the most impact on the functional shell structure between 

three spherical, conical, and functional structures. 

 Thermal analysis of various shell-shaped structures has been investigated and it is 

concluded that spherical structure will be affected more by thermal loads. 

 The dynamic effects on the analysis are considered and the dynamic loads created 

by the rotation of the structure are investigated. 
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