
On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube 

Mohammad Malikan1, Victor A. Eremeyev1,2* 

1Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental 

Engineering, Gdansk University of Technology, 80-233, Gdansk, Poland 

2Don State Technical University, Gagarina sq., 1, Rostov on Don 344000, Russia 

*Corresponding author: victor.eremeev@pg.edu.pl, eremeyev.victor@gmail.com

Acknowledgements 

V.A.E acknowledges the support of the Government of the Russian Federation (contract No.

14.Z50.31.0046).

Abstract 

In order to describe the behavior of thin elements used in MEMS and NEMS, it is essential to 

study a nonlinear free vibration of nanotubes under complicated external fields such as magnetic 

environment. In this regard, the magnetic force applied to the conductive nanotube with piezo-

flexomagnetic elastic wall is considered. By the inclusion of Euler-Bernoulli beam and using 

Hamilton’s principle, the equations governing the system are extracted. More importantly, a 

principal effect existed in a nonlinear behavior such as axial inertia is thoroughly analyzed which 

is not commonly investigated. We then consider the effects of nanoscale size using the nonlocal 

theory of strain gradient (NSGT). Hereafter, the frequencies are solved as semi-analytical 

solutions on the basis of Rayleigh-Ritz method. The piezo-flexomagnetic nanotube (PF-NT) is 

calculated with different boundary conditions. In order to validate, the results attained from the 

present solution have been compared with those available in the open literature. We realized that 

the nonlinear frequency analysis is so significant when a nanotube has fewer degrees of freedom 

at both ends, and its length is long. 
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1. Introduction 

Nano-electro-mechanical systems (NEMS) are the technology of very small nanometer-

sized machines. NEMS is a step ahead of micro-electro-mechanical systems (MEMS) and 

usually encompasses a combination of transistors (electric), sensors and motors 

(mechanical). Due to its very small size, NEMS is expected to have a major impact on 

large sections of science and technology and eventually replace MEMS [1].  

Contemporarily, a discovered and explored phenomenon known in the elements 

of electro-mechanical coupling with taking magnetic effect is flexomagneticity. Uniform 

strain makes magnetic polarization, and the response is reflected by piezomagneticity. 

This occurrence exists only in dielectrics with non-centrosymmetric structures. A lot of 

studies showed that a non-zero magnetic field can be induced by the inclusion of non-

uniform strains. Flexomagnetic (FM) effect defines this type of coupling of an induced 

magnetic field and distribution of the non-uniform strain [2-4]. Flexomagneticity in 

comparison with piezomagneticity, demonstrates the coupling features of induced 

magnetic polarization and strain gradient. Flexomagneticity becomes a remarkable and 

overcoming influence when the material size is scaled down to nanoscale, although this 

effect is meager and negligibly small on macro scale. Therefore, a further conceptual 

understanding of the FM on NEMS is necessary. 

In a general understanding through FM, during polarization in the material, strain 

gradient induces magnetic field and magnetic field gradient induces the strain. The former 

is named as the direct impact and the later one as the converse effect. The FM already is 

on the novel threshold of its research.  

To predict the mechanical response of NEMS, a great deal can be observed done 

on piezomagneticity during the contemporary decade [5-20], though the literature on FM 

is much less developed, see, e.g., [21-23]. The analysis of nanomaterials containing FM 

was commenced by Sidhardh and Ray [21] by surveying a cantilever nanoscale size 

piezomagnetic Euler-Bernoulli beam subjected to transverse static loading. The surface 

elasticity was developed on the model. Moreover, both converse and direct magnetic 
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effects were discussed. Zhang et al. [22] extended FM studies to asses bending analysis 

of a small scale piezomagnetic Euler-Bernoulli beam under several conditions of 

boundaries. They investigated both reverse and direct FM. Malikan and Eremeyev [23] 

modeled the linear dynamic conditions for a nanotube involving FM and evaluated scale 

effect on the basis of stress-driven nonlocal elasticity. The size-dependency behavior of 

FM was corroborated by their findings as well. 

As far as very limited studies are found on FM, one can acquisition many 

opportunities to account for such the effect. This research intends to expand the FM on a 

nanosize Euler-Bernoulli beam. More importantly, the vibration problem is described 

with respect to nonlinear strains of Lagrangian based von Kármán assumptions [24-33]. 

It is worth to mention that the effect of axial inertia may become important in parts of 

vibrating machines. So, this effect is estimated as well. Plus, size-dependence is modeled 

with exerting nonlocal strain gradient theory (NSGT). In view of nonlinear partial 

differential equations, the analytical solution methods are unable to give a solution. By 

virtue of this, numerical solution techniques should come in hand, such as differential 

quadrature method (DQM) [34, 35], finite difference method (FDM) [36], finite element 

method (FEM) [37, 38], mesh free method [39], dynamic relaxation method (DRM) [40], 

Homotopy method [41], etc. These techniques take a long time to give the numerical 

results due to their massive computations. Amidst solution approaches, semi-analytical 

techniques require lower time to grant the numerical outcomes. The Rayleigh-Ritz 

technique is a one that based on a few convergence rate solves the equations with shorter 

formulation. On the basis of very general assumptions, the Rayleigh-Ritz shows its 

advantage. In terms of the approximation features, this method produces optimal 

solutions. Thus, the solution process is here accomplished by means of Rayleigh-Ritz 

technique. Thereby, a validation section is provided to render the correctness of the 

formulation. Thereupon, numerical results are reported by creating different pictorial 

figures for momentous parameters. 

2. Mathematical model 

Let us consider a typical nanotube of length L, of thickness h and of diameter d. Figure 1 

shows a schematic image of the considered structure [42]. 
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In what follows we consider the Euler-Bernoulli beam model for the considered 

nanotube. Moreover, we restrict ourselves to in-plane deformations. So, the middle 

neutral beam line coincides with the x-axis whereas z-axes relates to the transverse 

direction. The corresponding Cartesian displacements are denoted as u1 and u3, 

respectively, see [43-46] for detail. The axial and transverse displacements of the middle 

neutral line are denoted by u and w, respectively. So, the kinematical relations are given 

by  

   
 

1

,
, , ,

t
u x  z t t

w x
u x z

x


 


                                                                                    (1) 

   3 , ,,u tz tx w x                                                                                                        (2) 

Based on the von Kármán nonlinear strains, in the Lagrangian strain formula, the 

nonlinear term related to u is adequately small and can be ignorable. Accordingly, the 

nonlinear components of the axial strain and its gradient are calculated as   

22

2

1

2
xx

u w w
z

x x x


   
    
   

                                                                                          (3) 

2

2

xx
xxz

w

z x




 
  

 
                                                                                                       (4) 

where xxz  means gradient of the elastic strain. Following [21, 22] the one-dimensional 

stress-strain magneto-mechanical relations are prepared as  

11 31xx xx zC q H                                                                                                        (5) 

31 31xxz xxz zg f H                                                                                                     (6) 

33 31 31z z xx xxzB a H q f                                                                                           (7) 

where xx  and xxz  are the stress and hyper stress,  zB  and zH  are  the magnetic  flux 

and the magnetic field, respectively, and material parameters are introduced. In particular, 

11 1111C C  is the elastic modulus, 31 3311f f  denotes the component of the fourth-order 

flexomagnetic coefficients tensor, 33a  represents the component of the second-order 

magnetic permeability tensor, 31 311q q  depicts the component of the third-order 

piezomagnetic tensor, and 31 311311g g  is the component the sixth-order gradient 

elasticity tensor. 
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In order to precisely extract the particularized equation of piezo-flexomagnetic 

type nanotubes (PF-NTs), the variational formulation can be expanded adequately on the 

base of Hamilton’s principle as 

 
2

1

0

t

t

K U W dt                                                                                                   (8) 

in which δ denotes the symbol of variation. In (8), the first variation of the total internal 

of the beam is equal to zero, and the other factors are the kinetic and strain energies (K 

and U) and the created work by outer forces ( W). 

The first variation of the strain energy can be written in an integral form according 

to magneto-mechanical coupling as  

 xx xx xxz xxz z z

V

U B H dV                                                                           (9) 

Using assumed 1D kinematics and integrating by parts, we can transform (9) in to a sum  

1 21 2

Mag MagMech Mech
U UU U

U             

where 

1

2 2

2 2
0

L
Mech x x xxz
U x

N M Tw
u w N w w dx

x x xx x
    

     
             

                     (10a) 

1

2

0 2

hL
Mag z
U

h

B
dzdx

z
 




   

                                                                                      (10b) 

2

0

L

Mech x xxz
U x x xxz x

M Tw w w
N u M T N w w w

x x x x x

 
    

    
             

       (11a) 

 
2

/2

0 /2

h
L

Mag
zU

h

B dx 



                                                                                            (11b) 

and we also have introduced normal axial force, moment and hyperstress as follows 

/2

/2

h

x xx

h

N dz


                                                                                                            (12) 

/2

/2

h

x xx

h

M zdz


                                                                                                          (13) 
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/2

/2

h

xxz xxz

h

T dz


                                                                                                           (14) 

In our case the work of external forces has the functional   

2
0

0

1

2

L

x

w
W N dx

x

 
   

 
                                                                                               (15) 

which first variation has the form 

0

0

L

x

w w
W N dx

x x




  
   

  
                                                                                         (16) 

where 0
xN  presents the initial in-plane axial force. 

In addition in (11b) we introduced the magnetic potential  . The relationship 

between magnetic potential and magnetic field component can be given by 

0zH
z


 


                                                                                                             (17) 

By accounting a reverse flexomagnetic state for a closed circuit, one can attribute the 

following conditions 

, 0
2 2

h h
 

   
        
   

                                                                                    (18a-b) 

in which the potential on the top surface as a result of the magnetic field is symbolized 

by  . The change of the magnetic potential along the thickness of the nanotube and then 

the component of the magnetic field can be feasible by the use of Eqs. (7), (10b), (11b), 

(17), and (18) [21, 22] 

2 2
231

2
332 4 2

    
             

q h w h
z z

a hx
                                                                      (19) 

2
31

2
33

z

q w
H z

a hx


 


                                                                                                  (20) 

Thereafter, Eqs. (5)-(7) on the basis of Eqs. (19) and (20) can be expanded as 

2 2
33

31 31 2

1

2
z

au w w
B q f

x x hx

    
     

     

                                                               (21) 

2
31 31 31

31 2
33

xxz

q f z fw
g

a hx




  
    

 

                                                                         (22) 
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2 2 2
31 31

11 11 2
33

1

2
xx

q qu w w
C z C

x x a hx




      
                 

                                            (23) 

which are magnetic induction, the component of higher-order moment stress tensor and 

the component of stress field, respectively. 

Therefore, magneto-mechanical stress resultants (Eqs. (12)-(14)) can be re-written 

as 

2

11 31

1

2


   
    

    
x

u w
N C A q

x x
                                                                             (24) 

2 2

31
11 2

33

x z

q w
M I C

a x

  
   

 
                                                                                          (25) 

2

31 312xxz

w
T g h f

x



  


                                                                                               (26) 

where 2

z
A

I z dA   is dedicated for area moment of inertia.  

According to Eq. (24), axial stress resultant involves mechanical and magnetic 

parts. Thus, the magnetic axial stress resultant can be presented as 

31

MagN q                                                                                                                 (27) 

where we suppose the above value as axial magnetic force acted on both ends of the 

nanotube (due to longitudinal magnetic field), hence 

0 M
x

agN N                                                                                                                  (28) 

The kinetic energy can be associated with the nanotube as follows 

 
22

311

2 A

uu
K z dAdz

t t


    
     

      
                                                                   (29) 

or with (1) and (2) as  

 

2 221

2 A

u w w
K z z dAdz

t x t t


                   
                                                       (30) 

Finally, the first variational schema of kinetic energy would be 

2 3 3 4 2

0 1 1 2 02 2 2 2 2 2A

u w u w w
K I u I u I w I w I w dA

t x t x t x t t
     

     
      

        
  (31) 
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where    2 2
0 1 2 2
, , 1, ,

h

h
I I I z z z dz


   is depicted for the mass moments of inertia. 

The corresponding magneto-mechanical governing equations can be derived by imposing 

Eq. (8) as 

2 3

0 12 2

xN u w
I I

x t x t

  
 

   
                                                                                           (32) 

2 2 2 3 4

0 1 22 2 2 2 2 2

x xxz
x

M T w w u w
N I I I

x x x x t x t x t

       
     

         
                                  (33) 

Due to their premier chemical, electrical and mechanical properties, nanostructured elements 

such as nanobeams, nanotubes, nanoshells, and nanosheets are customarily used as 

components in nano-electro-mechanical devices. Therefore, accurate prediction of the 

vibrational characteristics of nanostructures is essential for engineering and production 

design. On the other hand, classical mechanic theory cannot predict the size-effect at the 

nanoscale. At the nanoscale, size-effects became important and even dominated. Both the 

experimental results and the results of the molecular dynamics simulation show that the size-

effect on the mechanical properties of materials is extraordinary and meaningful when the 

dimensions of these structures are scaled down. To tackle this problem, there can be found 

three methods proposed for analyzing nanostructures, namely atomic mechanics [47, 48], 

atomic-continuum mechanics (multiscale methods) [49, 50] and continuum mechanics [51]. 

However, the third method has a lower computational cost than the previous two methods. 

In this research, the theory of non-classical continuum mechanics is utilized. It should be 

noted that this theory itself is divided into several sub-theories. Some researchers have used 

couple stress theories to examine the effect of scale [52-57], others have employed Eringen’s 

nonlocal theory [58-64], some have utilized the theory of first and second strain gradient 

elasticity [65-68], and some other researchers have exerted a combination of these theories. 

They have merged and incorporated more up-to-date theories, such as the nonlocal theory 

of strain gradient [69], or the stress-driven nonlocal elasticity theory [70, 71]. Some also 

have developed Eringen’s nonlocal theory [72, 73]. In this study, the nonlocal theory of 

strain gradient is used, which may simulate more accurate the mechanical behavior of 

nanostructures in continuous models. The nature of this theory is based on two principles: 

first, stress at any point is a function of strain at the same point and also in all parts of the 
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body, which is known as the nonlocal section; and second, strain gradients in a material 

particle are substantial which this part is well-known as gradient section. Researchers in the 

field of nanomechanics of continuous models have significantly moved toward this theory 

in recent years and have benefited from it [74-82]. 

In this section, the nonlocal elasticity model of strain gradient for the PF-NT is 

expanded in a general form as follows [69, 83-85]: 

2 22 2 2
2 31 31

11 112 2 2

33

1
1 1

2

NonLocal

xx

q qu w w
l C z C

x x x x a x h


 

             
              

              

 (34) 

where  l nm  is the gradient parameter and 0l   establishes non-zero strain gradient into 

the model; and  2nm  allocates nonlocality. Noted that    
2 2

0nm e a   in which 
0e  

and a  are two small scale factors that determine the nonlocal parameter. It is germane to 

note that both factors are dependent on the nature of the model and physical conditions 

and cannot be material constants [86, 87]. This means they are not a constant value for 

each material something like elasticity modulus. 

The effect of small scale on the stress resultants can be implemented by plugging 

Eq. (34) to Eqs. (24)-(26) as 

22 2
2

11 312 2

1
1

2

x
x

N u w
N = l C A q

x x x x
 

        
        

         

                                        (35) 

2 22 2
2 31

112 2 2

33

1x
x z

M q w
M = l I C

x x a x


      
      

       

                                                   (36) 

2 2 2
2

31 312 2 2
1 
    

      
    

xxz
xxz

T w
T l g h f

x x x
                                                      (37) 

Note that due to lack of a third additional equation, the small scale effects for Eq. (37) are 

omitted. Eqs. (35) and (36) with respect to Eqs. (32) and (33) can be simplified as  

3 4

0 12 2 2

2 3 2 2 3
2

11 313 2 2 3

1

2

x

u w
N = I I

x t x t

u w u w w w w
C A l q

x x x x x x x





  
 

    

         
        

          
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2 2 2 3 4
0

0 1 22 2 2 2 2 2

2 2 4
231

11 2 4

33

xxz
x x

z

T w w u w
M = N I I I

x x t x t x t

q w w
I C l

a x x


     

     
       

   
    

   

                                        (39) 

In this paper, we discuss PF-NT with reference to homogeneity in the material; 

therefore, 1I  will disappear. 

In the case of a nonlinear conservative system, we can consider nonlinear 

oscillations as follows. First, let us note that in this case we have non-harmonic 

oscillations, that is      1, cosu x t v x t , and      2, cosw x t v x t  in general. 

Nevertheless, for conservative systems we have periodic solutions as 

     1 1, , ,u x t v x t v x t T                                                                                      (40) 

     2 2, , ,w x t v x t v x t T                                                                                    (41) 

where T is a minimal period. We replace T using the relation 2T    in which   is 

frequency. Moreover, 1v  and 2v  are the vibration amplitudes.  

The following change of variable t   can be made. In this case, we get 

1 1v v

t




 


 
                                                                                                                (42) 

2 2v v

t




 


 
                                                                                                               (43) 

Thus, strain and kinetic energies can be written in the framework of below 

22

1 2 2

2

0

1 1

2 2

L

xx

v v v
U z dx

x x x

      

     
       

                                                                (44) 

22 2 2
2 21 2 2

0 2

0

1

2

L
v v v

K I I dx
x

 
  

          
                      
                                             (45) 

2
0 2

0

1

2

L

x

v
W N dx

x

 
   

 
                                                                                              (46) 

As approximate solutions we can use  

   1 1, cosv x V x                                                                                                  (47) 

   2 2, cosv x V x                                                                                                 (48) 
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Then integrating by time from the obtained equation over (0, 2π) will exclude the 

time from the equations. 

Note that in the following the real part of frequency is considered only. Finally, 

putting Eqs. (37)-(39) into Eqs. (44)-(46), then connecting Eqs. (44)-(46) together (

0K U W   ) and imposing Hamiltonian gives the characteristic equation of frequency 

of the PF-NT which can be shortened and simplified as below 

      2

1 2 0M K X X K X                                                                               (49) 

in which 1 2K , K ,and M  are coefficients related to stiffness and mass, respectively, and 

1

2

V
X

V

 
  
 

. 

3. Rayleigh-Ritz approach 

To catch a general solution for the aforesaid nonlinear equation (Eq. (49)), the analytical 

solutions are mostly incapable and restricted to get a solution. Moreover, numerical 

methods consume a large time to present a solution [88, 89]. On the other side, semi-

analytical techniques, e.g., the Rayleigh-Ritz method presented its simplicity and speed 

of solving to compute the eigenvalue problems that existed in engineering problems [90-

94]. This method in what follows will be indicated. 

   1

1

N

j j

j

V x a x


                                                                                                     (50a) 

   2

1

N

j j

j

V x b x


                                                                                                    (50b) 

in which N denotes a number of considered base elements and will determine the 

convergence to the exact solution, ja  and jb  are the unknown variables to be determined 

and, j  and j  denote the basic mode shapes demonstrated as below 

    j jx f T x                                                                                                        (51a) 

   j jx f T x                                                                                                        (51b) 

where 
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1
x x

f
L L

 



   
     
   

                                                                                                 (52) 

in which   and   associates an exponent to convey various boundary conditions (BCs) 

as seen in Table 1. Here SS, CS, CC denote the simply supported – simply supported, 

clamped-simply supported, and clamped–clamped BCs, respectively. Other polynomial 

base function is defined as 

1j

jT x                                                                                                                       (53) 

The dedicated kinematic and nonlocal strain gradient constitutive boundary 

conditions can be expressed by Table 2 [95-98] 

Herein, by means of the simple solution of the quadratic polynomial equation (Eq. 

(49)), the results of nonlinear frequency can be determined. The positive values are 

considered only. 

4. Numerical results 

4.1. Results’ accreditation 

In this subsection in order to validate the model and the proposed technique, Eq. (49) will 

be reduced to a simple case to receive the validation. To achieve the simple case, we avoid 

the strain gradient effect, piezomagnetic and FM properties of the problem; however, we 

take the nonlocality into account. To do this, on the basis of Rayleigh-Ritz formulation, 

the simple case can be converted into two subcases, namely nonlinear and linear parts as 

shown by Eq. (54) and (55). In addition to these, we also investigate the results of the 

Navier solution technique for this simple case as illustrated by Eq. (56). Furthermore, in 

order to identify the accuracy of the present Rayleigh-Ritz formulation, a reference is 

dedicated as [99] and the numerical comparison is tabulated by Table 3. It is to be noted 

that here N=5 as [93, 100]. 

 Rayleigh quotient based on the nonlinear strains and simple case: 

22 22

2 1 2
11 112

0 02

22 2 2
2 2 2 2

0 2 2 0 2 22 2

0

1

2

L L

z

NL
L

V V V
C I dx C A dx

x x x

V V V
I V I I V I dx

x x x





     
     

       


      
                

 



                                     (54) 
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 Rayleigh quotient based on the linear strains and simple case: 

2
2

2
11 2

2 0

22 2 2
2 2 2 2

0 2 2 0 2 22 2

0

L

z

L
L

v
I C dx

x

v v v
I v I I v I dx

x x x





 
 
 


      
                





                                      (55) 

 Navier-type solution with linear strains and simple case: 

4

11
2

2 4 2

0 2 0 2




  



 
 
 

      
        

       

zI C
L

I I I I
L L L

                                                          (56) 

The tabular validation is regarding the growth of slenderness ratio (L/h), and 

nonlocal parameter (μ). Also, the following elasticity property; E=1TPa is used, and the 

thickness is considered as h=1nm. Moreover, the frequencies are dimensionless using 

2 
 

A
L

EI
.   

Clearly, the comparative results between outputs of Navier-type solution in the 

present paper and those attained by the literature present a completely acceptable 

correlation. On the other side, there cannot be observed any difference among the outputs 

of linear Rayleigh-Ritz method compared with the Navier cases even for higher values of 

nonlocal parameter as well as of slenderness ratio.  

Elseway, the nonlinear frequencies are indicated by Table 4 by [101-103] and the 

ratio between nonlinear and linear instances are calculated. To indicate an approvement 

for the values of nonlinear frequency computed and obtained in this work, we consider 

SS edge conditions. Based on the demonstrated and tabulated results, the outcomes of 

present nonlinear analysis can be confirmed. 

4.2. Discussion of the problem 

Obviously, no one can find a frequency analysis of a PF-NT while geometrically 

nonlinearity is taken into account. To estimate the present problem, the existence 
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quantities in Table 5 are employed [21, 22]. Note that all the eigenfrequencies extracted 

in the section are respecting the first mode only. 

To consider a NSGT case, both nonlocal and strain gradient parameters perform 

outstanding roles. In point of fact, the values of both factors determine the value of 

frequency. As far as it was mentioned before about depending of these factor’s values on 

many situations, Thus, exploring among the literature to pick up a logical limit for both 

parameters can be a time-effective choice. For nonlocal parameter the 0.5 nm<e0a<0.8 

nm [90], and 0<e0a≤2 nm [104, 105], were found and then can be applied. However, 

there was no reference for strain gradient parameter values. Therefore, a lower bound 

limit is chosen for the values. 

4.2.1 The effect of nonlocal parameter 

Figure 2 carries out the influence of the nonlocal parameter versus both linear and 

nonlinear analyses of eigenfrequency. It is visible that the nonlinear case demonstrates 

greater results. This may be due to the fact that physically the geometrically nonlinear 

analysis gives the material axial forces because of presence of tension in mid-surface. So, 

the frequency capability of material will be higher which will lead to higher frequencies. 

Moreover, the nonlinear analysis eliminates the strain as a result of rigid displacements 

in a large deflection study (Note that in our work the mean of rigid displacement is any 

movement without deformation). Thus, e.g., in a nonlinear bending analysis the 

deflections will be lesser compared to the linear case. In a nonlinear vibration problem, 

the mode shapes will be bigger and the material because of large deformations, can 

capture higher frequencies. 

As seen by the figure, any incremental change in the amount of nonlocal parameter 

leads to a decrease in dimensionless frequency values. This effect and the decreasing trend 

are more apparent when the less flexible end condition is considered. In fact, the slope is 

steeper. The most obvious result of the figure is the lesser effect of nonlinear analysis 

against the linear one for simple supported–simple supported end conditions. Physically, 

it can be interpreted that when the type of boundary condition is more flexible, the 

displacements and deflections are further rigid. Therefore, the difference between results 

of nonlinear and linear states is smaller in such the boundaries. This means that the beam 
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has little stability and the material of the beam does not show significant resistance to 

large displacement, and therefore we do not see a substantial difference between nonlinear 

and linear frequencies in these cases. When the boundary condition has fewer degrees of 

freedom, the stretching effect more appears in the layers of thickness and large 

deformations are established more, which results in a noticeable difference in the results 

of nonlinear frequency versus linear in such the boundary conditions. Finally, as a last 

case in the figure, it can be said that the greatest frequencies are related to the boundary 

condition with the lowest degrees of freedom. 

4.2.2 The effect of strain gradient parameter 

One of the most important results of comparing nonlinear to linear frequency analysis in 

Figure 3 has been shown by changing the numerical values of the strain gradient 

parameter. In the figure, the range of the value of the strain gradient parameter is 

considered from zero to 2 nm for different boundary conditions. Returning to the figure, 

it is visible that increase of the values of the strain gradient parameter leads to augmenting 

the distance between nonlinear and linear frequency results. It may be how interpreted 

that when the numerical value of the strain gradient parameter increments, the hardening 

effect of the material enhances and the frequencies naturally become more pronounced. 

Thus, it enlarges the effect of nonlinear analysis, and the results of linear and nonlinear 

analysis move away from each other. Purely, the higher the fundamental natural 

frequencies of the system, the further visible the nonlinear frequencies. More valuable 

point that can be extracted from this figure is that the effect of rising in value of the strain 

gradient parameter is greater on the boundary condition with lower degrees of freedom. 

According to the figure, the clamped-clamped boundary condition is affected largely by 

growing the value of the strain gradient parameter and the incremental trend occurs more 

rapidly in this less flexible boundary condition. 

4.2.3 The effect of magnetic field 

Figure 4 provides the effect of the magnetic field on the linear and nonlinear frequencies 

and a comparison between these two frequency modes by changing the amount of 

magnetic potential. Based on the data in the figure, it can be realized that increasing the 

values of the magnetic potential will lead to a rise in the eigenfrequency of the system in 
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both linear and nonlinear states. In addition, the slope of the increment in the values of 

the frequencies in the nonlinear case is steeper than the linear one. Physically, it can be 

deduced that since the positive magnetic potential, in general, the positive magnetic field 

has a tightening effect on materials due to the contraction, the large amounts of positive 

magnetic potential can make greater natural frequencies and provide clearly the nonlinear 

frequency impact. Hence, the results of linear and nonlinear frequencies move away from 

each other. To conclude the discussion on the effect of magnetic potential, the boundary 

conditions can be considered through which several boundary conditions are studied. As 

can be observed from the figure, the incremental slope of the nonlinear frequency values 

resulting from the increase in the magnetic potential at all boundary conditions will be 

steeper. Therefore, it can be concluded that in high values of magnetic potential and in 

general in strong magnetic fields, the difference between the nonlinear frequencies and 

the linear ones is further notable. 

4.2.4 The effect of slenderness ratio 

Figure 5 displays a consideration of the effect of length-to-diameter ratio (slenderness 

ratio) for the problem. It is worthy to note that the difference between nonlinear and linear 

cases increments by enlarging the length of the beam. It can be said that when the beam’s 

length is long, the effect of nonlinear analysis is considerable. This can display the role 

of nonlinear analysis in vibrating behavior and emphasize on using this model of study. 

4.2.5 The effect of axial inertia 

In this work, we implemented the axial inertia effect in the formulation of 

eigenfrequencies contrarily to what has been usually accomplished. To demonstrate this 

effect, Figure 6 is plotted. This effect has been ignored in many studies performed on 

nonlinear vibrations of small or macro scale structures. As seen by Figure 6, while the 

effect is included, the nonlinear frequencies decrease. One can see the more pronounced 

discrepancy for lower values of slenderness ratio where the axial inertia causes 

appreciable reductions into the frequencies. This conclusion corresponds to the foregoing 

numerical data [106]. 
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To make the effect of axial inertia rather obvious, some tabular results are 

presented by Table 6 in which assorted boundary conditions are inspected. As seen by the 

table, the presence of axial inertia is more prominent for tubes with fully fixed ends. All 

in all, how we can terminate this discussion is that the axial inertia can be an effective 

factor in nonlinear vibration studies of macro/nano-structures. 

5. Conclusions 

This study analyzed nonlinear frequencies for a nanotube concerning the Euler-Bernoulli 

motion field. To accomplish the nanoscale size effect, the motion equations were shifted 

into NSGT relations. The relations governing the problem which are the nonlinear partial 

differential equations, were obtained by which the nonlinear vibrational equations of the 

PF-NT were computed. It was then converted to nonlinear algebraic equations by the 

Rayleigh-Ritz method. Free vibrations have been investigated in two cases, linear and 

nonlinear, for some kinds of boundary conditions: simply supported –simply supported, 

clamped–clamped, and clamped–simply supported. The results were compared with those 

of Navier’s solution and the parametric analysis of the results was presented. The most 

superior shortened points harvested by our work can be implied as follows which can aid 

the designers in the MEMS/NEMS industries: 

* Whenever the fundamental natural frequencies of a nanotube are enough big, the 

nonlinear frequencies will be more vital. In this category, the less flexible boundary 

conditions, the higher values of strain gradient, the longer nanotube, and a stronger 

positive magnetic field bring about greater fundamental natural frequencies. 

* The shorter the length of the nanotube, the larger the effect of axial inertia. 
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Table 1. Conditions at both ends based on notations 

Conditions  0x    x L   

SS 1 1 

CS 2 1 

CC 2 2 

Table 2. Constitutive boundary conditions 

Conditions 
Nonlocal strain gradient conditions at  

(0, L) 

Local conditions  

( 0l   ) at  

(0, L) 

S 

w=0 
2

2

2
1 0cl cl

d d dw
M l M N

dx dx dx


   
       

  
 

0cl
h

dM
M

dx
   

2

31 312
0   xxz

d w
T g h f

dx
 

w=0 

0clM   

0xxzT   

C 

w=0  

w'=0 

0M   

0hM   

0xxzT   

w=0 

w'=0 

0clM   

0xxzT   

* Sub-indexes (h and cl) are nonlocal and local phases, respectively. 

Table 3. Nondimensional natural frequencies of a square nanobeam (First mode, L=10 nm, h=1 

nm,  =0.3, E=1TPa,  =2.7kg/dm3) 

L/h μ L  
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EBT, 

Navier 

[99] 

EBT, 

Navier 

[Present] 

EBT, 

Rayleigh-

Ritz, 

[Present] 

5 

0 9.7112 9.7112 9.7112 

1 9.2647 9.2647 9.2647 

2 8.8747 8.8747 8.8747 

3 8.5301 8.5301 8.5301 

4 8.2228 8.2228 8.2228 

10 

0 9.8293 9.8293 9.8293 

1 9.3774 9.3774 9.3774 

2 8.9826 8.9826 8.9826 

3 8.6338 8.6338 8.6338 

4 8.3228 8.3228 8.3228 

20 

0 9.8595 9.8595 9.8595 

1 9.4062 9.4062 9.4062 

2 9.0102 9.0102 9.0102 

3 8.6604 8.6604 8.6604 

4 8.3483 8.3483 8.3483 

Table 4. Ratio of nonlinear to linear cases of frequency for a square macro beam (First mode). 

NL L   

Present [101] [102] [103] 

1.0874  1.0897  1.0892  1.0892  

Table 5. Magneto-mechanical properties of an assumed piezo-flexomagnetic nanotube (PF-NT) 

CoFe2O4 

C11=286e9 N/m2 

f31=10-10 N/Ampere 

q31=580.3 N/Ampere.m 

a33=1.57×10-4 N/Ampere2 

L=10d, d=1 nm, h=0.34 nm 

Table 6. Slenderness ratio vs. axial inertia effect in the nonlinear study of the PF-NT based on 

several boundary conditions (Ψ=1 mA, l=1 nm, e0a=0.5 nm) 

Axial 

inertia 
L/d CC CS SS 

Presence 

5 41.4830 28.1964 16.8231 

10 34.3034 27.5697 18.4081 

20 35.4480 31.4843 22.9379 
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30 40.6439 37.1471 28.3744 

40 47.3009 43.7931 34.4555 

Absence 

5 45.2122 31.0591 18.0210 

10 35.1884 28.3695 18.7697 

20 35.6849 31.7207 23.0533 

30 40.7655 37.2719 28.4381 

40 47.3806 43.8760 34.4992 

 

Figure 1. A CoFe2O4 nanotube 

 

Figure 2. Nonlocal parameter vs. different end conditions for the PF-NT (Ψ=1 mA, l=1 nm) D
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Figure 3. Strain gradient parameter vs. different end conditions for the PF-NT (Ψ=1 mA, e0a=1 

nm) 

 

Figure 4. Magnetic potential parameter vs. different end conditions for the PF-NT (l=1 nm, 

e0a=0.5 nm) 
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Figure 5. Slenderness ratio vs. linear and nonlinear analyses (Ψ=1 mA, l=1 nm, e0a=0.5 nm, SS) 

 

Figure 6. Slenderness ratio vs. the axial inertia effect in the nonlinear case of the PF-NT (Ψ=1 

mA, l=1 nm, e0a=0.5 nm, SS) 
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