Contents lists available at ScienceDirect

ELSEVIER

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On the metric dimension of corona product graphs

I.G. Yero^a, D. Kuziak^b, J.A. Rodríguez-Velázquez^{a,*}

^a Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain ^b Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233 Gdańsk, Poland

ARTICLE INFO

Article history: Received 29 September 2010 Received in revised form 10 March 2011 Accepted 10 March 2011

Keywords: Resolving sets Metric dimension Corona graph

ABSTRACT

Given a set of vertices $S = \{v_1, v_2, ..., v_k\}$ of a connected graph *G*, the metric representation of a vertex *v* of *G* with respect to *S* is the vector $r(v|S) = (d(v, v_1), d(v, v_2), ..., d(v, v_k))$, where $d(v, v_i)$, $i \in \{1, ..., k\}$ denotes the distance between *v* and v_i . *S* is a resolving set for *G* if for every pair of distinct vertices *u*, *v* of *G*, $r(u|S) \neq r(v|S)$. The metric dimension of *G*, dim(*G*), is the minimum cardinality of any resolving set for *G*. Let *G* and *H* be two graphs of order n_1 and n_2 , respectively. The corona product $G \odot H$ is defined as the graph obtained from *G* and *H* by taking one copy of *G* and n_1 copies of *H* and joining by an edge each vertex from the ith-copy of *H* with the ith-vertex of *G*. For any integer $k \ge 2$, we define the graph $G \odot^k H$ recursively from $G \odot H$ as $G \odot^k H = (G \odot^{k-1} H) \odot H$. We give several results on the metric dimension of $G \odot^k H$. For instance, we show that given two connected graphs *G* and *H* of order $n_1 \ge 2$ and $n_2 \ge 2$, respectively, if the diameter of *H* is at most two, then dim $(G \odot^k H) = n_1(n_2+1)^{k-1} \dim(H)$. Moreover, if $n_2 \ge 7$ and the diameter of *H* is greater than five or *H* is a cycle graph, then dim $(G \odot^k H) = n_1(n_2 + 1)^{k-1} \dim(K_1 \odot H)$.

1. Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [1], and Slater [2], to define the same structure in a graph. After these papers were published, several authors developed diverse theoretical works on this topic [3–10]. Slater described the usefulness of these ideas into long range aids to navigation [2]. Also, these concepts have some applications in chemistry for representing chemical compounds [11,12] or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [13]. Other applications of this concept to navigation of robots in networks and other areas appear in [6,8,14]. Some variations on resolvability or location have been appearing in the literature, like those about conditional resolvability [9], locating domination [15], resolving domination [16] and resolving partitions [5,17–19]. In this article we study the metric dimension of corona product graphs.

We begin by giving some basic concepts and notations. Let G = (V, E) be a simple graph of order n = |V|. Let $u, v \in V$ be two different vertices in G, the distance $d_G(u, v)$ between two vertices u and v of G is the length of a shortest path between u and v. If there is no ambiguity, we will use the notation d(u, v) instead of $d_G(u, v)$. The diameter of G is defined as $D(G) = \max_{u,v \in V} \{d(u, v)\}$. Given $u, v \in V, u \sim v$ means that u and v are adjacent vertices. Given a set of vertices $S = \{v_1, v_2, \ldots, v_k\}$ of a connected graph G, the *metric representation* of a vertex $v \in V$ with respect to S is the vector $r(v|S) = (d(v, v_1), d(v, v_2), \ldots, d(v, v_k))$. We say that S is a *resolving set* for G if for every pair of distinct vertices $u, v \in V, r(u|S) \neq r(v|S)$. The *metric dimension* of G is the minimum cardinality of any resolving set for G, and it is denoted by dim(G).

* Corresponding author. Tel.: +34 626247661.

E-mail addresses: ismael.gonzalez@urv.cat (I.G. Yero), dkuziak@mif.pg.gda.pl (D. Kuziak), juanalberto.rodriguez@urv.cat (J.A. Rodríguez-Velázquez).

^{0898-1221/\$ –} see front matter s 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2011.03.046

Let *G* and *H* be two graphs of order n_1 and n_2 , respectively. The corona product $G \odot H$ is defined as the graph obtained from *G* and *H* by taking one copy of *G* and n_1 copies of *H* and joining by an edge each vertex from the *i*th-copy of *H* with the *i*th-vertex of *G*. We will denote by $V = \{v_1, v_2, \ldots, v_{n_1}\}$ the set of vertices of *G* and by $H_i = (V_i, E_i)$ the copy of *H* such that $v_i \sim v$ for every $v \in V_i$. Notice that the corona graph $K_1 \odot H$ is isomorphic to the join graph $K_1 + H$. For any integer $k \ge 2$, we define the graph $G \odot^k H$ recursively from $G \odot H$ as $G \odot^k H = (G \odot^{k-1} H) \odot H$. We also note that the order of $G \odot^k H$ is $n_1(n_2 + 1)^k$.

2. Metric dimension of corona product graphs

We begin by presenting the following useful facts.

Lemma 1. Let G = (V, E) be a connected graph of order $n \ge 2$ and let H be a graph of order at least two. Let $H_i = (V_i, E_i)$ be the subgraph of $G \odot H$ corresponding to the ith-copy of H.

(i) If $u, v \in V_i$, then $d_{G \odot H}(u, x) = d_{G \odot H}(v, x)$ for every vertex x of $G \odot H$ not belonging to V_i .

(ii) If S is a resolving set for $G \odot H$, then $V_i \cap S \neq \emptyset$ for every $i \in \{1, ..., n\}$.

(iii) If *S* is a resolving set for $G \odot H$ of minimum cardinality, then $V \cap S = \emptyset$.

(iv) If *H* is a connected graph and *S* is a resolving set for $G \odot H$, then for every $i \in \{1, ..., n\}$, $S \cap V_i$ is a resolving set for H_i .

Proof. (i) Let $y = v_i \in V$. The result directly follows from the fact that $d_{G \odot H}(u, x) = d_{G \odot H}(u, y) + d_{G \odot H}(y, x) = d_{G \odot H}(v, y) + d_{G \odot H}(v, x)$.

(ii) We suppose $V_i \cap S = \emptyset$ for some $i \in \{1, ..., n\}$. Let $x, y \in V_i$. By (i) we have $d_{G \odot H}(x, u) = d_{G \odot H}(y, u)$ for every vertex $u \in S$, which is a contradiction.

(iii) We will show that S' = S - V is a resolving set for $G \odot H$. Now let x, y be two different vertices of $G \odot H$. We have the following cases.

Case 1: $x, y \in V_i$. By (i) we conclude that there exist $v \in V_i \cap S'$ such that $d_{G \odot H}(x, v) \neq d_{G \odot H}(y, v)$.

Case 2: $x \in V_i$ and $y \in V_j$, $i \neq j$. Let $v \in V_i \cap S'$. Then we have $d_{G \odot H}(x, v) \le 2 < 3 \le d_{G \odot H}(y, v)$.

Case 3: $x, y \in V$. Let $x = v_i$ and let $v \in V_i \cap S'$. Then we have $d_{G \odot H}(x, v) = 1 < 1 + d_{G \odot H}(y, x) = d_{G \odot H}(y, v)$.

Case 4: $x \in V_i$ and $y \in V$. If $x \sim y$, then $y = v_i$. Let $v_j \in V$, $j \neq i$, and let $v \in V_j \cap S'$. Then we have $d_{G \odot H}(x, v) = 1 + d_{G \odot H}(y, v) > d_{G \odot H}(y, v)$. For $x \not\sim y = v_i$ we take $v \in V_i \cap S'$ and we obtain $d_{G \odot H}(x, v) = d_{G \odot H}(x, y) + d_{G \odot H}(y, v) > d_{G \odot H}(y, v)$.

Therefore, S' is a resolving set for $G \odot H$.

(iv) Let $S_i = S \cap V_i$. For $x \in S_i$ or $y \in S_i$ the result is straightforward. We suppose $x, y \in V_i - S_i$. Since S is a resolving set for $G \odot H$, we have $r(x|S) \neq r(y|S)$. By (i), $d_{G \odot H}(x, u) = d_{G \odot H}(y, u)$ for every vertex u of $G \odot H$ not belonging to V_i . So, there exists $v \in S_i$ such that $d_{G \odot H}(x, v) \neq d_{G \odot H}(y, v)$. Thus, either $(v \sim x \text{ and } v \nsim y)$ or $(v \nsim x \text{ and } v \sim y)$. In the first case we have $d_{G \odot H}(x, v) = d_{H_i}(x, v) = 1$ and $d_{G \odot H}(y, v) = 2 \leq d_{H_i}(y, v)$. The case $v \nsim x$ and $v \sim y$ is analogous. Therefore, S_i is a resolving set for H_i . \Box

Theorem 2. Let G and H be two connected graphs of order $n_1 \ge 2$ and $n_2 \ge 2$, respectively. Then,

 $\dim(G \odot^k H) \ge n_1(n_2+1)^{k-1} \dim(H).$

Proof. Let *S* be a resolving set of minimum cardinality in $G \odot H$. From Lemma 1(iii) we have that $S \cap V = \emptyset$. Moreover, by Lemma 1(ii) we have that for every $i \in \{1, ..., n_1\}$ there exist a nonempty set $S_i \subset V_i$ such that $S = \bigcup_{i=1}^{n_1} S_i$. Now, by using Lemma 1(iv) we have that S_i is a resolving set for H_i . Hence, dim $(G \odot H) = |S| = \sum_{i=1}^{n_1} |S_i| \ge \sum_{i=1}^{n_1} \dim(H) = n_1 \dim(H)$. As a result, the lower bound follows. \Box

Theorem 3. Let *G* be a connected graph of order $n_1 \ge 2$ and let *H* be a graph of order $n_2 \ge 2$. If $D(H) \le 2$, then

$$\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1} \dim(H).$$

Proof. Let $S_i \subset V_i$ be a resolving set for H_i and let $S = \bigcup_{i=1}^{n_1} S_i$. We will show that S is a resolving set for $G \odot H$. Let us consider two different vertices x, y of $G \odot H$. We have the following cases.

Case 1: $x, y \in V_i$. Since $D(H_i) \leq 2$, we have that $r(x|S_i) \neq r(y|S_i)$ leads to $r(x|S) \neq r(y|S)$.

Case 2: $x \in V_i$ and $y \in V_i$, $i \neq j$. Let $v \in S_i$. Hence we have $d(x, v) \le 2 < 3 \le d(y, v)$.

Case 3: $x, y \in V$. Let $x = v_i$. Then for every vertex $v \in S_i$ we have d(x, v) = 1 < d(y, x) + 1 = d(y, v).

Case 4: $x \in V_i$ and $y \in V$. If $x \sim y$, then let $v \in S_j$, for some $j \neq i$. So we have d(x, v) = 1 + d(y, v) > d(y, v). Moreover, if $x \not\sim y = v_i$, for $v \in S_j$ we have d(x, v) = d(x, y) + d(y, v) > d(y, v).

Thus, for every different vertices x, y of $G \odot H$, we have $r(x|S) \neq r(y|S)$, as a consequence, $\dim(G \odot H) \leq n_1 \dim(H)$. Therefore, we have $\dim(G \odot^k H) \leq n_1(n_2 + 1)^{k-1} \dim(H)$. By Theorem 2 we conclude the proof. \Box

In order to show a consequence of the above theorem we present the following well-known result, where K_t denotes a complete graph of order t, $K_{s,t}$ denotes a complete bipartite graph of order s + t and N_t denotes an empty graph of order t.

Lemma 4 ([6]). Let G be a connected graph of order n > 4. Then dim(G) = n - 2 if and only if $G = K_{s,t}$, (s, t > 1), G = 1 $K_s + N_t$, (s > 1, t > 2), or $G = K_s + (K_1 \cup K_t)$, (s, t > 1).

Corollary 5. Let G be a connected graph of order $n_1 \ge 2$ and let H be a graph of order $n_2 \ge 4$ and diameter $D(H) \le 2$. Then

 $\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1}(n_2 - 2)$

if and only if $H = K_{s,t}$, $(s, t \ge 1)$; $H = K_s + N_t$, $(s \ge 1, t \ge 2)$, or $H = K_s + (K_1 \cup K_t)$, $(s, t \ge 1)$.

We recall that the wheel graph of order n + 1 is defined as $W_{1,n} = K_1 \odot C_n$, where K_1 is the singleton graph and C_n is the cycle graph of order *n*. The metric dimension of the wheel $W_{1,n}$ was obtained by Buczkowski et al. in [20].

Remark 6 ([20]). Let $W_{1,n}$ be a wheel graph. Then

$$\dim(W_{1,n}) = \begin{cases} 3 & \text{for } n = 3, 6\\ 2 & \text{for } n = 4, 5\\ \left\lfloor \frac{2n+2}{5} \right\rfloor & \text{otherwise.} \end{cases}$$

The fan graph F_{n_1,n_2} is defined as the graph join $N_{n_1} + P_{n_2}$, where N_{n_1} is the empty graph of order n_1 and P_{n_2} is the path graph of order n_2 . The case $n_1 = 1$ corresponds to the usual fan graphs. Notice that, for the metric dimension of fan graphs, it is possible to find an equivalent result to Remark 6 which was obtained by Caceres et al. in [4].

Remark 7 ([4]). Let $F_{1,n}$ be a fan graph. Then

$$\dim(F_{1,n}) = \begin{cases} 1 & \text{for } n = 1, \\ 2 & \text{for } n = 2, 3, \\ 3 & \text{for } n = 6, \\ \left\lfloor \frac{2n+2}{5} \right\rfloor & \text{otherwise.} \end{cases}$$

As a particular case of Theorem 3 we obtain the following results.

Corollary 8. Let G be a connected graph of order $n_1 \ge 2$. If H is a wheel graph or a fan graph of order $n_2 \ge 8$, then

 $\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1} \left| \frac{2n_2}{5} \right|.$

Theorem 9. Let G be a connected graph of order $n_1 \ge 2$ and let H be a graph of order $n_2 \ge 2$. Let α be the number of connected components of H of order greater than one and let β be the number of isolated vertices of H. Then

$$\dim(G \odot^k H) \leq \begin{cases} n_1(n_2+1)^{k-1}(n_2-\alpha-1) & \text{for } \alpha \ge 1 \text{ and } \beta \ge 1, \\ n_1(n_2+1)^{k-1}(n_2-\alpha) & \text{for } \alpha \ge 1 \text{ and } \beta = 0, \\ n_1(n_2+1)^{k-1}(n_2-1) & \text{for } \alpha = 0. \end{cases}$$

Proof. We suppose $\alpha \ge 1$ and $\beta \ge 1$. Let A_i be the set of vertices of $G \odot H$ formed by all but one of the vertices per each of the α connected components of H_i . If $\beta \ge 2$ we define B_i to be the set of vertices of $G \odot H$ formed by all but one of the isolated vertices of H_i . If $\beta = 1$, we assume $B_i = \emptyset$. Let us show that $S = \bigcup_{j=1}^{n_1} (A_j \cup B_j)$ is a resolving set for $G \odot H$. Let x, ybe two different vertices of $G \odot H$. We suppose $x, y \notin S$. We have the following cases. Case 1: $x = v_i \in V$ and $y \in V_i$. For every vertex $u \in V_j \cap S, j \neq i$, we obtain d(y, u) = d(y, x) + d(x, u) > d(x, u).

case 2: $x = v_i \in V$ and $y \notin V_i$. For every $v \in S \cap V_i$ we have d(x, v) = 1 < d(y, v).

Case 3: $x \in V_i$ and $y \in V_j$, $j \neq i$. For every $u \in V_i \cap S$ we have $d(x, u) \le 2 < 3 \le d(y, u)$. Case 4: $x, y \in V_i$. We consider, without loss of generality, that x is not an isolated vertex in H_i . Then there exists $v \in V_i \cap S$

such that $v \sim x$, so d(x, v) = 1 < 2 = d(y, v).

Thus, for every two different vertices x, y of $G \odot H$, we obtain $r(x|S) \neq r(y|S)$ and, as a consequence, dim $(G \odot H) \leq r(y|S)$ $n_1(n_2 - \alpha - 1)$.

As above, if $\beta = 0$ then we take $S = \bigcup_{j=1}^{n_1} A_j$ and we obtain dim $(G \odot H) \le n_1(n_2 - \alpha)$ and if $\alpha = 0$, then we take $S = \bigcup_{j=1}^{n_1} B_j$ and we obtain dim $(G \odot H) \le n_1(n_2 - 1)$. Note that if $\alpha = 0$, then it is not necessary to consider Case 4. Thus, the result follows. \Box

Corollary 10. Let G be a connected graph of order $n_1 \ge 2$ and let H be an unconnected graph of order $n_2 \ge 2$. Then

$$\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$$

if and only if $H \cong N_{n_2}$.

Proof. In [21] the authors showed that $\dim(G \odot N_{n_2}) = n_1(n_2 - 1)$. Hence, $\dim(G \odot^k N_{n_2}) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$. Moreover, by the above theorem, if *H* is unconnected and $H \ncong N_{n_2}$, then $\dim(G \odot^k H) \le n_1(n_2 + 1)^{k-1}(n_2 - 2)$. \Box

Theorem 11. Let *G* and *H* be two connected graphs of order $n_1 \ge 2$ and $n_2 \ge 3$, respectively. Then

$$\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$$

if and only if $H \cong K_{n_2}$. Moreover, if $H \not\cong K_{n_2}$, then

$$\dim(G \odot^k H) \le n_1(n_2+1)^{k-1}(n_2-2).$$

Proof. Since dim $(K_{n_2}) = n_2 - 1$, by Theorem 3 we conclude dim $(G \odot^k K_{n_2}) = n_1(n_2 + 1)^{k-1}(n_2 - 1)$. On the contrary, we suppose $H \ncong K_{n_2}$. Given a set X of vertices of H and a vertex v of H, $N_X(v)$ denotes the set of neighbors that v has in X: $N_X(v) = \{u \in X : u \sim v\}$. Given two vertices a, b of H, let $X_{a,b}$ be the set formed by all vertices of H different from a and b. Since H is a connected graph and $H \neq K_{n_2}$, there exist at least two vertices a, b of H such that $N_{X_{a,b}}(a) \neq N_{X_{a,b}}(b)$. Let a_i, b_i be the vertices corresponding to a, b, respectively, in the ith-copy $H_i = (V_i, E_i)$ of H. Let $S = \bigcup_{i=1}^{n_2} (V_i - \{a_i, b_i\})$. We will show that S is a resolving set for $G \odot H$. Let x, y be two different vertices of $G \odot H$ such that $x, y \notin S$. We have the following cases.

Case 1: $x = a_i$ and $y = b_i$. Since $N_{X_{a,b}}(a) \neq N_{X_{a,b}}(b)$ we have $r(x|S) \neq r(y|S)$. Case 2: $x = v_i \in V$ and $y \in V_i$. For every $v \in V_j - \{a_j, b_j\}$, $j \neq i$, we have d(y, v) = d(y, x) + d(x, v) > d(x, v). If $x \in V_i$ and $y \in V_j$, $j \neq i$, then for every $v \in V_i - \{a_i, b_i\}$ we have $d(x, v) \leq 2 < 3 \leq d(y, v)$.

Case 3: $x, y \in V$. Say $x = v_i$. Then for every $v \in V_i - \{a_i, b_i\}$ we have d(x, v) = 1 < d(y, v).

Hence, for every two different vertices x, y of $G \odot H$, we obtain $r(x|S) \neq r(y|S)$. Thus, dim $(G \odot H) \leq n_1(n_2-2)$. Therefore, the result follows. \Box

As we have shown in Corollary 5, the above bound is tight.

Theorem 12. Let G be a connected graph of order $n_1 \ge 2$ and let H be a graph of order $n_2 \ge 2$. Then

$$\dim(G \odot^{\kappa} H) \leq n_1(n_2+1)^{\kappa-1} \dim(K_1 \odot H).$$

Proof. We denote by $K_1 \odot H_i$ the subgraph of $G \odot H$, obtained by joining the vertex $v_i \in V$ with all vertices of H_i . For every $v_i \in V$, let B_i be a resolving set of minimum cardinality of $K_1 \odot H_i$ and let $B = \bigcup_{i=1}^{n_1} B_i$. By Lemma 1(iii) we have that v_i does not belong to any resolving set of minimum cardinality for $K_1 \odot H_i$. So, B does not contain any vertex from G. We will show that B is a resolving set for $G \odot H$. Let x, y be two different vertices in $G \odot H$. We consider the following cases.

Case 1: $x, y \in V_i$. There exists $u \in B_i$ such that $d_{K_1 \odot H_i}(x, u) \neq d_{K_1 \odot H_i}(y, u)$, which leads to $d_{G \odot H}(x, u) \neq d_{G \odot H}(y, u)$.

Case 2: $x \in V_i$ and $y \in V_j$, $i \neq j$. Let $v \in B_i$. We have $d_{G \odot H}(x, v) \le 2 < 3 \le d_{G \odot H}(y, v)$.

Case 3: $x, y \in V$. Suppose now that x is adjacent to the vertices of H_i . Hence, for every vertex $v \in B_i$ we have $d_{G \odot H}(x, v) = 1 < d_{G \odot H}(y, x) + 1 = d_{G \odot H}(y, v)$.

Case 4: $x \in V_i$ and $y \in V$. If $x \sim y$, then for every vertex $v \in B_j$, with $j \neq i$, we have $d_{G \odot H}(x, v) = 1 + d_{G \odot H}(y, v) > d_{G \odot H}(y, v)$. Now, let us assume that $x \not\sim y$. Hence, there exists $v \in B_j$ adjacent to y, with $j \neq i$. So, we have $d_{G \odot H}(x, v) = d_{G \odot H}(x, y) + 1 = d_{G \odot H}(x, y) + d_{G \odot H}(y, v)$.

Thus, for every two different vertices x, y of $G \odot H$, we have $r(x|S) \neq r(y|S)$ and, as a consequence, dim $(G \odot H) \leq n_1 \dim(K_1 \odot H)$. Therefore, the result follows. \Box

Theorem 13. Let G be a connected graph of order $n_1 \ge 2$ and let H be a graph of order $n_2 \ge 7$. If $D(H) \ge 6$ or H is a cycle graph, then

$$\dim(G \odot^k H) = n_1(n_2 + 1)^{k-1} \dim(K_1 \odot H).$$

Proof. Let *S* be a resolving set of minimum cardinality in $G \odot H$. By Lemma 1(iii) we have $S \cap V = \emptyset$, as a consequence, $S = \bigcup_{i=1}^{n_1} S_i$, where $S_i \subset V_i$. Notice that, by Lemma 1(ii), $S_i \neq \emptyset$ for every $i \in \{1, ..., n_1\}$. Now we differentiate two cases in order to show that $r(x|S_i) \neq (1, ..., 1)$ for every $x \in V_i - S_i$.

Case 1: *H* is a cycle graph of order $n_2 \ge 7$. If $r(a|S_i) = (1, 1)$ for some $a \in V_i - S_i$, then, since $n_2 \ge 7$, there exist two vertices $x, y \in V_i - S_i$ such that $d_{H_i}(x, v) > 1$ and $d_{H_i}(y, v) > 1$, for every $v \in S_i$. Hence, $d_{G \odot H}(x, v) = d_{G \odot H}(y, v) = 2$ for every $v \in S_i$, which is a contradiction because, by Lemma 1(i), $d_{G \odot H}(x, v) = d_{G \odot H}(y, v)$ for every vertex u of S not belonging to S_i .

Case 2: $D(H) \ge 6$. Let $x, y \in V_i - S_i$. Since S is a resolving set for $G \odot H$, we have $r(x|S) \ne r(y|S)$. As we have noted before, by Lemma 1(i) we have that $d_{G \odot H}(x, u) = d_{G \odot H}(y, u)$ for every vertex u of $G \odot H$ not belonging to V_i . So, there exists $v \in S_i$ such that $d_{G \odot H}(x, v) \ne d_{G \odot H}(y, v)$ and, as a consequence, either $(v \sim x \text{ and } v \not \gamma y)$ or $(v \not \sim x \text{ and } v \sim y)$. Now we suppose that there exists a vertex $a \in V_i - S_i$ such that $r(a|S_i) = (1, 1, ..., 1)$. If there exists a vertex $b \in V_i - S_i$ such that $d_{H_i}(b, u) > 1$, for every $u \in S_i$, then for every $w \in V_i - (S_i \cup \{a, b\})$, there exists $v \in S_i$ such that $w \sim v$. Then $D(H_i) \le 5$. Moreover, if for every $b \in V_i - S_i$ there exists $v_b \in S_i$ such that $v_b \sim b$, then $D(H) \le 4$. Therefore, if $D(H) \ge 6$, then $r(a|S_i) \ne (1, 1, ..., 1)$ for every $a \in V_i - S_i$.

Corollary 14. *Let G be a connected graph of order* $n_1 \ge 2$ *.*

(i) If
$$n_2 \ge 7$$
, then $\dim(G \odot^k C_{n_2}) = n_1(n_2 + 1)^{k-1} \left\lfloor \frac{2n_2 + 2}{5} \right\rfloor$.
(ii) If $n_2 \ge 7$, then $\dim(G \odot^k P_{n_2}) = n_1(n_2 + 1)^{k-1} \left\lfloor \frac{2n_2 + 2}{5} \right\rfloor$.

All our previous results concern to $G \odot H$ for H of order at least two. Now we consider the case $H \cong K_1$. We obtain a general bound for dim $(G \odot^k K_1)$ and, when G is a tree, we give the exact value for this parameter.

Claim 15. Let *G* be a simple graph. If v is a vertex of degree greater than one in *G*, then for every vertex *u* adjacent to *v* there exists a vertex $x \neq u$, *v* of *G*, such that $d(v, x) \neq d(u, x) + 1$.

The following lemma obtained in [20] is useful to obtain the next result.

Lemma 16 ([20]). If G_1 is a graph obtained by adding a pendant edge to a nontrivial connected graph G, then dim $(G) \leq \dim(G_1) \leq \dim(G) + 1$.

Theorem 17. For every connected graph *G* of order $n \ge 2$,

$$\dim(G \odot^k K_1) \le 2^{k-1}n - 1$$

Proof. If $G \cong K_2$, then $\dim(K_2 \odot K_1) = \dim(P_4) = 1$. So, let us suppose $G \ncong K_2$. Let us suppose, without loss of generality, that v_n is a vertex of degree greater than one in G and let $S = V - \{v_n\}$. For every $i \in \{1, \ldots, n\}$, let u_i be the pendant vertex of v_i in $G \odot K_1$. We will show that S is a resolving set for $G \odot K_1$. Let x, y be two different vertices of $G \odot K_1$. If $x = u_i$ and $y = u_j$, $i \neq j$, then we have either $i \neq n$ or $j \neq n$. Let us suppose for instance $i \neq n$. So, we obtain that $d(x, v_i) = 1 \neq d(y, v_i)$. On the other hand, if $x = v_n$ and $y = u_i$, then let us suppose $d(x, v_i) = 1$. Since v_n is a vertex of degree greater than one in G, by Claim 15, there exists a vertex $v_j \in S$ such that $d(x, v_j) \neq d(v_i, v_j) + 1$. So, we have $d(x, v_j) \neq d(v_i, v_j) + 1 = d(v_i, v_j) + d(u_i, v_i) = d(y, v_i) + d(v_i, v_j) = d(y, v_j)$. Therefore, for every different vertices x, y of $G \odot K_1$ we have $r(x|S) \neq r(y|S)$ and, as a consequence, $\dim(G \odot K_1) \leq n - 1$. Therefore, $\dim(G \odot^k K_1) \leq 2^{k-1}n - 1$.

By Lemma 16 we have $\dim(K_n \odot K_1) \ge \dim(K_n) = n - 1$. Thus, for k = 1 the above bound is achieved for the graph $G = K_n$.

To present the next result, we need additional definitions. A vertex of degree at least 3 in a graph *G* will be called a *major vertex* of *G*. Any vertex *u* of degree one is said to be a *terminal vertex* of a major vertex *v* if d(u, v) < d(u, w) for every other major vertex *w* of *G*. The *terminal degree* of a major vertex *v* is the number of terminal vertices of *v*. A major vertex *v* is an *exterior major vertex* if it has positive terminal degree. Given a graph *G*, $n_1(G)$ denotes the number of vertices of degree one and ex(*G*) denotes the number of exterior major vertices of *G*.

Lemma 18 ([6,1,2]). If *T* is a tree that is not a path, then $\dim(T) = n_1(T) - \exp(T)$.

Theorem 19. For any tree *T* of order $n \ge 3$,

$$\dim(T \odot^k K_1) = \begin{cases} n_1(T) & \text{for } k = 1\\ 2^{k-2}n & \text{for } k \ge 2 \end{cases}$$

Proof. If *T* is a path of order $n \ge 3$, then we have dim $(T \odot K_1) = 2 = n_1(T)$. Now, if *T* is not a path, then by using Lemma 18, since $T \odot K_1$ is a tree, $n_1(T \odot K_1) = n$ and $ex(T \odot K_1) = n - n_1(T)$, we obtain the result for k = 1. Since for every tree *T* of order *n* we have $n_1(T \odot K_1) = n$, we obtain the result for $k \ge 2$. \Box

Acknowledgements

The research was partially done while the first author was at Gdańsk University of Technology, Poland, supported by "Fundació Ferran Sunyer i Balaguer", Catalunya, Spain. This work was partly supported by the Spanish Ministry of Science and Education through the project MTM2011-25189.

References

[2] P.J. Slater, Leaves of trees, proceeding of the 6th southeastern conference on combinatorics, graph theory, and computing, Congressus Numerantium 14 (1975) 549–559.

^[1] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191–195.

- [3] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of Cartesian product of graphs, SIAM Journal of Discrete Mathematics 21 (2) (2007) 273–302.
- [4] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, On the metric dimension of some families of graphs, Electronic Notes in Discrete Mathematics 22 (2005) 129–133.
- [5] G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349-366.
- [6] G. Chartrand, L. Eroh, M.A. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99-113.
- [7] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Computers and Mathematics with Applications 39 (2000) 19–28.
- [8] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70 (1996) 217–229.
- [9] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, International Journal of Mathematics and Mathematical Sciences 38 (2004) 1997-2017.
- [10] I. Tomescu, Discrepancies between metric and partition dimension of a connected graph, Discrete Mathematics 308 (2008) 5026-5031.
- [11] M.A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, Journal of Biopharmaceutical Statistics 3 (1993) 203–236.
- [12] M.A. Johnson, Browsable structure-activity datasets, in: R. Carbó-Dorca, P. Mezey (Eds.), Advances in Molecular Similarity, JAI Press, Connecticut, 1998, pp. 153–170.
- [13] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing 25 (1984) 113-121.
- [14] B.L. Hulme, A.W. Shiver, P.J. Slater, A Boolean algebraic analysis of fire protection, Algebraic and Combinatorial Methods in Operations Research 95 (1984) 215–227.
- [15] T.W. Haynes, M. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Applied Mathematics 154 (2006) 1293-1300.
- [16] R.C. Brigham, G. Chartrand, R.D. Dutton, P. Zhang, Resolving domination in graphs, Mathematica Bohemica 128 (1) (2003) 25–36.
- [17] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Mathematicae 59 (1-2) (2000) 45-54.
- [18] M. Fehr, S. Gosselin, O.R. Oellermann, The partition dimension of Cayley digraphs, Aequationes Mathematicae 71 (2006) 1–18.
- [19] I.G. Yero, J.A. Rodríguez-Velázquez, A note on the partition dimension of Cartesian product graphs, Applied Mathematics and Computation 217 (2010) 3571-3574.
- [20] P.S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, Periodica Mathematica Hungarica 46 (1) (2003) 9–15.
 [21] H. Iswadi, F.T. Baskoro, R. Simaniuntak, A.N.M. Salman, The metric dimension of graph with pendant edges, Journal of Combinatorial Mathematics
- [21] H. Iswadi, E.T. Baskoro, R. Simanjuntak, A.N.M. Salman, The metric dimension of graph with pendant edges, Journal of Combinatorial Mathematics and Combinatorial Computing 65 (2008) 139–145.