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We analyze properties of the firing map, which iterations give information about 
consecutive spikes, for periodically driven linear integrate-and-fire models. By 
considering locally integrable (thus in general not continuous) input functions, we 
generalize some results of other authors. In particular, we prove theorems concerning 
continuous dependence of the firing map on the input in suitable function spaces. 
Using mathematical study of the displacement sequence of an orientation preserving 
circle homeomorphism, we provide a complete description of regularity properties 
of the sequence of interspike-intervals and behaviour of the interspike-interval 
distribution. Our results allow to explain some facts concerning this distribution 
observed numerically by other authors. These theoretical findings are illustrated by 
computational examples.
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1. Introduction

The scope of this paper are one-dimensional integrate-and-fire (IF) models

ẋ = F (t, x), F : R2 → R (1)

x(t) = xT =⇒ x
(
t+

)
= xr. (2)

The dynamical variable x(t) evolves according to the differential equation (1) as long as it reaches the 
threshold-value x = xT , say at some time t1. Next it is immediately reset to a resting value x = xr and the 
system continues again from the new initial condition (xr, t1) until possibly next time t2 when the threshold 
is reached again, etc. This resetting condition is written as (2). Hybrid dynamical systems of this kind are 
present in neuroscience, where the threshold-reset behaviour is supposed to mimic spiking (generation of 
action potential) in real neurons. Of course, xr and xT could be arbitrary constant values and, moreover, 
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it is possible to consider varying (i.e. time-dependant) threshold and reset, which allows to introduce to 
these one-dimensional spiking models some other more biologically realistic phenomena (such as refractory 
periods and threshold modulation [9]). However, often analysis of models with varying threshold and the 
reset can be reduced to studying the case of constant xr and xT through the appropriate change of variables 
(see e.g. [3]).

Except for the models of neuron’s activity IF systems (and circle mappings induced by them in case of 
periodic forcing) can also be used in modeling of cardiac rhythms and arrhythmias [1], in some engineering 
applications (e.g. electrical circuits of certain type, see [4]) or as models of many other phenomena, which 
involve accumulation and discharge processes that occur on significantly different time scales.

For simplicity set xr = 0 and xT = 1 and suppose that Eq. (1) has the property of existence and 
uniqueness of the solution for every initial condition (t0, x0) ∈ R2.

Definition 1.1. The firing map for the system (1)–(2) is defined as

Φ(t) := inf
{
s > t: x(s; t, 0) ≥ 1

}
, t ∈ R,

where xr = 0, xT = 1, and x(· ; t, 0) denotes the solution of (1) satisfying the initial condition (t, 0).

Of course, the firing map Φ(t) does not need to be well defined for every t ∈ R since for some t it might 
happen that the solution x(· ; t, 0) never reaches the value x = 1. Thus the natural domain of Φ is the set 
(compare with [5]):

DΦ =
{
t ∈ R: there exists s > t such that x(s; t, 0) = 1

}
.

Later on we will give necessary and sufficient conditions for the firing map Φ : R → R of the models 
considered to be well-defined.

The consecutive firing times tn can be recovered via the iterations of the firing map:

tn = Φn(t0) = Φ(tn−1) = inf
{
s > Φn−1(t0): x

(
s;Φn−1(t0), 0

)
= 1

}
.

The sequence of interspike-intervals (time intervals between the consecutive resets) is given as

tn − tn−1 = Φn(t0) − Φn−1(t0).

There are two basic quantities associated with the integrate-and-fire systems, the firing rate:

FR(t0) = lim
n→∞

n

tn
= lim

n→∞
n

Φn(t0)
,

and its multiplicative inverse, which is the average interspike-interval:

aISI(t0) = lim
n→∞

tn
n

= lim
n→∞

Φn(t0)
n

.

Obviously, in general the limits above might not exist or depend on the initial condition (t0, 0).
In [14] the following observation for periodically driven models was made (the remark was not directly 

formulated in this way but it is a well-known fact):

Fact 1.2. If the function F in (1) is periodic in t (that is, there exists T > 0 such that F (t, x) = F (t + T, x)
for all x and t), then the firing map Φ has periodic displacement Φ − Id. In particular for T = 1 we 
have Φ(t + 1) = Φ(t) + 1 and thus Φ is a lift of a degree one circle map under the standard projection 
p : t �→ exp(2πıt).
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In case of periodic forcing, the underlying circle map ϕ : S1 → S1 such that Φ is a lift of ϕ, is referred 
to as the firing phase map.

In particular, we will take into account the Leaky Integrate-and-Fire model (LIF):

ẋ = −σx + f(t) (3)

and the Perfect Integrator (PI):

ẋ = f(t), (4)

where f : R → R will be, usually, periodic and not necessary continuous but only locally-integrable.
Mathematical analysis of one-dimensional IF models was performed e.g. in [3,5,9]. Firing map was also 

investigated combining analytical and numerical approach ([6] – phase-locking and Arnold tongues, [14] – 
LIF model with sinusoidal input, [18] – LIF with periodic input, [23] – LIF with periodic input and noise, 
etc.). Analytical results concerning the firing map Φ were obtained assuming that F (t, x) is regular enough 
(always at least continuous) and often periodic in t.

Allowing also not continuous functions might be important from the point of view of applications where 
the inputs are often not continuous. Moreover, although as for the firing map of systems with continuous 
and periodic drive some rigorous results have been proved (e.g. in [3,5,9]), the sequence of interspike-in-
tervals even in such a case, according to our knowledge, has not been investigated in detail yet. However, 
sometimes the sequence of interspike-intervals might be of greater importance than the exact spiking times 
themselves [20]. Interspike-intervals are said to be used in information encoding by neurons (see [10] and 
references therein).

We will often use mathematical results proved by us in [16]. But the main problem of this paper is to 
study the properties of interspike-interval sequence in the models of integrate-and-fire type, i.e. defined by an 
equation of the form ẋ = F (t, x) with the resetting mechanism, with emphasis placed on the analytical form 
of F (t, x) stimulated by applications, whereas the work [16] concerns only with the displacement sequence 
of a circle homeomorphism.

In Section 2 we consider the LIF model and redefine the notion of the firing map so that it is well-defined 
for input functions f ∈ L1

loc(R). Then we provide sufficient conditions for the continuity of the mapping 
f �→ Φ from L1

loc(R) into C0(R). This enables us to use existing results for circle homeomorphisms in 
Section 3 where we consider locally integrable periodic inputs. In particular, we obtain results concerning 
regularity of the interspike-interval sequence ISIn(t) := Φn(t) −Φn−1(t): unless the input f is constant, the 
sequence ISIn(t) is (asymptotically) periodic or almost strongly recurrent (18), depending on the rotation 
number of the underlying circle homeomorphism ϕ := Φ mod 1. Next, we prove theorems on distribution 
of interspike-intervals for case of irrational rotation number (continuity of the distribution with respect to 
the input in terms of weak convergence of measures and the existence of the density of this distribution, 
under further assumptions). In the end we show that this distribution is well approximated (in the Fortet–
Mourier metric) by empirical distributions derived for arbitrary trajectories of the LIF model with every 
other input function f̃ ∈ L1

loc(R), sufficiently close to f , independently of whether the induced rotation 
number of the approximating system is irrational or not. This phenomenon is illustrated by the numerical 
example.

2. Locally integrable input functions for LIF and PI models: some general properties

In the section we do not make yet the assumption that f is periodic and that is why the results presented 
below have general character.

http://mostwiedzy.pl
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2.1. Preliminary definitions and facts

Unless stated otherwise, considering the LIF-model (3) we assume that σ ≥ 0, admitting also σ = 0 to 
include Perfect Integrator (4) as well. As for the function f in (3) and (4), we assume that f ∈ L1

loc(R), i.e. 
for every compact set A ⊂ R the Lebesgue integral 

∫
A
|f(u)| du exists and is finite. For such functions we 

redefine the notion of the firing map:

Definition 2.1. For systems (3) and (4) the firing map Φ is defined as

Φ(t) := inf
{
t∗ > t: eσt ≤

t∗∫
t

[
f(u) − σ

]
eσu du

}
. (5)

The above definition is generalization of the “classical” firing map Φ for the differential equation (3) with 
f being continuous, since from Definition 1.1 Φ has to satisfy the implicit equation:

eσt =
Φ(t)∫
t

[
f(u) − σ

]
eσu du. (6)

Lemma 2.2. The necessary and sufficient condition for the firing map (5) Φ : R → R to be well-defined is 
that

lim sup
t→∞

t∫
0

[
f(u) − σ

]
eσu du = ∞. (7)

Proof. Suppose that (7) is satisfied. Choose t0 ∈ R. Then lim supt→∞
∫ t

t0
[f(u) − σ]eσu du = ∞ and hence 

there exists t∗ such that 
∫ t∗
t0

[f(u) − σ]eσu du ≥ eσt0 . Consequently Φ(t0) is defined.
Now assume that Φ : R → R is defined, i.e. for every t ∈ R there exists t∗ = Φ(t) such that eσt =∫ Φ(t)

t
[f(u) −σ]eσu du. In particular, by Definition 2.1, taking t = 0 we obtain that n =

∫ Φn(0)
0 [f(u) −σ]eσu du. 

Thus limn→∞
∫ tn
0 [f(u) − σ]eσu du = ∞ for tn = Φn(0), which proves the statement. �

Lemma 2.3. In the model (3) with σ ≥ 0 and f ∈ L1
loc(R), suppose that there exists ς > 0 such f(t) − σ > ς

a.e. (i.e. for almost all t ∈ R in the sense of Lebesgue measure). Then the firing map Φ : R → R is a 
homeomorphism.

Proof. Notice that under the stated assumptions, DΦ = R on the ground of Lemma 2.2 because for every 
fixed t the integral 

∫ t∗
t

[f(u) − σ]eσu du is a strictly increasing unbounded continuous function of t∗. It 
follows that Φ is also a continuous monotone function. From (5) we have 0 ≤ Φ(t) − t < 1/ς which gives 
that limt→∞ Φ(t) = ∞ and limt→−∞ Φ(t) = −∞ and ends the proof. �

We prove also the following simple lemma:

Lemma 2.4. Suppose that f ∈ L1
loc(R). Then every run of the model (3) has only finite number of firings in 

every bounded interval.

Proof. Suppose that there is a firing at time t0. Denote tn = Φn(t0) for n ∈ N. If {tn} ⊂ [a, b] for some 
bounded interval [a, b] ⊂ R (i.e. limn→∞ tn = t∗ ∈ (a, b] as sequence tn is non-decreasing), then from Eq. (5)
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(or equivalently from the solution x(t; t0, 0) = e−σt
∫ t1
t0

f(u)eσu du of (3) and the condition x(t1; t0, 0) = 1
for the firing at time t1) we obtain that

eσt1 =
t1∫

t0

f(u)eσu du ≤ eσt1
t1∫

t0

∣∣f(u)
∣∣ du

and thus 1 ≤
∫ t1
t0

|f(u)| du and in general 1 ≤
∫ tn
tn−1

|f(u)| du for n ∈ N ∪ {0}. From this we estimate that

n ≤
tn∫

t0

∣∣f(u)
∣∣ du ≤

b∫
a

∣∣f(u)
∣∣ du.

As n is arbitrary, it results in 
∫ b

a
|f(u)| du = ∞ which contradicts that f ∈ L1

loc(R). �
2.2. Special properties of the Perfect Integrator

The simple model (4) has many distinct properties than other models. Here we list some of them (for 
the proofs we refer to [15]).

Fact 2.5. Suppose that f ∈ L1
loc(R) and let Φ be the firing map for the Perfect Integrator (4). Then:

1. The consecutive iterates of the firing map are equal to

Φn(t) = min
{
s > t: x(s; t, 0) = n

}
(8)

and there is only a finite number of firings in every bounded interval.
2. Φ is increasing, correspondingly, non-decreasing, iff f(t) > 0, or f(t) ≥ 0 respectively, a.e. in R.
3. If f(t) ≥ 0 a.e., then

(i) Φ is left continuous,
(ii) Φ is not right continuous at every point ā ∈ Φ−1(a) for which there exists δ0 > 0 such that f(t) = 0

almost everywhere in [a, a + δ0]. Furthermore, such points are the only points of discontinuity of Φ.
4. If f(t) > 0 a.e., then Φ is continuous.

For the simplified model (4) we even have the analytical expression for the firing rate. Indeed, the following 
theorem was proved in [3] (originally for f continuous but the proof is valid for f ∈ L1

loc(R) as well):

Theorem 2.6. Suppose that for the model (4) there exists a finite limit

r = lim
t→∞

1
t

t∫
0

f(u)du. (9)

Then for every point t0 ∈ R the firing rate r(t0) exists and is given by the formula (9). In particular, the 
firing rate r(t) does not depend on t.

The proof of the above theorem is immediate: It relies on the fact that n =
∫ Φn(t0)
t0

f(u) du
for every t0 by definition of the firing map and if the above limit exists and equals r, then also 
limn→∞

1
n

∫ Φn(t0) f(u) du = r.
Φ (t0) t0

http://mostwiedzy.pl
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Example 1. Let

f(t) =
{

2, t ∈ [n, n + 1/2], n ∈ Z;
0, t ∈ (n + 1/2, n + 1).

We easily get that M(f) = � = 1 and that

Φ(t) =

⎧⎨⎩
t + 1, t ∈ (k, k + 1/2), k ∈ Z;
k + 1/2, t = k;
k + 3/2, t ∈ [k + 1/2, k + 1).

In particular, Φ is left-continuous, non-decreasing and constant in the intervals (k+ 1/2, k+ 1). However, it 
is not right-continuous at the points t = k. Note that at such points Φ(t) = k + 1/2 and f = 0 in the right 
neighbourhood (k + 1/2, k + 1) of Φ(t) which agrees with Fact 2.5.

2.3. Continuous dependence on the input function

Definition 2.7. The essential supremum of the Lebesgue measurable function f : R → R is defined as

ess sup f := inf
{
a ∈ R: Λ

({
t: f(t) > a

})
= 0

}
, (10)

where Λ denotes the Lebesgue measure on R. If {a ∈ R: Λ({t: f(t) > a}) = 0} = ∅, then we write that 
ess sup f = ∞.

If ess sup |f | < ∞, then we say that f is essentially bounded.
We also define the essential supremum of f over a compact subset K ⊂ R as

ess sup
K

f := inf
{
a ∈ R: Λ

({
t ∈ K: f(t) > a

})
= 0

}
.

In particular, for the measurable functions f and g, ess supK |f − g| = a∗ for some a∗ ≥ 0 implies that 
|f(t) − g(t)| ≤ a∗ a.e. in K. In general an essentially bounded function does not need to be measurable, 
since equivalently we might say that a∗ is an essential supremum of f if the set {t: f(t) > a} is contained in 
some set of measure zero. However, we will consider only locally integrable functions, thus also measurable. 
Notice that when f is essentially bounded (and measurable), it is also locally integrable. However, a locally 
integrable function does not need to be essentially bounded: take for example f(t) = 1√

|t| (with arbitrary 

finite value at t = 0).
We consider the space L∞

loc(R) of all locally bounded functions (i.e. f ∈ L∞
loc(R) iff ess supK |f | < ∞ for 

every compact K ⊂ R) as the Frechet space with semi-norms and metric defined respectively as

‖f‖L∞([−k,k]) := ess sup
[−k,k]

|f |

and

dL∞
loc

(f, g) :=
∞∑
k=1

1
2k

‖f − g‖L∞([−k,k])

1 + ‖f − g‖L∞([−k,k])
.

We will mainly consider measurable functions f ∈ L∞
loc(R). Note that such functions form a subspace of 

L1
loc(R), which is again a Frechet space with the following semi-norms:

‖f‖L1([−k,k]) :=
∫ ∣∣f(u)

∣∣ du, k = 1, 2, 3, . . . .

[−k,k]

http://mostwiedzy.pl
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The metric on L1
loc(R) can be defined as

dL1
loc

(f, g) :=
∞∑
k=1

1
2k

‖f − g‖L1([−k,k])

1 + ‖f − g‖L1([−k,k])
.

L1
loc(R) with this metric is a complete metric space (see for instance [17, p. 2]).
Similarly in spaces C0(R) and Cm(R) of, respectively, continuous and m-times continuously differentiable 

functions f : R → R, we introduce the metrics dC0(R) and dCm(R) with the use of semi-norms:

‖f‖C0([−k,k]) := sup
t∈[−k,k]

∣∣f(t)
∣∣, k = 1, 2, 3, . . .

and

‖f‖Cm([−k,k]) := max
{

sup
t∈[−k,k]

∣∣f(t)
∣∣, sup

t∈[−k,k]

∣∣f (1)(t)
∣∣, . . . , sup

t∈[−k,k]

∣∣f (m)(t)
∣∣}, k = 1, 2, 3, . . .

where f (n)(t) is the n-th derivative of f .

Proposition 2.8. In the model (3) with σ ≥ 0 and measurable f ∈ L∞
loc(R), the mapping f �→ Φ is continuous 

from the L∞
loc(R)-topology into C0(R)-topology at every point f satisfying f(t) − σ > ς a.e. for some ς > 0.

The above proposition says, in particular, that if we have a family of systems ẋ = −σx +fω(t), where ω ∈
Ω ⊂ Rk parameterizes {fω} continuously in the L∞

loc(R)-topology and inf{ς(ω): fω(t) − σ > ς(ω) a.e.} > 0, 
then the enough small change of parameter ω causes an arbitrary small change of the firing map Φ in the 
C0(R)-topology (but, of course, even if the firing maps Φω1(t) and Φω2(t) are uniformly close, the firing 
times t(1)n = Φn

ω1
(t0) and t(2)n = Φn

ω2
(t0) with n → ∞ might deviate a lot from each other).

Proof of Proposition 2.8. Let f(t) − σ > ς > 0 a.e. Our aim is to prove

∀ε>0 ∃δ>0 ∀g:R→R dL∞
loc(R)(f, g) < δ =⇒ dC0(R)(Φf , Φg) < ε, (11)

where Φf and Φg are the firing maps induced by ẋ = −σx + f(t) and ẋ = −σx + g(t), respectively (f and 
g satisfy requirements stated in Proposition 2.8). Firstly we prove that:

∀ε>0 ∀K∈N ∃N∈N ∃δ>0 ∀g:R→R ess sup
[−N,N ]

∣∣f(t) − g(t)
∣∣ < δ =⇒ sup

t∈[−K,K]

∣∣Φf (t) − Φg(t)
∣∣ < ε

2 . (12)

Fix any positive integer K. Define N := K + �2
ς �, where �2

ς � is the smallest integer greater than or 
equal to 2/ς. Let δ := min{ ς

2 , 
ς2ε
4 }. Choose the function g satisfying the assumptions and such that 

ess sup[−N,N ] |f(t) − g(t)| < δ. Then g(u) − σ > ς/2 > 0 a.e. in [−N, N ]. Let then t ∈ [−K, K] be fixed and 
suppose that Φg(t) > Φf (t). By definition of the firing map,

eσt =
Φf (t)∫
t

[
f(u) − σ

]
eσu du =

Φf (t)∫
t

[
g(u) − σ

]
eσu du.

It follows that

Φg(t)∫ [
g(u) − σ

]
eσu du =

Φf (t)∫
t

[
f(u) − g(u)

]
eσu du.
Φf (t)

http://mostwiedzy.pl
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Since 0 ≤ Φf (t) − t < 1/ς by the assumption on f and t, t + 1/ς ∈ [−N, N ] by our choice of N , we estimate

Φg(t)∫
Φf (t)

[
g(u) − σ

]
eσu du =

Φf (t)∫
t

[
f(u) − g(u)

]
eσu du < δ

(
Φf (t) − t

)
eσΦf (t) <

δ

ς
eσΦf (t).

Simultaneously

Φg(t)∫
Φf (t)

[
g(u) − σ

]
eσu du >

ς

2
∣∣Φg(t) − Φf (t)

∣∣eσΦf (t),

provided that Φg(t) ≤ N . However, suppose that Φg(t) > N . Then 
∫ N

t
[g(u) − σ]eσu du < eσt by definition 

of the firing map. On the other hand, by our assumptions on N and g,

N∫
t

[
g(u) − σ

]
eσu du >

ς

2(N − t)eσt > ς

2
2
ς
eσt = eσt

which contradicts our previous estimate. Thus always Φg(t) ≤ N and finally we obtain

∣∣Φg(t) − Φf (t)
∣∣ < 2δ

ς2
≤ ε

2 .

If Φf (t) ≥ Φg(t), then immediately Φg(t) ≤ N (since Φf (t) ≤ N as Φf (t) − t < 1/ς) and we can perform 
similar calculations.

Now we show how (12) implies (11). Given ε > 0, there exists the smallest integer K∗ such that ∑∞
k=K∗

1
2k ≤ ε/2 and thus

∞∑
k=K∗

1
2k

‖Φf (t) − Φg(t)‖C0([−k,k])

1 + ‖Φf (t) − Φg(t)‖C0([−k,k])
<

ε

2 .

Therefore if also 
∑K∗

k=1
1
2k

‖Φf (t)−Φg(t)‖C0([−k,k])
1+‖Φf (t)−Φg(t)‖C0([−k,k])

< ε
2 , then dC0(R)(f, g) < ε (the metric in the Frechet 

space). But as the function u �→ u
1+u is increasing (from [0, ∞) onto [0, 1)) and the norms ‖Φf (t) −

Φg(t)‖C0([−k,k]) are non-decreasing with k, it follows that

K∗∑
k=1

1
2k

‖Φf (t) − Φg(t)‖C0([−k,k])

(1 + ‖Φf (t) − Φg(t)‖C0([−k,k]))
≤

K∗∑
k=1

1
2k

‖Φf (t) − Φg(t)‖C0([−K∗,K∗])

(1 + ‖Φf (t) − Φg(t)‖C0([−K∗,K∗]))

≤
K∗∑
k=1

1
2k

∥∥Φf (t) − Φg(t)
∥∥
C0([−K∗,K∗]) <

∥∥Φf (t) − Φg(t)
∥∥
C0([−K∗,K∗]).

Now from (12) we know that there exist N∗ = K∗ + �2
ς � and δ̃ such that ‖f − g‖L∞([−N∗,N∗]) < δ̃ implies 

‖Φf (t) − Φg(t)‖C0([−K∗,K∗]) < ε/2 and thus it also implies dC0(R)(f, g) < ε. But then

‖f − g‖L∞
loc(R) <

1
N∗

‖f − g‖L∞([−N∗,N∗])
<

1
N∗

δ̃ ˜.
2 1 + ‖f − g‖L∞([−N∗,N∗]) 2 1 + δ
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Therefore with δ := 1
2N∗

δ̃

1+δ̃
we have dL∞

loc(R)(f, g) < δ =⇒ dC0
loc(R)(Φf , Φg) < ε, which proves the state-

ment. �
Under stronger assumptions on f we prove the following:

Proposition 2.9. If f ∈ C0(R), then the mapping f �→ Φ is continuous from the topology C0(R) into 
C1(R)-topology at every point f satisfying the following condition: there exist ς > 0 and M such that 
ς < f(t) − σ < M for all t.

Proof. Eq. (6), equivalent to eσt = H(Φ(t), t) with H(x, t) =
∫ x

t
[f(u) −σ]eσu du, differentiated with respect 

to t gives that

Φ′(t) = f(t)
f(Φ(t)) − σ

e−σ(Φ(t)−t). (13)

Note that this formula is well-defined for all t since by our assumption f(Φ(t)) − σ �= 0.
Suppose now that ‖f − g‖L∞([−N∗,N∗]) < δ (notation as in the previous proof). Then for t ∈ [−K∗, K∗]

we have the following estimates: Φf (t) − t < 1/ς and e−σ(Φf (t)−t) < M/ς, correspondingly Φg(t) − t < 2/ς
and e−σ(Φg(t)−t) < 4M/ς, which can be obtained from (6). Calculations allow us to estimate

∣∣Φ′
f (t) − Φ′

g(t)
∣∣ =

∣∣∣∣ f(t)
f(Φf (t)) − σ

e−σ(Φf (t)−t) − g(t)
g(Φg(t)) − σ

e−σ(Φg(t)−t)
∣∣∣∣ ≤ . . .

<
Mδ

ς2
+ 2(2M + σ)

ς2

(
Mδ

ς
+ 4M2σ

ς

∣∣Φf (t) − Φg(t)
∣∣).

As δ → 0 also |Φf (t) − Φg(t)| → 0 uniformly in t ∈ [−K∗, K∗] by the previous result. This proves the 
continuity of f �→ Φ from the Frechet space C0(R) to the Frechet space C1(R). �
Remark 2.10. For the Perfect Integrator (4) we obtain that

Φ′(t) = f(t)
f(Φ(t)) (14)

and thus we can prove the statement of Proposition 2.9 for the PI-model under the assumption that f ∈
C0(R) and 0 < ς < f(t) < M even easier.

Lemma 2.11. For the model ẋ = −σx + f(t), σ ≥ 0

(a) if f ∈ Ck(R), where k ∈ N ∪ {0}, and f(t) − σ > 0 for all t, then Φ ∈ Ck+1(R),
(b) if f ∈ L1

loc(R) and f(t) − σ > 0 a.e., then Φ ∈ C0(R).

Proof. The first part is a direct consequence of the formula (13). As for the second part, choose t0 ∈ R and 
let tn ↘ t0. By definition of the firing map (6) and the assumption that f(t) − σ > 0 a.e., tn > t0 implies 
Φ(tn) > Φ(t0) and we can write the following equation, involving Φ(tn) and Φ(t0):

eσtn − eσt0 +
tn∫ [

f(u) − σ
]
eσu du =

Φ(tn)∫ [
f(u) − σ

]
eσu du.
t0 Φ(t0)
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Since tn ↘ t0, the left side of this equation decreases to 0 with n → ∞. Hence also 
∫ Φ(tn)
Φ(t0) [f(u) −σ]eσu du → 0. 

But as the integrand is positive a.e., it must hold that Φ(tn) ↘ Φ(t0). Thus Φ is right-continuous at t0. 
Similarly, we prove that it is left-continuous. �
3. Periodic drive for LIF and PI models

In case of a periodic drive, we will frequently use results proved by us in [16] but we will also rely on 
what we have proved in previous part of the paper and on the special properties of the LIF system.

Definition 3.1. We say that a function f ∈ L1
loc(R) is periodic, if there exists T > 0 such that f(t +T ) = f(t)

a.e.

Remark 3.2. Notice that if f ∈ C0(R) is periodic, then the condition f(t) −σ > ς for some ς > 0 reduces to 
f(t) −σ > 0. In this case Φ : R → R is a lift of an orientation preserving circle homeomorphism by Fact 1.2.

However, for locally integrable periodic functions the requirement f(t) − σ > ς > 0 a.e. is not equivalent 
to f(t) − σ > 0 a.e. (take, for example, σ = 1 and f(t) = 1/n + 1 for t ∈ [k − 1

2n−1 , k − 1
2n ), k ∈ Z, n ∈ N). 

Nevertheless, for f ∈ L1
loc(R) periodic it is enough to assume that f(t) − σ > 0 a.e. in order to assure that 

the firing map Φ (in the generalized sense of Definition 2.1) has the desired property:

Lemma 3.3. If f ∈ L1
loc(R) is periodic with period T = 1 and f(t) −σ > 0 a.e., then the firing map Φ induced 

by (3) is a lift of an orientation preserving circle homeomorphism.

Proof. From (6) and periodicity of f we have

eσ(t+1) =
Φ(t+1)∫
t+1

[
f(u) − σ

]
eσu du =

Φ(t+1)∫
t+1

[
f(u− 1) − σ

]
eσu du = eσ

Φ(t+1)−1∫
t

[
f(u) − σ

]
eσu du

which is equivalent to

Φ(t)∫
t

[
f(u) − σ

]
eσu du =

Φ(t+1)−1∫
t

[
f(u) − σ

]
eσu du.

Since for fixed t, F (t∗) =
∫ t∗
t

[f(u) − σ]eσu du is a continuous increasing function of t∗ as the integrand is 
positive a.e., the above implies that Φ(t + 1) = Φ(t) + 1 and thus Φ has the property of a degree one circle 
map. Then as Φ is continuous and increasing, it must be in fact a lift of an orientation preserving circle 
homeomorphism. �

Thus when f ∈ L1
loc(R) is periodic and f(t) − σ > 0 a.e., the unique firing rate FR(t) = r always exists 

(independently of t), since it is the reciprocal of the unique rotation number �(Φ) = limn→∞
Φn(t)

n , t ∈ R.
For the simple model (4), where f ∈ L1

loc(R), f(t) > 0 a.e. and f is periodic (with period 1), Φ : R → R is 
a lift of an orientation preserving circle homeomorphism ϕ (which is then the firing phase map), as follows 
from the lemma above. Moreover, in [3] it was proved that in this case ϕ : S1 → S1 is always conjugated 
with the rotation r� by � via the homeomorphism γ with a lift Γ given as

Γ (t) :=
∫ t

0 f(u) du∫ 1 , t ∈ R. (15)

0 f(u) du
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Formula (9) for the firing rate when f is periodic with period T = 1 reduces to r =
∫ 1
0 f(u) du. Thus

� = 1∫ 1
0 f(u) du

(16)

is the analytical expression for the rotation number of ϕ. One can check by a short direct calculation that 
indeed we have Γ (Φ(t)) = Γ (t) + �, where Γ is continuous, increasing and satisfies Γ (t + 1) = Γ (t) + 1, i.e. 
γ conjugates ϕ with r�.

Observe that an almost everywhere non-negative function f : R → R, where f ∈ L1
loc(R), defines a 

measure μf on R for which f is the density (the Radon–Nikodym derivative of μf ), i.e.

μf (A) :=
∫
A

f(u)du, (17)

where A is any measurable (Borel) subset of R. From definition of the firing map and the fact that it is a 
homeomorphism we justify:

Proposition 3.4. Let f ∈ L1
loc(R), f(t) > 0 a.e. be periodic, Φ : R → R be the firing map associated with (4), 

and μf the associated with f measure. Then μf is Φ-invariant, i.e. Φ preserves the measure μf .

Compare the above result with Proposition 6 in [3] where the author considered the firing map cut to 
its image ImΦ in order to show invariance of the measure μ̃f defined as μ̃f (A) :=

∫
A∩Im Φ

f(t) dt but this 
restriction is not necessary when we take f > 0 a.e. (and then of course μ̃f = μf ).

Throughout the rest of this section we assume that

(1) f is measurable and f ∈ L∞
loc(R) (thus in particular f ∈ L1

loc(R))
(2) f is periodic (allowing also the case of f constant) in the sense of Definition 3.1 (with period T = 1, 

without the loss of generality)
(3) f(t) − σ > 0 a.e. in R.

Under these assumptions the firing map Φ is a lift of a circle homeomorphism ϕ ∼ Φ mod 1. Note that in this 
case Φ satisfies Φ(t + 1) = Φ(t) + 1 for every t ∈ R and thus the compact convergence in the Frechet space 
C0(R) (Cm(R)) is equivalent to the uniform convergence (uniform convergence up to m-th derivative) on R
because it is enough to consider Φ and Φn cut to the interval [0, 1] (we say that Φn converges compactly to Φ
if for every K ⊂ R compact limn→∞ supt∈K |Φn(t) −Φ(t)| = 0). In other words, if we admit only 1-periodic 
inputs f and fn, then supt∈R |Φn(t) − Φ(t)| = supt∈[0,1] |Φn(t) − Φ(t)| < ε whenever dL∞

loc(R)(fn, f) < δ for 
sufficiently small δ.

Except for the continuity of the mapping f �→ Φ from the L∞
loc(R)-topology into C0(R), we will also need 

the continuity f �→ Γ , where Γ : R → R is the lift of the map γ : S1 → S1 (semi-)conjugating the firing 
phase map ϕ : S1 → S1 with the rotation r�, where � = �(ϕ) ∈ R \Q is the rotation number of ϕ.

Lemma 3.5. Suppose that �(Φ) ∈ R \ Q, where Φ is a firing map induced by Eq. (3) with σ ≥ 0. Then the 
mapping f �→ Γ , where Γ : R → R is a lift of γ (semi-)conjugating ϕ with the rotation r�, is continuous 
from the L∞

loc(R)-topology into C0(R) (with supR-norm) at every point f such that f(t) − σ > ς a.e. for 
some ς > 0.

By the continuity of f �→ Γ we mean that when f̃ is a small enough perturbation of f , with respect to 
L∞

loc-topology, and �̃ = �(Φ̃) ∈ R \ Q, then Γ̃ can be chosen such that Γ and Γ̃ are uniformly close, where 
Φ̃ is a firing map induced by ẋ = −σx + f̃(t) and Γ̃ is a lift of γ̃ where γ̃ ◦ ϕ̃ = r�̃ ◦ γ̃.
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Proof of Lemma 3.5. We have already proved the continuity of the mapping ϕ �→ γ from C0(S1) →
C0(S1) in Theorem 2.3 in [16]. From this it follows the continuity of Φ → Γ from C0(R) into C0(R) (with 
supR-topologies). Since we also have the continuity of f → Φ under the stated assumptions, the statement 
of the lemma holds. �
3.1. Regularity properties of the ISIn sequence

We will formulate some detailed results concerning regularity of the sequence of interspike-intervals for 
PI and LIF models. By regularity properties we mean periodicity, asymptotic periodicity and the property 
of almost strong recurrence.

Due to Lemma 3.3 investigation of interspike-intervals ISIn(t0) for f periodic is covered by the analysis 
of the displacement sequence ηn(z0) of an orientation preserving circle homeomorphism, being the firing 
phase map ϕ. Thus ISIn(t0) equals ηn(z0) (where z0 = e2πıt0) up to some constant integer and the sequences 
ISIn(t0) and ηn(z0) have virtually the same properties.

Proposition 3.6. Consider the Perfect Integrator model ẋ = f(t). If T =
∫ 1
0 f(u) du = q/p ∈ Q, then the 

sequence ISIn(t) for every initial condition (t, 0) is periodic with period q.

Proof. The analytical expression for the firing rate (9) of PI model for f 1-periodic reduces to 
∫ 1
0 f(u) du. 

This means that in our case the rotation number of the underlying firing phase map ϕ : S1 → S1 equals to 
� = 1/ 

∫ 1
0 f(u) du. Thus if T = 1/� = q/p is rational, ϕ is topologically conjugated to the rational rotation 

r� by � and thus there are only periodic orbits with period q. As a result, the sequence of displacements 
of ϕ, and consequently the sequence ISIn(t0), is periodic with period q. �
Example 2. For the LIF model ẋ = −x + 1

1−e−q , where q ∈ N, the sequence of interspike-intervals is constant: 
ISIn(t0) = q. Indeed, in [3] it was shown that the input current of such a form induces conjugacy with the 
rational rotation by �(Φ) = q. Consequently, the firing map Φ satisfies Φ(t) = t +q and is simply a translation 
by q. Thus for every n ∈ N and t we have Φn(t) − Φn−1(t) = q and we observe 1 spike per every q periods 
of forcing.

Brette [3] also proved that f(t) = 1
1−e−q is the only one input current which induces conjugacy with 

a rotation by q ∈ N (for σ = 1). It is much harder to show what are all the input currents that induce 
conjugacy with � = q/p (p �= 1) but this assumption implies some constraints on f(t), which seem to be 
quite restrictive (for some values of p/q the conjugacy might not be possible at all, see discussion in [3]). 
Thus we might conclude that in “majority of cases” the firing phase map arising from the LIF model, which 
has rational firing rate, is not conjugated to the corresponding rotation and:

Remark 3.7. For the LIF model with a firing rate FR = q/p, the sequence of interspike-intervals ISIn(t0) is 
“typically” not periodic but only asymptotically periodic (with the period equal to q in the limit n → ∞). 
Precisely,

∀ε>0 ∃N∈N ∀n∈N ∀k∈N

∣∣ISIn+kq(t0) − ISIn(t0)
∣∣ < ε.

Proof. This is a simple consequence of the fact that the firing phase map ϕ induced by LIF with � ∈ Q is 
usually not conjugated to a rational rotation but it is a semi-periodic circle homeomorphism. Thus ϕ has 
also non-periodic orbits, being asymptotically attracted to periodic ones (cf. [21]). �

When the input function is periodic, the (asymptotically) periodic output of the system, in terms of 
interspike-intervals, is connected with the phenomena called phase-locking, see Fig. 1. Precisely, we say that 
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Fig. 1. An example of 4 : 3-phase locking.

the system exhibits q : p-phase locking (which corresponds to the rotation number equal to p/q), when it 
fires q spikes for every p cycles of forcing (the spikes occur in fixed phases of the forcing period) and this 
state is structurally stable, i.e. it persists under a small change of a parameter θ ∈ Θ. Types of phase-locking 
change with the change of the rotation number, but the mapping θ �→ � is usually constant (under some 
conditions) on rational values of � (look for such concepts as the Devil-staircase and Arnold-tongues).

In next we pass to the case of irrational firing rate. The same property as for the displacement se-
quence of a circle homeomorphism with the irrational rotation number can be shown for the sequence of 
interspike-intervals for the LIF model:

Theorem 3.8. Consider the LIF model ẋ = −σx + f(t) (σ ≥ 0) where f ∈ L1
loc(R) is periodic, f(t) − σ > 0

a.e. and the rotation number �(Φ) is irrational.
Then the sequence {ISIn(t0)} is almost strongly recurrent for all t0 ∈ Δ̃, where Δ̃ is a lift to R of the 

underlying minimal set Δ ⊂ S1 (possibly Δ = S1), i.e.

∀ε>0 ∃N∈N ∀n∈N ∀k∈N∪{0} ∃i∈{0,1,...,N}
∣∣ISIn+k+i(t0) − ISIn(t0)

∣∣ < ε. (18)

Moreover, if f ∈ C2(R), then the sequence {ISIn(t0)} is almost strongly recurrent for all t0 ∈ R (in this 
case Δ = S1).

Proof. Under the stated assumptions the firing phase map ϕ : S1 → S1 is a homeomorphism with irrational 
rotation number. For t0 ∈ Δ̃ the underlying displacement sequence ηn(z0) = Φn(t0) − Φn−1(t0) mod 1, 
z0 = e2πıt0 , is almost strongly recurrent as proved in [21] (the proof is based on the fact that all the orbits 
of points in the minimal set of a continuous transformation on a compact metric space are almost periodic, 
cf. [12]). But then the sequence of interest ISIn(t0) = Φn(t0) −Φn−1(t0) is almost strongly recurrent as well.

As for the second part of the statement, notice that if f ∈ C2(R), then ϕ ∈ C2(S1) and thus on the ground 
of the Denjoy Theorem [8], ϕ is transitive and {ISIn(t0)} is almost strongly recurrent for all t0 ∈ R. �
Remark 3.9. Notice that Proposition 3.6, Remark 3.7 and Theorem 3.8 remain true when one replaces 
the “sequence of interspike-intervals” simply with the “sequence of firing times phases”, i.e. the sequence 
Φn(t0) mod 1.

3.2. Distribution of interspike-intervals

In this part we consider IF models, for which the firing rate, and consequently the rotation number of 
the firing phase map ϕ, is irrational.

Proposition 3.10. Consider the LIF model ẋ = −σx + f(t), where f ∈ L1
loc(R) is 1-periodic, f(t) − σ > 0

a.e. and the rotation number � = �(Φ) is irrational. By Γ denote the lift of γ (semi-)conjugating ϕ with r�. 
Under these assumptions:
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(1) If ϕ is transitive (for example, when f ∈ C2(R)), then the sequence ISIn(t0) for every t0 ∈ R is dense 
in the interval

S = Ψ
(
[0, 1]

)
= Ω

(
[0, 1]

)
, (19)

where Ψ(t) = Φ(t) − t is a displacement function of Φ and Ω(t) := Γ−1(t + �) − Γ−1(t).
(2) If ϕ is not transitive, then the sequence ISIn(t0) for t0 ∈ Δ̃ (the total lift of Δ to R) is dense in the set

Ŝ = Ψ(Δ̃) = Ω̂(Δ̂0),

where Δ̂0 is a lift to [0, 1] of a subset Δ̂ ⊂ Δ, such that the semi-conjugacy γ is invertible on Δ̂, and 
Ω̂ := Γ̂−1(t + �) − Γ̂−1(t), where Γ̂ := Γ � Δ̂0 is a lift of γ cut to the set Δ̂0.
Moreover, when one takes t0 ∈ R \ Δ̃, then for every t ∈ Δ̃ there exists an increasing sequence nk, 
k ∈ N, such that for every l ∈ N we have

lim
k→∞

ISIl
(
Φnk(t0)

)
= Φnk+l(t0) − Φnk+l−1(t0) = Φl(t) − Φl−1(t) = ISIl(t).

Since usually we do not know the formula for the (semi-)conjugacy Γ (except for the Perfect Integrator), 
the equivalent formula for the concentration set of ISI involving Ω is not directly useful but it is used in 
proving statements concerning the distribution of interspike-intervals with respect to the unique invariant 
measure.

Proof of Proposition 3.10. The above proposition is a direct consequence of Proposition 2.1 in [16], the 
corresponding statement for the displacement sequence of an orientation preserving circle homeomorphism 
with irrational rotation number. �

Proposition 3.10 means that even if we are not able to compute directly the set of concentration of 
interspike-intervals, we know at least that interspike-intervals practically fill a whole interval (i.e. do not 
form for instance something in the type of a Cantor set), provided that f is smooth enough. This is also 
visible in numerical Example 5. However, note that in a special case, where ϕ is a strict rotation (as happens 
for example for LIF and PI with constant input), this interval degenerates to a single point {�} (since the 
rotation is an isometry).

We will discuss the distribution μISI of interspike-intervals with respect to the unique (up to normaliza-
tion), ϕ-invariant measure μ.

Definition 3.11. Suppose that the rotation number �(Φ) is irrational. Let μ be the unique invariant probability 
measure for ϕ ∼ Φ mod 1. The distribution of interspike-intervals is defined as

μISI(A) := μ
({

t ∈ [0, 1]: Φ(t) − t ∈ A
})

= μ
(
Ψ−1(A)

)
, A ⊂ R

where Ψ(t) = Φ(t) − t, t ∈ [0, 1], is a displacement function associated with Φ.

Note that since Φ mod 1 is periodic with period 1, we consider only t ∈ [0, 1]. Moreover, although the 
measure μ has support contained in [0, 1], as it is the invariant measure for Φ mod 1 : [0, 1] → [0, 1], the 
measure μISI has support equal to Ψ([0, 1]), which in general might not be contained in [0, 1] but it is always 
contained is some interval of length not greater than 1 because Φ maps intervals of length 1 onto intervals 
of length 1 due to the fact that Φ(t +1) = Φ(t) +1 for every t (the resulting interval, containing supp(μISI), 
is shifted by a from its projection mod 1 into [0, 1], where a > 0 is such that Φ(0) = a). We can consider 
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μISI(A), where A is an arbitrary subset of R, if we adopt the convention that μISI is defined on the whole 
R but it simply vanishes everywhere outside its support.

As a direct consequence of Proposition 3.10 we obtain

Corollary 3.12. Under the assumptions of Proposition 3.10 the distribution μISI is the transported Lebesgue 
Λ measure on [0, 1]:

1. If ϕ is transitive, then

μISI(A) = Λ
(
Ω−1(A)

)
, A ⊂ R

and the support of μISI equals

supp(μISI) = Ψ
(
[0, 1]

)
= Ω

(
[0, 1]

)
.

2. If ϕ is not transitive, then analogously

μISI(A) = Λ
(
Ω̂−1(A)

)
, A ⊂ Ŝ,

and the support of μISI equals

supp(μISI) = Ψ(Δ̃),

where Ω, Ω̂, Δ̃ and Ŝ are as in Proposition 3.10.

Obviously, the support supp(μISI) is just the set of concentration of the interspike-intervals sequence.
We are concerned with the distribution μISI of interspike-intervals with respect to the natural invariant 

measure μ, since this theoretical distribution is a limiting distribution of interspike-intervals computed along 
an arbitrary trajectory:

Proposition 3.13. Under the assumptions of Proposition 3.10 (regardless the transitivity of ϕ), for A ⊂ R

we have

lim
n→∞

�{0 ≤ i ≤ n− 1: ISIi(t) ∈ A}
n

= μISI(A),

where � denotes the number of elements of the set, and the above convergence is uniform (with respect to 
t ∈ R).

The average interspike interval aISI (which equals the rotation number �(Φ)) is the mean of the distribu-
tion μISI:

aISI =
∫
R

Φ(t) − t dμ(t) =
∫
R

dμISI.

Proof. The statements can be justified by the Birkhoff Ergodic Theorem applied to the observable Ψ(t) =
Φ(t) − t. The uniform convergence in the first part follows from the fact that the system (Φ mod 1, [0, 1], μ)
is not only ergodic but uniquely ergodic (compare with Proposition 4.1.13 and Theorem 11.2.9 in [13] or 
Remark 2.5 in [16]). �

Our aim will be to consider parameter-dependant IF systems and to formulate results describing how the 
distribution μISI varies with change of the parameter.

http://mostwiedzy.pl


W. Marzantowicz, J. Signerska / J. Math. Anal. Appl. 423 (2015) 456–479 471

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Definition 3.14. (See e.g. [2].) Let X be a complete separable metric space and M(X) the space of all finite 
measures defined on the Borel σ-field B(X) of subsets of X.

A sequence μn of elements of M(X) is called weakly convergent to μ ∈ M(X) if for every bounded and 
continuous function f on X

lim
n→∞

∫
X

f(x) dμn(x) =
∫
X

f(x) dμ(x).

We denote the weak convergence as μn =⇒ μ.

Definition 3.15. A Borel set A is said to be a continuity set for μ if A has μ-null boundary, i.e.

μ(∂A) = 0.

One can show (cf. [19]) that μn =⇒ μ if and only if for each continuity set A of μ, limμn(A) = μ(A).

Proposition 3.16. Consider the systems ẋ = −σx + f(t) and ẋ = −σx + fn(t), n ∈ N, where the functions 
fn, f ∈ L∞

loc(R) are measurable, periodic with period 1 and f satisfies f(t) − σ > ς > 0 a.e. Suppose that all 
the induced firing maps Φn and Φ have irrational rotation numbers, �n and �, respectively. By μ(n)

ISI and μISI
denote the interspike-interval distributions, correspondingly for Φn and Φ, with respect to the corresponding 
invariant measures μ(n) and μ.

If fn → f in L∞
loc(R)-topology, then

μ
(n)
ISI =⇒ μISI.

Proof. Recall that the invariant measures, μ(n) and μ, are the Lebesgue measure transported by the maps 
Γn and Γ (semi-)conjugating corresponding firing maps Φn and Φ with the rotations. Since we already know 
that the mapping f �→ Γ is continuous from the L∞

loc(R)-topology into C0(R), it must hold that Γn → Γ

in C0(R) (with supR-topologies). But then μ(n) =⇒ μ, i.e. we have the weak convergence of the invariant 
measures. Since the interspike-interval distributions are in turn the invariant measures transported by the 
corresponding displacement functions Ψn → Ψ in supR, by the same argument we get the statement on μ(n)

ISI
and μISI. �

Recall that the weak convergence of measures does not imply the point-wise convergence of the corre-
sponding densities: in general the densities of μ(n)

ISI or μISI might not exist, as in Example 3.
Notice that in the above proposition we needed the fact that all the rotation numbers �n and � are 

irrational since this guarantees that the unique invariant measures μ(n) and μ exist and we can define the 
distributions μ(n)

ISI and μISI. Later on we will see what happens if the intermediate firing maps Φn may have 
rational rotation numbers as well.

However, now we want to formulate some more detailed theorems on convergence of interspike-interval 
distributions. This is quite simply achievable for the simplest model, the Perfect Integrator Model.

Proposition 3.17. Consider the systems of Perfect Integrators ẋ = fn(t), n ∈ R, and ẋ = f(t), where the 
functions fn, f ∈ C0(R) are periodic with period 1, fn(t), f(t) > 0, fn → f in C0(R) and where all the 
rotation numbers of the firing maps are irrational, �n, � ∈ R \Q. Then the invariant measures μ(n) and μ
have densities, say gn and g correspondingly, and

gn → g in C0([0, 1]
)
.
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As for the distributions of interspike intervals, if additionally the set of critical points of the displacement 
function Ψ := Φ − Id of the limiting firing map Φ, i.e. the set CΨ := {t ∈ [0, 1]: Ψ ′(t) = 0 ⇐⇒ Φ′(t) = 1}, 
is of Lebesgue measure 0, then we have

sup
[∣∣μ(n)

ISI (I) − μISI(I)
∣∣, I ∈ J

]
→ 0, (20)

where J denotes the class of all intervals I ⊂ [0, 1] (open, closed, half-closed).

Proof. Proposition 3.4 provides the following formula for the unique invariant probability measure μ of the 
firing phase map for the Perfect Integrator:

μ(A) =
∫
A
f(u) du∫

[0,1] f(u) du
, A ⊂ [0, 1] – Borel subset. (21)

This formula is also consistent with the formula for the (semi-)conjugacy Γ , since by the standard result 
on circle homeomorphisms (see [7, p. 34]) it holds that Γ (t) = μ([0, t]) (provided that Γ (0) = 0 which we 
can assume without the loss of generality as the conjugacy Γ is given up to the additive constant). Thus 
gn(t) = fn(t)/ 

∫ 1
0 fn(u) du = Γ ′

n(t), t ∈ [0, 1], correspondingly g(t) = f(t)/ 
∫ 1
0 f(u) du = Γ ′(t), and the 

uniform convergence of densities follows. This in particular implies that

sup
[∣∣μ(n)(A) − μ(A)

∣∣; A – Borel subset of [0, 1]
]
→ 0. (22)

Indeed, by the existence and convergence of densities Γ ′
n and Γ ′, |μ(n)(A) −μ(A)| = | 

∫
A
Γ ′
n(u) −Γ ′(u) du| <

εΛ(A) for sufficiently large n, but since Λ(A) ≤ 1, the convergence is uniform with respect to the choice of 
A ⊂ [0, 1].

Unfortunately, without the assumption on the 0-measure of the set of critical points of the limiting 
displacement function Ψ , we cannot assure that the distribution μISI of interspike-intervals has density 
(with respect to the Lebesgue measure), as we will see in Example 3. However, under this assumption by 
Proposition 2.10 in [16] we obtain (20), i.e. we know that convergence of interspike-intervals distributions is 
uniform on the collection of all the intervals (in this case the density of μISI exists by Theorem 3.18 below, 
but the densities of μ(n)

ISI might still not exist and we cannot argue as above for (22)). �
In order to compute the set CΨ for Perfect Integrator one has to solve in t the implicit equation f(t) =

f(Φ(t)) by (14), which usually is difficult. But in the forthcoming example we will see that verifying the 
assumption on the zero Lebesgue measure of this set is sometimes not that challenging. We only remark 
that when, in particular, f is constant, this assumption is not satisfied. However, in this case the emerging 
firing map Φ is exactly the lift of the rotation by � and the distribution of interspike intervals equals simply 
the Dirac delta δ�. Thus μISI is not absolutely continuous with respect to Λ.

The theorem below provides sufficient conditions for the distribution μISI to have the density with respect 
to the Lebesgue measure. We formulate it in the most general form:

Theorem 3.18. Suppose that the firing map Φ arising from the system ẋ = F (t, x) is a C1-diffeomorphism 
with irrational rotation number �, which is conjugated with the translation by � via a C1-diffeomorphism Γ
and that the set CΨ ⊂ [0, 1] of critical points of the displacement function Ψ �[0,1] is of Lebesgue measure 0.

Then the distribution μISI is absolutely continuous with respect to the Lebesgue measure Λ with the density 
Δ(y) equal to

Δ(y) =
{

0 if y /∈ supp(μISI);∑
−1 Γ ′(t) 1

′ if y ∈ supp(μISI),
(23)
t∈Ψ (y) |Φ (t)−1|
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where the latter is well-defined almost everywhere in supp(μISI), i.e. in supp(μISI) \ V (CΨ ), where V (CΨ )
denotes the set of critical values of Ψ � [0, 1].

Proof. The theorem is a mere tautology of Theorem 2.14 in [16]. �
In particular, for the Perfect Integrator we make use of the formulas (14) and (15) for the derivative Φ′(t)

and the conjugacy Γ in order to obtain that (23) reduces to:

Δ(y) =
{

0 if y /∈ [minu∈[0,1) Φ(u) − u,maxu∈[0,1) Φ(u) − u];∑
t∈Ψ−1(y)

f(t)∫ 1
0 f(u) du

f(Φ(t))
|f(t)−f(Φ(t))| if y ∈ [minu∈[0,1) Φ(u) − u,maxu∈[0,1) Φ(u) − u].

Example 3. Consider the systems ẋ = fn(t), where

fn(t) = An + Bn cos(2πnt)

and

An → A0 > 0 and 0 < Bn → 0.

Suppose that the constants An and Bn are such that fn(t) > 0, at least for sufficiently large n ∈ N. In 
particular, we have the convergence fn → f0 in C1(R), where f0 ≡ A0. The firing maps Φn are then the 
lifts of circle diffeomorphisms with rotation numbers �n = 1

An
. Moreover, on the account of Proposition 2.9, 

Φn → Φ0 in C1(R), where Φ0(t) = t + �0 = t + 1
A0

is the firing map induced by the equation ẋ = f0(t)
and simply a lift of the rotation by �0. The firing maps Φn and Φ0 are conjugated to the corresponding 
rotations, respectively, via diffeomorphisms

Γn(t) = �n

t∫
0

fn(u) du = t + Bn

2πnAn
sin(2πnt)

and

Γ0(t) = t.

Assume that �n, �0 ∈ R \Q, n ∈ N. Obviously, Γn → Γ0 in C1(R). In particular, the densities Γ ′
n(t) = fn(t)

An

and Γ ′
0(t) =

f0(t)
A0

of invariant measures μ(n) and μ(0) converge uniformly. As for the interspike-interval 
distributions, we certainly have μ(n)

ISI =⇒ μ
(0)
ISI. However, the assumption on the zero measure set CΨ0 is not 

satisfied since Φ0 is a lift of the rotation and its displacement Ψ0 = �0 is a constant function. Thus the set 
of critical points of Ψ0 has full measure and indeed the distribution μ(0)

ISI is degenerated to a point �0 (i.e. it 
is not absolutely continuous with respect to the Lebesgue measure). Nevertheless, the distributions μ(n)

ISI are 
absolutely continuous since the sets CΨn

of critical points of displacement functions Ψn are countable (and 
the densities Δ(n)(y) exist on the ground of Theorem 3.18). Indeed: Note that t ∈ R is a critical point of 
Ψn if and only if Φ′

n(t) = 1. But Φ′
n(t) = fn(t)

fn(Φn(t)) = 1 means that cos(2πnt) = cos(2πnΦn(t)) which holds 
if and only if sin(πn(Φn(t) + t)) = 0 or sin(πn(Φn(t) − t)) = 0. Anyone of these two alternatives happens 
for at most countably many choices of t (as one justifies with a little effort).

Thus for each n ∈ N the displacement functions Ψn have countably many critical points. Now, by 
Theorem 3.18, the distributions μ(n)

ISI have densities Δ(n) with respect to the Lebesgue measure. Nevertheless, 
the limiting (in terms of weak convergence of measures) distribution μ(0)

ISI is not absolutely continuous.
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Example 4. Let us consider Perfect-Integrator Model: ẋ = fn(t), where

fn(t) = A + B cos(2πnt), n ∈ N.

If A > B > 0 then fn(t) > 0 for every n ∈ N and t ∈ R. In this case the firing maps Φn : R → R induced by 
the equations ẋ = fn(t) are lifts of orientation preserving circle homeomorphisms ϕn : S1 → S1. Moreover, 
each Φn is conjugated with the lift R�n

(t) = t + 1
A of the rotation by �n = 1/ 

∫ 1
0 A +B cos(2πnt)dt = 1

A via

Γn(t) =
∫ t

0 A + B cos(2πnu)du
A

= t + B

2πnA sin(2πnt).

In particular, all the rotation numbers �n of Φn are the same and can be set rational or irrational with 
arbitrary Diophantine properties (it depends only on the choice of A).

Since Γn → Id uniformly (i.e. in C0(R)), also Γ−1
n → Id uniformly. Consequently,

Φn(t) = Γ−1
n

(
Γn(t) + �n

)
= Γ−1

n

(
t + B sin(2πnt)

2πnA + 1
A

)
→ t + 1

A

and thus also Φn → Φ0 uniformly with Φ0(t) = t + 1
A being simply a lift of the rotation by 1

A . Note that 
Φ0(t) can be seen as a firing map induced by the equation ẋ = f0(t) with f0(t) = A. However, it is not true 
that fn → f0 uniformly or even pointwise.

From the uniform convergence Φn → Φ0 we have the weak convergence μ(n) =⇒ μ(0) of the corresponding 
unique invariant probability measures:

μ(n)(V ) =
∫
V
fn(u)du
A

, V ⊂ [0, 1],

where μ(0) = Λ is the Lebesgue measure on [0, 1] (being the invariant measure of Φ0). From the formula for 
μ(n) we see that the invariant measures μ(n) have densities

f̃n = fn
A

and the measure μ(0) has a density

f̃0 = f0

A
≡ 1.

However, f̃n � f̃0, similarly as fn � f0. In particular, this shows that the weak convergence of measures 
does not imply (even pointwise) convergence of the corresponding continuous density functions. Thus the 
sequence of conjugacies Γn does not converge in C1(R) but only in C0(R).

3.3. Empirical approximation of the interspike-interval distribution μISI

Virtually we are able to calculate only the empirical interspike-interval distribution, i.e. the distribu-
tion derived by counting interspike-intervals along a particular trajectory (a run of a system). In case of 
the rational firing rate necessarily there are periodic orbits (and usually also non-periodic but these are 
attracted to the periodic ones) and although all the periodic orbits have the same period, the (finite) 
sequences ISIn(t0) derived along the orbit of each periodic point t0 might consist of different elements 
unless the system induces a rigid rotation. However, in case of the irrational rotation number we have 
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the unique invariant ergodic measure that gives the distribution of orbits phases. Thus μISI is also well-
defined and the empirical distribution of interspike-intervals derived for any trajectory will well approximate 
μISI, provided that the trajectory is long enough. However, basically when we do numerical computa-
tions, we do not work with irrational rotation numbers, but the rational ones which are close to them. 
We will see in what meaning the empirically derived interspike-interval distribution for an arbitrarily cho-
sen initial condition (t, 0) of a system with rational firing rate, being “close” enough to our entire system 
with irrational firing rate, approximates the desired distribution μISI of the “irrational” (ergodic) sys-
tem.

We have to define the empirical interspike-interval distribution formally:

Definition 3.19. Let Φ be the firing map arising from the IF system ẋ = F (t, x). Choose the initial condition 
(t, 0) (xr = 0). Then the empirical interspike-interval distribution for the run of length n (i.e. having 
n-spikes) starting at (t, 0) equals

ωn,t = 1
n

n−1∑
i=0

δISIi(t),

where δISIi(t) is a Dirac delta centred at the point ISIi(t) = Φi+1(t) − Φi(t).

Thus ωn,t(A) = 1
n �{0 ≤ i ≤ n − 1: Φi+1(t) − Φi(t) ∈ A}, A ⊂ R.

Note that if ϕ̃ with rotation number �̃ is close in C0(S1)-metric to ϕ with irrational rotation number �, 
then the rotation numbers �̃ and � are also close due to the continuity of the rotation number in C0(S1)
(cf. Proposition 11.1.6 in [13]).

In order to measure the distance between interspike-interval distribution we introduce the notion of the 
Fortet–Mourier metric (cf. [22]):

Definition 3.20. Let μ and ν be the two Borel probability measures on a measurable space (Ω, F), where Ω
is a compact metric space. Then the distance between the measures μ and ν is defined as

dF (μ, ν) := sup
{∣∣∣∣∫

Ω

f dμ−
∫
Ω

f dν

∣∣∣∣: f is 1-Lipschitz
}
.

We formulate the following:

Proposition 3.21. Consider the integrate-and-fire systems ẋ = −σx + fθ1(t) and ẋ = −σx + fθ2(t), where 
fθi ∈ L∞

loc(R), periodic with period 1 and fθ1(t) −σ > ς > 0. By Φθ1 and Φθ2 denote the firing maps emerging 
from the corresponding systems. Suppose that the rotation number associated with Φθ1 is irrational.

For any ε > 0 there exists a neighbourhood U of fθ1 in L∞
loc(R)-topology such that if fθ2 ∈ U , then for 

every initial condition (t, 0) we have:

dF

(
lim
n→∞

ω
(θ2)
n,t , μ

(θ1)
ISI

)
< ε, (24)

where ω(θ2)
n,t is the empirical interspike-interval distribution for the run of the system ẋ = −σx + fθ2(t)

starting from (t, 0) and μ(θ1)
ISI is the interspike-interval distribution for ẋ = −σx + fθ1(t) with respect to its 

invariant measure μ(θ1).

Proof. The proof relies again of the fact that the mapping f �→ Φ is continuous from ess sup-topology into 
C0(R). Then the statement follows immediately from Theorem 2.17 in [16]. �
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As the convergence under Fortet–Mourier metric implies weak convergence of measures [11] we con-
clude:

Corollary 3.22. Under the notation as in Proposition 3.21, for every t ∈ R we have

lim
n→∞

ω̃
(θ2)
n,t =⇒ μ

(θ1)
ISI .

The above result can be illustrated by the numerical example:

Example 5. We investigate the system ẋ = −x + 2(1 +β cos(2πt)) (the computations were done in Matlab). 
Notice that the analogous example was considered in a classical paper [14], but the authors gave no rigorous 
explanation of the behaviour of interspike-intervals histograms under a small change of a parameter. Our 
results allow us to make theoretical predicates of what actually we can expect for the interspike-interval 
distribution when the parameter β varies. We easily obtain that for 0 ≤ β < 0.5 the firing map Φ : R → R

is a lift of a circle homeomorphism. The results of numerical simulations for β = 0, 0.1, 0.15, 0.2 and 0.25
are presented in Fig. 2. All the simulations were started from the initial condition (0, 0).

When β = 0 the system is forced by the constant input which induces the rotation by an irrational angle. 
Indeed, by solving the equation and direct computation we obtain that ISIn(t) = � = − ln(0.5) ≈ 0.6931
for every n and t ∈ R. This is reflected in Fig. 2(a): the firing phases are distributed uniformly in [0, 1] and 
the interspike-interval distribution is simply a Dirac delta at ISI(0) ≈ 0.6931. Thus for β = 0 we are dealing 
with the irrational rotation. When we slightly change the parameter β (Fig. 2b–2e), we observe that both 
the distribution of phases and of interspike-intervals change “continuously” as we anticipate from the fact 
that the corresponding distributions are close in dF metric, since the firing maps are close in C0(R) metric. 
In particular the distribution of interspike-intervals is concentrated in the interval around the value of ISI(0)

and the distribution practically fills this whole interval, which is consistent with Proposition 3.10 as in our 
case the input function is smooth.

We also have checked what happens for greater values of β and the results are presented in Fig. 3. 
When β = 0.4, firing phases admit ten distinct values, which suggest that there is a periodic orbit of 
period 10 and indeed, the rotation number was computed as � = 7/10. When the parameter changes to 
β = 0.45 it seems that there are no more periodic orbits (and the rotation number is irrational). Thus 
here the small change of the parameter by 0.05 causes the real qualitative change in the behaviour of 
the system. However, we must recall that usually (i.e. unless the firing phase map is conjugated to the 
rational rotation), having the rational rotation number of a particular value p/q is stable with respect to 
the small change of parameters and thus the system (in terms of periodic orbits) behaves in the same 
way, which is what we call phase locking. In fact the smaller the denominator of the rotation number, the 
more stable it is. Thus the small change of parameters within the neighbourhood of the firing map with 
rational rotation number, also does not cause a qualitative change of the behaviour of the system, as long as 
this change of parameters preserves the rotation number (recall that, under some constraints, the mapping 
Φ �→ � is a Devil-staircase, strictly increasing at irrational values and constant at rational ones, cf. e.g. 
Proposition 11.1.11 in [13]).

In Fig. 3 we may see also what happens for values of β greater than 0.5, precisely for β = 1 and β = 2. 
However, for these parameter values the firing map is not a homeomorphism any more and thus in particular 
the results might depend on the initial condition (t, 0). Therefore these cases are beyond the scope of this 
work.

Remark 3.23. Note that the analogous statements of Propositions 3.13, 3.16 and 3.21 hold for the distribution 
of the firing phases, which is simply the invariant measure μ.
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Fig. 2. Histograms of firing phases (at the top of each subfigure) and interspike-intervals (at the bottom of each subfigure) for the 
model ẋ = −σx + 2(1 + β cos(2πt)) and β = 0, 0.1, 0.15, 0.2, 0.25.

4. Discussion

We have shown many specific properties of the interspike-interval sequence arising from linear periodically 
driven integrate-and-fire models for which the emerging firing phase map is a circle homeomorphism.
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Fig. 3. Histograms of firing phases (at the top of each subfigure) and interspike-intervals (at the bottom of each subfigure) for the 
model ẋ = −σx + 2(1 + β cos(2πt)) and β = 0.4, 0.45, 1, 2.

However, it would be interesting to have such rigorous results on interspike-intervals for periodically 
driven integrate-and-fire models with the firing phase map being not necessary a homeomorphism, but for 
instance just a continuous circle map. We predict that in such systems greater variety of phenomena may be 
observed, mainly due to the fact that in this case we have rotation intervals instead of the unique rotation 
number.
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The natural extension of this research would be to provide a detailed description of the interspike-interval 
sequence for bidimensional IF models [24] or one-dimensional IF systems with an almost periodic input [15].
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