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Highlights

• New definition of the local material symme-
try group within the nonlinear micromor-
phic continuum.

• Definitions of micromorphic solids, fluids
and subfluids.

• Granular material as amicromorphicsub-
fluid.
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On the material symmetry group for micromorphic media

with applications to granular materials

Victor A. Eremeyeva,b,∗

aFaculty of Civil and Environmental Engineering, Gdańsk University of Technology,
ul. Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland

bResearch Institute for Mechanics, National Research Lobachevsky State University of Nizhni Novgorod, Russia

Abstract

Within the framework of the theory of nonlinear elastic micromorphic continua we introduce the new
definition of the local material symmetry group. The group consists of ordered triples of second- and
third-order tensors describing such changes of a reference placement that cannot be recognized with
any experiment. Using the definition we characterize the micromorphic isotropic media, micromorphic
fluids, solids and special intermediate cases called micromorphic subfluids or micromorphic liquid
crystals. We demonstrate that some typical behaviour of such complex media as granular materials
can be described within the micromorphic subfluids mechanics.

Keywords: material symmetry group, micromorphic continuum, subfluids, granular materials.

1. Introduction

Due to rather complex behaviour the proper de-
scription of granular media is a real challenge for
continuum mechanics. Indeed, unlike classic me-
dia granular materials such as sand or powder
demonstrate both fluid- and solid-like behaviour,
see [1–5]. In particular, for macroscopic behaviour
the interaction forces between particles constitut-
ing a granular medium play an important role
[1, 5]. Among continual models used for descrip-
tion of granular media let us mention the micro-
morphic continuum introduced by Mindlin [6] and
Eringen and Suhubi [7]. For the actual state of the
art in the field of the micromorphic mechanics we
refer to [8–10]. In addition to granular media, see
e.g. [11–13], the model was used for description
of deformations of microstructured media such as
foams [14], metamaterials [15, 16], and other mi-
crononhomogeneous media [17–20].

∗Corresponding author. Tel.: +48 58 3471891
Email address: eremeyev.victor@gmail.com

(Victor A. Eremeyev)

Here we introduce a new definition of the lo-
cal material symmetry group for a micromor-
phic medium undergoing finite deformations. The
symmetry group relates to a point of the medium
and to a chosen reference placement. It consists
of all invertible transformations of the reference
placement which keep the strain energy density
unchanged. Using the definition of the group we
characterize the micromorphic solids, fluids and
some intermediate cases called micromorphic sub-
fluids or micromorphic liquid crystals. For sim-
ple materials subfluids were introduced and ex-
tensively discussed by Wang [21], see also [22].
However, let us note that this material model dif-
fers from models of liquid crystals such as nemat-
ics, cholesterics, smectics and other liquid crystals
materials, see, e.g., [23, 24].
The paper is organized as follows. First, in Sec-
tion 2, we briefly introduce the kinematical de-
scriptors and the objective strain energy density
of a nonlinear micromorphic medium. In Sec-
tion 3 we consider changes of reference placements
and the related transformations of the strain mea-
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sures. Then, in Section 4, we introduce the new
definition of the local material symmetry group.
Finally, with the definition we characterize mi-
cromorphic isotropic continua, solids, fluids and
micromorphic liquid crystals (micromorphic sub-
fluids). Here we present an example of a model
of micromorphic subfluid which can flow at the
macroscale whereas at a microlevel it behaves as
a solid.

2. Kinematics and objective strain energy
density

Kinematics of a micromorphic continuum is de-
scribed as a mapping from one state called a ref-
erence placement into another one called an actual
placement. We introduce the placement vectors x
and X defined in actual and reference placements,
respectively. In addition we also introduce two
triples of vectors dk and Dk, k = 1, 2, 3, called
directors which are also relate to the actual and
reference placements, see [8] for details. So the
deformation of a micromorphic continuum is de-
scribed as mappings

x = x(X), dk = d(X). (1)

Initial directors Dk play a role of structural pa-
rameters. We introduce the deformation gradient

F = ∇x, (2)

where ∇ is the nabla-operator in the reference
placement defined as in [25, 26]. For example, in
Cartesian coordinates Xk with corresponding unit
orthogonal vectors ik, im · in = δmn,

F = ik ⊗ x,k. (3)

Hereinafter ‘·’ and ‘⊗’ stand for scalar and tensor
(dyad) products, respectively. For brevity we use
the notation

(. . .),k =
∂(. . .)

∂Xk

.

Instead of dk and Dk we introduce the microdis-
tortion tensor P as

P = Dk ⊗ dk. (4)

Note that F and P have a similar form. Indeed,
the both tensors are sums of diads where each
diad is the tensor product of two vectors such that
the first vector is defined in the reference place-
ment whereas the second is defined in the actual
placement. Unlike the micropolar elasticity here
the directors are not unit and orthogonal to each
other, in general. So P is not orthogonal tensor.
We only assume that P is nonsingular.
For a hyperelastic medium the strain energy den-
sity is given by

W = W (F,P,∇P), (5)

The principle of material frame indifference [22,
27] states that W must be invariant under the
following transformations

x→ Q · x, dk → Q · dk

for any orthogonal tensor Q: Q−1 = QT . As a
result we have that

W (F,P,∇P) = W (F ·QT ,P ·QT ,∇P ·QT ) (6)

for all orthogonal tensors Q. In order to satisfy
(6) we introduce the polar decomposition of P

P = U ·A,

where U = (P · PT )1/2 is a symmetric positive-
definite tensor and A = U−1 ·P is an orthogonal
tensor. Substituting into (6) Q = A−1 = P−1 ·U
we get

W (F,P,∇P) = W (F ·P−1 ·U,U,∇P ·P−1 ·U).

As U2 = P · PT the objective representation of
W take the form

W = W (E,C,K) (7)

where E = F · P−1,C = P · PT ,K = ∇P · P−1

are the strain measures [8]. It is worth to indicate
that C is a symmetric second-order tensor, E is
a general second-order tensor and K is a third-
order tensor. Let us note that in (5) and (7) we
use different sets of arguments, but for simplicity
we keep the same notation for W .
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3. Changes of reference placement

Let us consider the dependence of the constitutive
equation on the choice of the reference placement.
Let κ1 and κ2 be two reference placements with
placement vectors X1 and X2, respectively. So x
may depend X1 or X2

x = x(X1) = x(X2),

and we have two referential nabla-operators ∇1

and ∇2 and two deformation gradients

F1 = ∇1x, F2 = ∇2x.

Introducing the gradient of a mapping from κ1

into κ2 as
S = ∇1X2

we get the relations

∇1 = S · ∇2, and F1 = S · F2. (8)

As a reference placement is also characterized by
a triple of directors, we introduce in κ1 and κ2

two triples {D(1)
k } and {D(2)

k }, k = 1, 2, 3. So we
have two microdistortion tensors

P1 = D
(1)
k ⊗ dk, P2 = D

(2)
k ⊗ dk,

related to each other by the formula

P1 = R ·P2, (9)

where R is a nonsingular second-order tensor such
that D

(1)
k = R ·D(2)

k .
So the change of reference placement results in
the following transformation formulae

F→ S · F, P→ R ·P, (10)

where S and P are non-singular second-order ten-
sors describing local transformations of the refer-
ence placement.
With (10) we get the transformation rules for
strain measures E and C

E→ S · E ·R−1, C→ R ·C ·RT . (11)

For the derivation of the transformation rule for
K we consider two strain measures K1 and K2

defined in κ1 and κ2, respectively,

K1 = ∇1P1 ·P−1
1 , K2 = ∇2P2 ·P−1

2 .

Using (8) and (9) we have

K1 = [(S · ∇2)(R ·P2)] ·P−1
2 ·R−1

=(S · ik)
∂

∂X
(2)
k

(R ·P2) ·P−1
2 ·R−1

=(S · ik)R ·P2,k ·P−1
2 ·R−1

+ (S · ik)R,k ·P2 ·P−1
2 ·R−1

=S · [R ∗K2] + L,

where we introduce new operation * between
second- and third-order tensors as follows

R ∗K =R ∗ (Kmnkim ⊗ in ⊗ ik)

=Kmnkim ⊗ (R · in)⊗ (ik ·R−1),

and L = S · (∇2R) ·R−1.
So, in addition to (11) we have the transformation
formula for K

K→ S · [R ∗K] + L. (12)

In general, the form of constitutive equations de-
pends on the reference configuration. The strain
energy densities related to κ1 and κ2 are denoted,
respectively, W1 and W2. The energy stored in
an arbitrary part of the volume occupied by the
micromorphic continuum does not depend on the
choice of the reference placement, that is

∫

V1

W1 dV1 =

∫

V2

W2 dV2.

Using the formula dV2 = | det S|dV1 we obtain
that

W1(E1,C1,K1) = | det S|W2(E2,C2,K2). (13)

The last formula with transformation rules (11)
and (12) gives the opportunity to introduce the
local material symmetry group Gκ as a set of
such transformations of the reference placement
κ which do not affect the form of the strain en-
ergy density. In other words, the strain energy
density is insensitive to any change of the refer-
ence placement describing by the transformations
belonging to Gκ.
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4. Local material symmetry group

First, let us recall that for simple materials the
material symmetry group consists of transforma-
tions preserving the material density [22, 27].
Here we will also consider only unimodular ten-
sors S, | det S| = 1. In a similar way we assume
that unrecognizable transformations of the mi-
crodistortion tensor should be also unimodular:
| det R| = 1. In what follows we use the following
nomenclature for some tensor groups:
Unim is the unimodular group, Unim = {S :
det S = ±1};
Orth is the orthogonal group, Orth = {Q : Q ·
QT = I}, I is the unit tensor;
Lin3 is the linear group of third-order ten-
sors without specific constraints concerning index
symmetries.
Here Unim and Orth are groups with respect to
multiplication, and Lin3 is the group with regard
to addition.
We introduce

Definition 1. A set of ordered triples of two
second-order unimodular tensors S and R and
third-order tensor L

Gκ(X) = {X = (S,R,L)}
is called the local material symmetry group if the
following relation is valid

W (E,C,K)

= W (S · E ·R−1,R ·C ·RT ,S · [R ∗K] + L)

for a given point X in the reference placement κ
and for all admissible tensors E, C, K from the
domain of the definition of W . The set Gκ(X) is
a group relative to the operation defined as follows

X1 ◦ X2 ≡ (S1,R1,L1) ◦ (S2,R2,L2)

= (S1 · S2,R1 ·R2,L1 + S1 · [R1 ∗ L2]) . (14)

Indeed, let X1 ≡ (S1,R1,L1) ∈ Gκ(X) and X2 ≡
(S2,R2,L2) ∈ Gκ(X). This means that

W (E,C,K)

= W (S1 · E ·R−1
1 ,R1 ·C ·RT

1 ,

S1 · [R1 ∗K] + L1)

= W (S2 · E ·R−1
2 ,R2 ·C ·RT

2 ,

S2 · [R2 ∗K] + L2).

Using these relations we prove that

W (S1 · S2 · E ·R−1
2 ·R−1

2 ,R1 ·R2 ·C ·RT
2 ·RT

1 ,

S1 · [R1 ∗ (S2 · [R2 ∗K] + L2)] + L1)

= W (S2 · E ·R−1
2 ,R2 ·C ·RT

2 ,

S2 · [R2 ∗K] + L2)

= W (E,C,K).

Thus, X1 ◦ X2 ∈ Gκ(X).
In what follows for brevity we omit dependence
on X, so instead of Gκ(X) we use Gκ if is not
necessary to underline the dependence on X.
The unit element of Gκ is (I, I,O), where O is
the zero third-order tensor. The inverse to X =
(S,R,L) is X−1 = (S−1,R−1,−S−1 · [R−1 ∗ L]).
Let us note that the definition and the group oper-
ation are quite similar to introduced in the case of
micropolar continua [28, 29], of material surfaces
of various types [30] and shells [31], but for the
micropolar media the symmetry groups consists
of second-order tensors only and there is another
transformation formula of the strain energy den-
sity. There is also a similarity with definition of
the symmetry group for strain-gradient materials
where the material symmetry group consists of
ordered couples of tensors [32] or ordered triples
[33].

5. Micromorphic isotropic media, fluids,
solids and subfluids

Similar to the nonlinear elasticity [22, 27] and to
the micropolar elasticity [28] we characterize the
typical classes of materials.

Definition 2. The micromorphic elastic contin-
uum is called isotropic if there exists a reference
placement κ called undistorted, such that the ma-
terial symmetry group related to κ contains the
group O consisting of all orthogonal tensors

O ⊂ Gκ, O = {X = (Q,Q,O),Q ∈ Orth}.

From Definition 2 it follows that

W (E,C,K)

= W (Q · E ·QT ,Q ·C ·QT ,Q · [Q ∗K]).
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So W is an isotropic function of its arguments.
Note that here Q · [Q ∗K] is the Rayleigh prod-
uct of Q and K, see [32, 33]. For further analy-
sis the technique of representation of higher-order
tensors may be very useful, see e.g. [34–36].

Definition 3. We call a micromorphic elastic
continuum the micromorphic elastic fluid if the
material symmetry Gκ is given by

Gκ = U ,

U ≡ {(S,R,L) : S ∈ Unim,R ∈ Unim,L ∈ Lin3}.
Obviously, U is the maximal group as it contains
all admissible elements. So the micromorphic
elastic fluid is isotropic. The symmetry group
for the micromorphic fluid does not depend on
the choice of the reference configuration like in
the case of simple elastic [22] or micropolar fluids
[28].
In order to find the representation of W for the
micromorphic fluid let us first consider the in-
variance under transformations based on elements
{(I, I,L),L ∈ Lin3}. From Definition 1 we have
that

W (E,C,K) = W (E,C,K + L) ∀L ∈ Lin3.

From this it follows that W does not depend on
K: W = W (E,C). Then let us take as S and R
tensors

S = (det F)F−1, R = (det P)P−1.

Obviously, the both tensors are unimodular. So
we get

W (E,C) =W (S · E ·R−1,R ·C ·RT )

=W
(
(det F)F−1 · E · (det P)−1P,

(det P)P−1 ·C · (det P)P−T
)

=W
(
(det F)(det P)−1I, (det P)I

)

=W (det F, det P).

As a result, the strain energy density of a micro-
morphic fluid depends on two scalars describing
macro- and micro-volume changes, respectively.
For simple and micropolar elastic materials the
material symmetry group is constructed with the

help of orthogonal transformations describing ro-
tations and reflections of reference placement, see
[22, 27, 28]. Using the same reasoning as in [28]
we use the following definition of micromorphic
solids.

Definition 4. A micromorphic elastic continuum
is called a micromorphic elastic solid if there ex-
ists a reference placement κ called undistorted,
such that the material symmetry group related to
κ, is given by

Gκ = Rκ, Rκ ≡ {(Q,Q,0) : Q ∈ Oκ ⊂ Orth},

where Oκ is a subgroup of Orth. Note that here
we assumed that both tensors S and R coincide
with the same orthogonal tensor.
Characterizing the micromorphic continua within
the introduced notion of the material symmetry
group we can also introduce various intermediate
classes of continua wich are neither solids nor flu-
ids. Following [21] where the simple elastic sub-
fluids were introduced, see also [22], we will call
these media the micromorphic subfluids or micro-
morphic liquid crystals.

Definition 5. A micromorphic elastic continuum
is called a micromorphic elastic subfluid or micro-
morphic elastic liquid crystal if its material sym-
metry group Gκ, related to a reference placement
κ called undistorted, contains elements which are
not members of the orthogonal group O and Gκ
does not coincide with the maximal group U :

Gκ 6= U , ∃X ∈ Gκ : X /∈ O.

Since the structure of the material symmetry
group is more complex than in the case of sim-
ple materials, the number of possible micromor-
phic subfluids is greater than the number of sim-
ple subfluids [21].
As an example of a micromorphic subfluid let us
consider a granular medium consisting of infinites-
imal solid deformable particles which can freely
move with the respect to each other. In other
words, the considered medium behaves like a fluid
at the macroscale and as an isotropic solid at the
scale of single particle. In order to catch such
behaviour let us consider the following material
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symmetry group

Gκ ={X = (S,R,L) :

S ∈ Unim,R ∈ Orth,L ∈ Lin3}.

In order to derive the corresponding form of W
first we observe that W does not depend on K as
in the case of micromorphic fluid: W = W (E,C).
So the invariance requires that

W (E,C) = W (S · E ·R−1,R ·C ·RT ). (15)

Substituting in (15) S = (det E)E−1 and R = I
we get

W (E,C) = W ((det E)I,C).

Using the identities

det E =
det F

det P
=

det F

det U
=

det F

(det C)1/2

we transform the latter equation into

W (E,C) = W (det F,C).

So Eq. (15) takes the form

W (det F,C) = W (det F,R ·C ·RT ).

Thus, W is an isotropic function of C whereas de-
pendence on E reduces to a dependence on det F.
As a result, W is the function of J = det F and
the principal invariants of C:

W = W (J, I1, I2, I3),

where I1 = tr C, I2 = 1
2
[I21 − tr C2], I3 = det C.

6. Conclusions

We have formulated the new definition of the lo-
cal material symmetry group for a micromorphic
continuum. The group consists of ordered triples
of tensors which make the strain energy density
invariant under changes of a reference placement.
From a physical point of view, this means that
the changes of a reference placement described by
members of the material symmetry group are un-
recognizable via experiments. In particular, we

define micromorphic isotropic media, solids, flu-
ids and subfluids. The micromorphic subfluids
present a class of materials which can be useful
for description of such microstructured media as
granular, soils, suspensions.
Let us note the the introduced here notion of the
local material symmetry group can be easily ex-
tended for inelastic materials. It can also be very
useful for the derivation of consistent represen-
tation of nonlinear constitutive equations of en-
hanced media, see for example the case of microp-
olar media [28, 29, 31]. Indeed, often we a priori
know symmetry properties of a medium or can
construct a material with requested optimal sym-
metries. Knowing in advance material symmetry
constraints we can derive the corresponding form
of constitutive equations. This is more important
for such complex media as briefly considered here
granular media. Further extensions of the mate-
rial symmetry group analysis can also be useful
for other generalized continua. In particular, us-
ing given here definition one can analyze other
classes of materials with microdistortion such as
the relaxed micromorphic continuum [37]. In a
similar way, using the definition of the material
symmetry group in [32] one can characterize new
classes of continua such as recently discovered re-
duced strain-gradient materials [38–40], capillary
fluids [41, 42], porous media [43, 44].

Acknowledgement. Author acknowledges the
support of the Government of the Russian Feder-
ation (contract No. 14.Y26.31.0031).
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