
FOLIA 84Annales Universitatis Paedagogi
ae Cra
oviensisStudia Mathemati
a IX (2010)
Mar
in KrzywkowskiOn the hat problem, its variations, and theirappli
ationsAbstra
t. The topi
 of our paper is the hat problem in whi
h ea
h of n playersis randomly �tted with a blue or red hat. Then everybody 
an try to guesssimultaneously his own hat 
olor by looking at the hat 
olors of the otherplayers. The team wins if at least one player guesses his hat 
olor 
orre
tly,and no one guesses his hat 
olor wrong; otherwise the team loses. The aimis to maximize the probability of a win. There are known many variationsof the hat problem. In this paper we give a 
omprehensive list of variations
onsidered in the literature. We des
ribe the appli
ations of the hat problemand its variations, and their 
onne
tions to di�erent areas of s
ien
e. We givethe full bibliography of any papers, books, and ele
troni
 publi
ations aboutthe hat problem.1. Introdu
tionIn the hat problem, a team of n players enters a room and a blue or red hatis randomly pla
ed on the head of ea
h player. Ea
h player 
an see the hats of allof the other players but not his own. No 
ommuni
ation of any sort is allowed,ex
ept for an initial strategy session before the game begins. On
e they have hada 
han
e to look at the other hats, ea
h player must simultaneously guess the 
olorof his own hat or pass. The team wins if at least one player guesses his hat 
olor
orre
tly and no one guesses his hat 
olor wrong; otherwise the team loses. Theaim is to maximize the probability of a win.The hat problem with seven players, 
alled the �seven prisoners puzzle�, wasformulated by T. Ebert in his Ph.D. Thesis [20℄. The hat problem was also thesubje
t of arti
les in The New York Times [46℄, Die Zeit [9℄, and ab
News [44℄.It is also a one of subje
ts of the webpage [7℄.The hat problem with 2k − 1 players was solved in [22℄, and for 2k playersin [17℄. The problem with n players was investigated in [11℄. The hat problem andHamming 
odes were the subje
t of [12℄.AMS (2000) Subje
t Classi�
ation: 91A43.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[56℄ Mar
in KrzywkowskiThere are known many variations of the hat problem. For example the gen-eralized hat problem with n players and q 
olors was investigated in [40℄. In thepapers [1, 15, 35℄ there was 
onsidered a variation in whi
h passing is not allowed,thus everybody has to guess his hat 
olor. The aim is to maximize the numberof 
orre
t guesses. The authors of [25℄ investigated several variations of the hatproblem in whi
h the aim is to design a strategy guaranteeing desired numberof 
orre
t guesses. In [30℄ there was 
onsidered a variation in whi
h the proba-bilities of getting hats of ea
h 
olors do not have to be equal. The authors of [5℄investigated a problem similar to the hat problem. There are n players whi
h haverandom bits on foreheads, and they have to vote on the parity of the n bits. Thehat problem on a graph is as follows. There is a graph, where verti
es 
orrespondto players and a player 
an see ea
h player to whom he is 
onne
ted by an edge.This variation of the hat problem was �rst 
onsidered in [38℄. There were provensome general theorems about the hat problem on a graph, and the problem wassolved on trees. Additionally, there was 
onsidered the hat problem on a graphsu
h that the only known information are degrees of verti
es. In [39℄ the problemwas solved on the 
y
le C4. Further results about the hat problem on a graphwere established by Uriel Feige [24℄. For example, there the problem was solvedfor bipartite graphs, and planar graphs 
ontaining a triangle. Based on these andsome other results, the author 
onje
tured that for every graph there is an optimalstrategy in whi
h all verti
es whi
h do not belong to the maximum 
lique alwayspass.The hat problem and its variations have many appli
ations and 
onne
tionsto di�erent areas of s
ien
e, for example: information te
hnology [8℄, linear pro-gramming [25℄, geneti
 programming [14℄, e
onomy [1, 35℄, biology [30℄, approxi-mating Boolean fun
tions [5℄, and autoredu
ibility of random sequen
es [6, 20�23℄.In this paper we give a 
omprehensive list of variations of the hat problem
onsidered in the literature. We also present what is already known about ea
hvariation. For some variations we give a strategy whi
h solves the problem. Nextwe des
ribe the appli
ations of the hat problem and its variations, and their 
on-ne
tions to di�erent areas of s
ien
e. We give the full bibliography of any papers,books, and ele
troni
 publi
ations about the hat problem.2. Appli
ations of the hat problemIn this se
tion we present appli
ations of the hat problem and its variations.We also 
onsider their 
onne
tions to di�erent areas of s
ien
e.Information te
hnology. The paper [8℄ shows the strong 
onne
tion betweenthe hat problem and the following problem. In storing or transmitting digitaldata, there is always some risk of distortion: a 0 might a

identally �ip to 1 orvi
e versa. One way to deal with this problem is to introdu
e some redundan
yinto the transmission � for instan
e, by sending ea
h bit multiple times. However,transmitting too many extra bits is 
ostly and ine�e
tive. We need to prote
t
k bits of data against the possibility of an error by using the minimal numberof additional �
he
k bits�. Note that the method must not only dete
t the error,D
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On the hat problem, its variations, and their appli
ations [57℄but also determine its pre
ise lo
ation, so that the user 
an re
over the originalmessage every time. This problem has been solved using Hamming 
odes � 
odeswhi
h dete
t and 
orre
t errors. So 
alled 
overing 
odes are strongly relatedto Hamming 
odes. The website [41℄ 
ontains up-to-date data on the best known
overing 
odes. The 
oding theory (for more information, see [47℄) was inauguratedby Ri
hard Hamming. He realized that there is a way to use as few bits as possibleand still re
eive the 
orre
t message, but he was unable to expli
itly prove it [42℄.The work of Hamming piqued the interest of other mathemati
ians, su
h as ClaudeShannon who worked on the information theory aspe
ts of 
oding to a
hieve 
leardata transmission. Some of work of Shannon provides us with high sound qualityof 
ompa
t dis
s. Even though 
ompa
t dis
s may have visible s
rat
hes and thumbprints, a 
ompa
t dis
 player still reads the song a

urately. This is be
ause of theerror-
orre
ting 
apabilities built into the 
ompa
t dis
s. The hat problem with
2k − 1 or 2k players has been solved using the Hamming 
odes. The hat problemwith n /∈ {2k − 1, 2k} players, and the generalized hat problem with any numberof players and at least three 
olors are unsolved. These hat problems may havefurther 
onne
tions to and appli
ations in information te
hnology.Geneti
 programming. In [14℄ the authors try to solve the hat problem with
n /∈ {2k − 1, 2k} players using geneti
 programming. The aim is not only to solvethe hat problem, but also to learn the way in whi
h the geneti
 programmingworks, and what is its e�e
tiveness, be
ause the hat problem seems to be a typi
alone to solve using geneti
 programming. As a result it 
an help us in solvinganother, even pra
ti
al problems using geneti
 programming.Biology. In [30℄ it is shown that one of the most important problems in 
ell bi-ology is to understand fun
tionality of ea
h and every gene of any living organism.A mammoth proje
t, 
alled the Deletion Proje
t, is underway to study the DNAof the yeast organism. The genome of yeast organism has been 
ompletely mappedout. It has about 6000 genes. Experiments on yeast 
ells, under the proje
t, havethe following basi
 operations:1. removal of a gene from the 
ell;2. pla
ement of the 
ell in a 
hamber at a set temperature;3. examination of every one of the remaining 
ells to determine whether or notit is a
tive.The data ve
tor generated is of order 1× 6000. Every entry in the ve
tor, ex
eptone, is 0 (ina
tive) or 1 (a
tive). The missing entry 
orresponds to the deletedgene. Steps 1, 2, and 3 should be repeated with respe
t to every gene. Thus, atthe set temperature, we will have 6000 binary data ve
tors, ea
h ve
tor havingexa
tly one blank spa
e. The whole 
ell is also pla
ed in the 
hamber withoutremoving any of its genes. The data ve
tor generated will not have any blanks.Using all these data ve
tors, one has to guess what would have been the role of thedeleted gene had it been present in the 
ell. It 
an be hoped that the hat problemmight have some pointers.D
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[58℄ Mar
in KrzywkowskiMathemati
s: the autoredu
ibility of random sequen
es. In the Ph.D.Thesis of Todd Ebert [20℄ and in [23℄ it 
an be read that the autoredu
ibilityof random sequen
es is the problem of dedu
ing a property of a random binarysequen
e when some of the bits of the sequen
e upon whi
h the property dependsare not known. This o

urs quite often in pra
ti
e when, due to time and otherresour
e 
onstrains, a de
ision is made using only partial information. This 
on-sideration is 
losely related to 
omplexity theory sin
e a de
ision must be madebefore a limited resour
e su
h as time has been exhausted. In [22, 23℄ the authorsuse the hat problem to investigate the autoredu
ibility of random sequen
es. Theproblem of autoredu
ibility of random sets, whi
h is strongly 
onne
ted to theproblem of autoredu
ibility of random sequen
es, was investigated in [6, 21℄.Cellular automata. It 
an be seen that a similarity exists between the hatproblem on a graph and so 
alled 
ellular automata.First, let us 
onsider asyn
hronous threshold networks studied by Noga Alonin [2℄. There is a graph G with an initial sign s(v) ∈ {−1, 1} for every vertex v.When v be
omes a
tive, it 
hanges its sign to s′(v) whi
h is the sign of majorityof its neighbors (we de�ne s′(v) = 1 if there is a tie). We say that G is in a stablestate if s(v) = s′(v) for every vertex v. The timing is syn
hronus if all verti
esbe
ome a
tive simultaneously. The timing is asyn
hronous when only one vertexbe
omes a
tive at a time. Alon has proven that for every threshold network withall positive edge weights there is an asyn
hronous run with at most one sign 
hangeper vertex whi
h leads the network to a stable state.The problem above is 
onne
ted to so
ieties with symmetri
 in�uen
es intro-du
ed by Svatjopluk Poljak and Miroslav Sura [43℄. The authors proposed a simplemodel of so
iety with a symmetri
 fun
tion w(u, v) measuring the in�uen
e of theopinion of member v on that of member u. The opinions are 
hosen from the set
{0, 1, . . . , p} for some positive integer p. At ea
h step everyone a

epts the ma-jority opinion (with respe
t to w) of the other members (if there are two or moremajority opinions, then he a

epts the highest one). Obviously, the behavior ofsu
h a so
iety is periodi
 after some initial time. The authors have proven that thelength of the period is either one or two. They also 
on
luded that if the in�uen
efun
tion w is not symmetri
, then the period 
an be arbitrarily large.Another model of so
ial in�uen
es was introdu
ed by Fren
h [26℄ and Harary [31℄.The main di�eren
es between their model and the one of Poljak and Sura are thatthe �opinions� of the members u ∈ V are real numbers, in�uen
es w(u, v) betweenmembers are nonnegative real numbers, and the opinion of a member u is theaverage opinion of the others. For a survey on this topi
, see the book [45℄.For more information about 
ellular automata, see [18℄.From now to the end of this se
tion we 
onsider variations of the hat problem.Linear programming. One of the theorems about the hat problem provedin [25℄ 
an be represented as a spe
ial 
ase of the well known fa
t that linear pro-grams with integer 
onstraints and a totally unimodular 
onstraint matrix alwayshave integer optimal solutions. The 
onne
tion between total unimodularity andD
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On the hat problem, its variations, and their appli
ations [59℄the solution of integer programs was apparently �rst shown in [34℄. It 
an behoped that the hat problem has further 
onne
tion to and appli
ation in linearprogramming.E
onomy. Ni
ole Immorli
a in her Ph.D. Thesis [35℄ and the authors of [1℄proje
t au
tions in whi
h the aim is to maximize the pro�t of the seller. Duringinvestigating this problem, they 
onsider a variation of the hat problem in whi
heverybody has to guess his hat 
olor and we are interested in guaranteeing asmu
h 
orre
t guesses as possible. This problem is related to the au
tion problemas follows. Consider the 
ase where are only two types of bidders, those with highvaluation for the item, h; and those with a low valuation for the item, l. Mapping
h to the 
olor red and l to the 
olor blue, a solution of the hat problem would o�erhalf of the h bids at a pri
e h and half of the l bids at a pri
e l, thus the pro�tof su
h an au
tion would be at least half of optimal revenue.Mathemati
s: approximating a Boolean fun
tion. The authors of [5℄ 
on-sider the problem of approximating a Boolean fun
tion f : {0, 1}n → {0, 1} by thesign of an integer polynomial p of degree k. We say that a polynomial p(x) pre-di
ts the value of f(x) if, whenever p(x) ≥ 0, f(x) = 1, and whenever p(x) < 0,
f(x) = 0. A low-degree polynomial p is a good approximator for f if it predi
ts
f at almost all points. Given a positive k, and a Boolean fun
tion f , the problemis how good is the best degree k approximator to f . To investigate this problem,the authors use the problem similar to the hat problem in whi
h every one froman odd number of players has 0 or 1 on his forehead. Everybody has to guess theparity of the bits. The game is won if more than half of all guesses are 
orre
t.3. Variations of hat problemNow, we give a 
omprehensive list of variations of the hat problem 
onsideredin literature. We also present what is already known about ea
h variation. Forsome variations we give a strategy whi
h solves the problem.(1) �The generalized hat problem with n players and q 
olors� was �rst inves-tigated in [40℄. Every one of n players has got a hat of one from q possible 
olors,and the probabilities of getting hats of all 
olors are equal. We say that a strat-egy is symmetri
 if every player makes his de
ision on the basis of only numbersof hats of ea
h 
olor seen by him, and all players behave in the same way. A strat-egy is nonsymmetri
 if it is not symmetri
. The authors of [30℄ solved the hatproblem with three players and three 
olors by giving a symmetri
 strategy foundby 
omputer, and proving that it is optimal. In [37℄ the problem was solved byproving the optimality of a nonsymmetri
 strategy found without using 
omputer.There were also proven some upper bounds on the e�e
tiveness of any strategyfor the generalized hat problem with n players and q 
olors. Additionally, therewere 
onsidered the numbers of strategies that su�
e to be veri�ed to solve thehat problem, or the generalized hat problem. N. Alon [3℄ proved a lower boundon the maximum 
han
e of su

ess for the generalized hat problem.D
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[60℄ Mar
in Krzywkowski(2) There are n players and two 
olors. Everybody has to guess his hat 
olor.The aim is to �nd a strategy guaranteeing as many 
orre
t guesses as possible.It is known that guaranteeing ⌊n/2⌋ 
orre
t guesses is the best possible. Thefollowing strategy is optimal. Have players paired up. If the number of players isodd, then the unpaired one always guesses he has, let us say, a blue hat. In ea
hpair one player guesses he has a hat of the same 
olor as the other player, whilethe other player guesses he has a hat of the 
olor another than the �rst player, see[13, 15, 32, 49, 50℄.(3) It di�ers from the previous problem only in that there are q ≥ 3 
olors. Ithas been proven that guaranteeing ⌊n/q⌋ 
orre
t guesses is the best possible. Thefollowing strategy is optimal. Number players 1 to n, and 
olors 1 to q. The ithplayer guesses as if the sum of 
olors of all hats (in
luding own) is 
ongruent to
i modulo q, see [15℄.(4) It di�ers from the previous problem only in that there is a dire
ted graph
G determining players seen by ea
h player � if there is an ar
 from u to v, thenthe player u 
an see the player v. Optimal strategy for this problem is not known.There exist some lower and upper bounds on the number t(G) whi
h means themaximum number of 
orre
t guesses that 
an be guaranteed. For a dire
ted graph
G, let c(G) denote the maximal number of vertex-disjoint 
y
les in G, and let
F (G) denote the minimum number of verti
es whose removal from G makes thegraph a
y
li
. Then c(G) ≤ t(G) ≤ F (G), see [15℄.(5) It di�ers from the previous problem only in that there is also a graph Hdetermining ea
h player to guess the hat 
olor of the parti
ular player (possiblyown) � if there is an ar
 from u to v, then the player u has to guess the hat 
olorof the player v. Let tq(G,H) mean the maximum number of 
orre
t guesses that
an be guaranteed when there are q 
olors. There is known only the fa
t that
tq(G,H) > 0 if and only if there is a vertex of H whose outdegree is greater than
1, or there is a dire
ted 
y
le in the union of G and H , see [15℄.(6) It di�ers from the previous problem only in that there are a1, a2, . . ., aq hatsof the 
olor 1, 2, . . . , q, respe
tively. There are few fa
ts known for the variation,one of them is as follows. By t(n; a1, a2, . . . , aq) let us denote the maximum numberof 
orre
t guesses that 
an be guaranteed when there are n players, and a1 hatsof the �rst 
olor, a2 hats of the se
ond 
olor, and so on up through aq hats of qth
olor. Of 
ourse, we need a1 + a2 + . . . + aq ≥ n to ensure that we have enoughhats. Without loss of generality we may assume that 0 < ai ≤ n for all i. It iseasy to noti
e that if a1 + a2 + . . .+ aq = n, then t(n; a1, a2, . . . , aq) = n, see [15℄.(7) There are n players standing in a line and two 
olors. Everybody 
an seethe hat 
olors of players before him, but neither his nor those of players behindhim. Players have to guess their hat 
olors sequentially, starting from the ba
kof the line. Everybody 
an hear the answer 
alled out by ea
h player. We areinterested in a strategy guaranteeing as many 
orre
t guesses as possible. Thefollowing strategy is optimal. If the last player sees an odd number of red hatsin front of him, then he guesses he has a red hat. Otherwise he guesses he hasa blue hat. Player n−1 will dedu
e his own hat 
olor from the information said byD
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On the hat problem, its variations, and their appli
ations [61℄the last player. Similar reasoning applies to ea
h player going up the line. Player
i sums the number of red hats he sees and red guesses he hears. If the sum isodd, then he guesses he has a red hat. Otherwise he guesses he has a blue hat.Of 
ourse, it is not possible to guarantee the 
orre
tness of the guess of the playerwho guesses as �rst, thus guaranteeing n− 1 
orre
t guesses is the best possible,see [4, 19, 27, 49℄.(8) It di�ers from the previous problem only in that there are q ≥ 3 
olors.Now also the maximum number of 
orre
t guesses that 
an be guaranteed is n−1.By v1, v2, . . . , vn let us denote players, and by 1, 2, . . . , q let us denote 
olors. Let
yi represent the hat 
olor of player vi, and let us de�ne Yi =

∑n
j=i yj modq.The following strategy is optimal. Player v1 guesses he has a hat of the 
olor

Y2 =
∑n

i=2 yimodq. For ea
h i > 1 player vi 
an see the values yi+1, . . . , yn, andhas heard the values Y2 and y2, . . . , yi−1. As an e�e
t, he solves the expressionfor Y2 to get yi. As the result, n − 1 players guess their hat 
olors 
orre
tly, see[4, 19℄.(9) It di�ers from the two previous problems only in that the seeing radiusand/or the hearing radius are limited (there are q ≥ 2 
olors). The seeing radiusof a player is the maximum number of players that he 
an see ahead of him. Thehearing radius of a player is the maximum number of players ahead of him that
an hear him. We assume that the seeing (hearing, respe
tively) radius is thesame for all players, and we denote it by s (h, respe
tively). For this variation it isknown only that the maximum number of 
orre
t guesses that 
an be guaranteedis n− ⌈n/(min(s, h) + 1)⌉, see [4℄.(10) There are n players and two 
olors. There is also a 
lo
k and as everyminute elapses, everybody 
an guess his hat 
olor. Time elapses after n minutes,and everybody who has not tried to guess his hat 
olor loses. If some player guesseshis hat 
olor wrong, then all players lose. Is there a strategy su
h that everybodywins? No, although we 
an try to �nd a strategy su
h that as many players aspossible wins, see [27℄.(11) It di�ers from the previous problem only in that there is an additionalplayer who 
omes to the team and says �somebody has a blue hat� or �everybodyhas a red hat� or something else. Does it 
an help to guarantee that everybody willwin? Assume that the additional player says that somebody has a blue hat. Letus 
onsider the following strategy. Everybody 
ounts blue hats he sees. After kminutes, if nobody has tried to guess his hat 
olor, then everybody who sees k− 1red hats guesses he has a red hat. If at least two players have a red hat, then theinformation from the additional player that somebody has a red hat is a fa
t knownby everybody. Paradoxi
ally, it has a value. The information from the additionalplayer is 
alled 
ommon knowledge. That is, everybody knows it, and everybodyknows that everybody knows it, and everybody knows that everybody knows thateverybody knows it, et
. Players 
an use this meta-information to derive theirown hat 
olors, see [10, 27℄.(12) There are three players, A, B, and C. There are four green and four redstamps. Players are blindfolded, and two stamps are pasted on the head of ea
hD
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[62℄ Mar
in Krzywkowskiplayer. After removing the blindfolds, A, B, and C are asked in turn about 
olorsof own stamps. No player knows the answer. Now A is asked on
e more. Heagain does not know the answer. Now B is asked, and he replies �yes�. What arethe 
olors of the stamps of B? The answer is that he has one green, and one redstamp, see [29℄.(13) There are three players and two 
olors. Everybody has to simultaneouslyguess his hat 
olor or pass. The team wins if at least one player guesses his hat
olor 
orre
tly and nobody guesses his hat 
olor wrong. The probabilities of theeight 
ases whi
h 
an appear does not have to be the same. How does it in�uen
ethe strategy whi
h should be applied by the team? It has been proven (using
omputer) that to solve the problem it su�
es to 
al
ulate the 
han
e of su

essfor a family of twelve strategies, see [30℄.(14) It di�ers from the previous variation only in that there are n players and
q ≥ 2 
olors, see [40℄.(15) In the �Gabay � O'Connor hat problem� there are an in�nite number ofplayers numbered 1, 2, . . . , and two 
olors. Everybody has to guess his hat 
olor.The team wins if only �nite number of guesses are wrong. Is there a strategyguaranteeing that the team will win? Yes, but only if the Axiom of Choi
e holds,see [32, 33, 51℄.(16) The variation 
alled �All right or all wrong� di�ers from the previousproblem only in that the team wins if and only if all guesses are 
orre
t or allguesses are wrong. Similarly as for the previous variation, the win of the team 
anbe guaranteed if and only if the Axiom of Choi
e holds, see [51℄.(17) There are ten players and every one of them has a digit from 0 to 9 writtenon the forehead. Everybody has to guess his digit. The team wins if at least oneplayer does it 
orre
tly. The aim is to �nd a strategy guaranteeing that the teamwill win. Let us 
onsider the following strategy. Number players 0 to n − 1. Let
s be the sum of the numbers on the foreheads of all players, modulo n. Now letplayer k guess that s = k, that is, guess that his own number is k minus the sumof the numbers he sees, modulo n. This will ensure that player s will be 
orre
t,see [51℄.(18) The variation 
alled �The 
olor-blind prisoner� di�ers from the previousproblem in that numbers are written in red, one player has a green skin, and oneanother player does not distinguish green and red. Thus he de
ides about his guesson the basis of only eight digits. Now it is not possible to guarantee that the teamwill win, see [51℄.(19) In the variation 
alled �Numbers and hats� there are n players, and everyone of them has a distin
t real number written on the forehead. Everybody has to
hoose a blue or red hat for himself. The aim is for the hat 
olors to alternate inthe order determined by the real numbers. There is a strategy guaranteeing thatthe team will win, but it is very long and 
ompli
ated, see [51℄.(20) In the �Voting puzzle 1� there are an odd number of players, say n. EveryD
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On the hat problem, its variations, and their appli
ations [63℄one of them has a random bit written on the forehead. Players have to vote onthe parity of the bits (by voting 0 or 1).The result of the voting is the bit 
hosenmore often. Players win if the result of the voting is equal to the parity of the bits.The aim is to maximize the 
han
e of su

ess. Optimal strategy gives the 
han
eof su

ess equaling n/(n+ 1). For the strategy, see [5℄.(21) The �Voting puzzle 2� di�ers from the previous problem only in thateverybody 
an make as many votes as he wants. Optimal strategy gives the 
han
eof su

ess equaling (2n − 1)/2n. For the strategy, see [5℄.(22) The �Voting puzzle 3� is as follows. Let S be a set of randomly 
hosen nbits. There are (

n
k

) players, every one of them 
an see another k-element subsetof S. Players parti
ipate in a voting, the result of whi
h should be the parityof the bits. Everybody has to make an integer number of votes. If their sum ispositive, then the result of the voting is 0. If it is negative, then the result is 1.If the sum is zero, then the result of the voting is not de�ned. A strategy, basedon approximating a Boolean fun
tion, guarantees that the team will win, see [5℄.(23) In the variation 
alled �Not distinguishable players� there are n playersand q ≥ 2 
olors. Every player 
an see everybody ex
luding him, but 
annotdistinguish them. Thus everybody makes his guess on the basis of only numbersof hats of ea
h 
olor seen by him. Every player guesses his hat 
olor or passes.The team wins if at least one player guesses his hat 
olor 
orre
tly and nobodyguesses his hat 
olor wrong. It has been proven that for large n the maximum
han
e of su

ess is approximately (1 + (1/3)q−1)/2, for details see [28℄.(24) It di�ers from the previous variation only in that all players have to behavein the same way, see [40℄.(25) The variation 
alled �Players do not distinguish 
olors 1� is as follows.There are n 
olor-blind players and two 
olors. Before �tting players with hatssomebody says players what will be the probability of getting a blue hat, andwhat of a red hat. By q let us denote the probability of getting a blue hat.It is known that for large n the maximum 
han
e of su

ess is approximately
(1− q)(1−q)/q − (1 − q)1/q, see [28℄.(26) The variation �Players do not distinguish 
olors 2� di�ers from the previousproblem only in that later (after �tting with hats) somebody says what was theprobability of getting a blue hat, and what of a red hat (somebody says how manyblue and how many red hats were pla
ed). It is known that, 
omparing to theprevious variation, it does not 
hange the 
han
e of su

ess of optimal strategy,see [28℄.(27) In the variation 
alled �Crowns of the Minotaur� there are three playersand every one of them is �tted by the Minotaur with a blue or red 
rown. Everyplayer bets zero or more points on guessing his 
rown 
olor. A player wins or losesas many points as he has bet, depending on the a

ura
y of his guess. Then thewon and the lost points are added separately, and the team wins if there are morewon than lost points. It is known that the maximum 
han
e of su

ess is equalto 7/8. The following strategy is optimal. At �rst, number players who is �rst,D
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[64℄ Mar
in Krzywkowskise
ond, and third. The �rst player bets one point for red. If the se
ond playersees that the �rst has a blue 
rown, then he bets two points for red, otherwisepasses. If the third player sees that the �rst two have both blue 
rowns, then hebets four points for red, otherwise passes. Unless every player has a blue 
rown(
han
e 1/8), everybody wins, see [48℄.(28) In �The dis
arded hat variation� there are 4k− 1 players, and 2k blue and
2k red hats. Every player is �tted with a hat, and one hat is taken away. Theneverybody has to guess his hat 
olor. The aim is to guarantee as many 
orre
tguesses as possible. It is known that guaranteeing 3k − 1 
orre
t guesses is thebest possible. For an optimal strategy, involving 
y
li
 arrangement of players,see [25℄.(29) In �The everywhere balan
ed variation� there are n players and q ≥ 2
olors. Let {c1, c2, . . . , cq} be the set of 
olors, and let Hi mean the set of playershaving a hat of 
olor ci. Nobody knows neither to whi
h set he belongs nor whatare the 
ardinalities of sets Hi. The aim is to �nd a strategy guaranteeing thatin every set Hi the number of players guessing their hat 
olors 
orre
tly is between
⌊|Hi|/q⌋ and ⌈|Hi|/q⌉. For su
h strategy (a 
ompli
ated one), see [25℄.(30) The variation �Hat problem on a dire
ted graph asking for at least one
orre
t guess� is as follows. There are n players and two 
olors. We have a dire
tedgraph G determining players seen by ea
h player � if there is an ar
 from u to v,then the player u 
an see the player v. What subgraph has to have the visibilitygraph to ensure the existen
e of a strategy guaranteeing at least one 
orre
t guess?It has to have a 
y
le as a subgraph, for details see [32℄.(31) It di�ers from the previous problem in that there are n players and n
olors. It is known that now the visibility graph has to be 
omplete, see [32℄.(32) It di�ers from the two previous problems in that there are n players and q
olors. What is the maximum number of 
orre
t guesses that 
an be guaranteed?The answer is ⌊n/q⌋, see [32℄.(33) There are n players and q ≥ 2 
olors. Players are allowed more thanone round in whi
h to guess their hat 
olors. During ea
h round everybody mustsimultaneously say �My hat 
olor is i�, �My hat 
olor is not i�, or �Pass�, where
i is one of the 
olors. However, if everybody passes in any round, then the teamloses. The rounds 
ontinue, with ea
h player making a guess or passing, as long asno in
orre
t guess is made and at least one player guesses his hat 
olor 
orre
tly.Then the team wins. It has been proven that the maximum 
han
e of su

ess is
n(q − 1)/(1 + n(q − 1)), see [16℄.(34) In the variation 
alled �Zero-information strategies� there are n playersand two 
olors. Everybody has to simultaneously guess his hat 
olor or pass.The team wins if at least one player guesses his hat 
olor 
orre
tly and nobodyguesses his hat 
olor wrong. Every player makes his de
ision without a

ess toany information. Now a winning probability of 1/4 is asymptoti
ally attainableand optimal, see [40℄.D
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On the hat problem, its variations, and their appli
ations [65℄(35) �The hat problem on a graph� is as follows. There is a graph, where verti
es
orrespond to players and a player 
an see ea
h player to whom he is 
onne
tedby an edge. This variation of the hat problem was �rst 
onsidered in [38℄. Therewere proven some general theorems about the hat problem on a graph, and theproblem was solved on trees. Additionally, there was 
onsidered the hat problemon a graph su
h that the only known information are degrees of verti
es. In [39℄the problem was solved on the 
y
le C4. Further results about the hat problemon a graph were established by Uriel Feige [24℄. For example, there the problemwas solved for bipartite graphs, and planar graphs 
ontaining a triangle. Based onthese and some other results, the author 
onje
tured that for every graph thereis an optimal strategy in whi
h all verti
es whi
h do not belong to the maximum
lique always pass.(36) �The modi�ed hat problem� is as follows. There are n ≥ 3 players. Ev-eryone of them is randomly �tted with a blue or red hat. Players do not have toguess their hat 
olors simultaneously. In this variation of the hat problem playersguess their hat 
olors by 
oming to the basket and throwing the proper 
ard intoit. Every player has got two 
ards with his name and the senten
e �I have gota blue hat� or �I have got a red hat�. If someone wants to resign from answering,then he does not do anything. The problem was investigated in [36℄. There wasgiven an optimal strategy for the problem whi
h always su

eeds.Referen
es[1℄ G. Aggarwal, A. Fiat, A. Goldberg, J. Hartline, N. Immorli
a, M. Sudan, De-randomization of au
tions, Pro
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