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1. Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [9] and
Slater [17]. After these papers were published several authors developed diverse theoretical works about this topic [3,2,
4-10,14,19]. Slater described the usefulness of these ideas into long range aids to navigation [17]. Also, these concepts have
some applications in chemistry for representing chemical compounds [12,13] or to problems of pattern recognition and
image processing, some of which involve the use of hierarchical data structures [15]. Other applications of this concept to
navigation of robots in networks and other areas appear in [5,11,14]. Some variations on resolvability or location have been
appearing in the literature, like those about conditional resolvability [ 16], locating domination [ 10], resolving domination [1]
and resolving partitions [4,7,8,19].

Given a graph G = (V, E) and an ordered set of vertices S = {vq, v, ..., v} of G, the metric representation of a vertex
v € V withrespecttoS isthevectorr(v|S) = (d(v, v1),d(v, v3), ..., d(v, vy)), whered(v, v;) denotes the distance between
the vertices vand v;, 1 <i < k. We say that S is a resolving set of G if different vertices of G have different metric representa-
tions, i.e., for every pair of distinct vertices u, v € V, r(u|S) # r(v|S). The metric dimension' of G is the minimum cardinality
of any resolving set of G, and it is denoted by dim(G). The metric dimension of graphs is studied in [3,2,4-6,18].

Given an ordered partition IT = {P1, P,, ..., P;} of the vertices of G, the partition representation of a vertex v € V with
respect to the partition /7 is the vector r(v|I7) = (d(v, P,), d(v, P»), ..., d(v, P;)), where d(v, P;), with 1 < i < t, repre-
sents the distance between the vertex v and the set P;, i.e., d(v, P;) = minyep, {d(v, u)}. We say that IT is a resolving partition
of Gif different vertices of G have different partition representations, i.e., for every pair of distinct verticesu, v € V, r(u|IT) #
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Fig. 1. In this tree the vertex 3 is an exterior major vertex of terminal degree two: 1 and 4 are terminal vertices of 3.

Fig.2. IT = {{1,4,9, 12}, {3,5, 8, 11}, {2, 6, 7, 10}} is a resolving partition.

r(v|IT). The partition dimension of G is the minimum number of sets in any resolving partition of G and it is denoted by pd(G).
The partition dimension of graphs is studied in [4,7,8,18].

2. The partition dimension of trees

It is natural to think that the partition dimension and metric dimension are related; in [7] it was shown that for any
nontrivial connected graph G we have

pd(G) < dim(G) + 1. (m

We know that the partition dimension of any path is two. That is, for any path graph P, it follows pd(P) = dim(P) + 1 = 2.
A formula for the dimension of trees that are not paths has been established in [5,9,17]. In order to present this formula, we
need additional definitions. A vertex of degree at least 3 in a tree T will be called a major vertex of T. Any leaf u of T is said to
be a terminal vertex of a major vertex v of T if d(u, v) < d(u, w) for every other major vertex w of T. The terminal degree of a
major vertex v is the number of terminal vertices of v. A major vertex v of T is an exterior major vertex of T if it has positive
terminal degree.

Let n1(T) denote the number of leaves of T, and let ex(T) denote the number of exterior major vertices of T. We can now
state the formula for the dimension of a tree [5,9,17]: if T is a tree that is not a path, then

dim(T) = ny(T) — ex(T). (2)
As a consequence, if T is a tree that is not a path, then
pd(T) < ny(T) —ex(T) + 1. (3)

The above bound is tight, it is achieved for the graph in Fig. 1 where IT = {{8}, {4, 9}, {1, 2, 3,5, 6, 7}} is a resolving
partition and pd(T) = 3. However, there are graphs for which the following bound gives better result than bound (3), for
instance, the graph in Fig. 2.

Let S = {s1,S2,...,S.} be the set of exterior major vertices of T = (V, E) with terminal degree greater than one; let
{si1, Siz, . . ., Sii;} be the set of terminal vertices of s; and let T = max <<, {l;}. With the above notation we have the following
result.

Theorem 1. For any tree T which is not a path,

pd(T) <k +71-—1.

Proof. For a terminal vertex s; of a major vertex s; € S we denote by S; the set of vertices of T, different from s;, belonging
to thes; — s path. If ; < 7 — 1, we assume S; =  foreveryj € {li+1,..., 7 — 1}. Now foreveryj € {2,..., 7 — 1}, let
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Bj = U{;S;jand, foreveryi € {1,..., k}, letA; = Si. Let us show that IT = {A, A1, Ay, ..., A, By, ..., B;_1} is aresolving
partition of T, where A = V — ((UL; Aj) U (UL B;)). We consider two different vertices x,y € V. Note that if x and y

belong to different sets of I7, we have r(x|IT) # r(y|IT).
Case 1: x,y € S;.If j = 7, then we have that x, y € A and it follows that d(x, A;) # d(y, A;). Otherwise, we obtain that

d(x, A) = d(x, s;) # d(y, sp) = d(y, A).
Case2:x € Sjandy € Sy, i # k.Ifj = 1orl = 1, then x and y belong to different sets of /7. So we suppose j # 1 and
I # 1. Hence, if d(x, A;)) = d(y, A;), then
d(x, Ar) = d(x,s;) +d(s;, s) + 1
= d(x, A;) +d(si, sx)
= d(y, A) +d(si, sk)
= d(y, si) + 2d(sk, i) + 1
= d(y, Ay) + 2d(sx, si)
> d(y, Ar).

Case3:x € Sipandy € A — U, S;.. If d(x, A) = d(y, Aj), then d(x, s;) = d(y, s;).Sincey & Si., 1 € {1,...,«}, there
exists A; € IT,j # i, such that s; does not belong to the y — s; path. Now let Y be the set of vertices belonging to the y — s;
path, and let v € Y such that d(s;, v) = minyey{d(s;, u)}. Hence,

d(x,A) = d(x,s;) +d(si, v) +d(v,s)) + 1
= d(y’ si) + d(Si, U) + d(U, Sj) +1
=dy,v) +2d(v,s) +d(v,sj) + 1
= d(yv A]) + 2d(v» S,’)
> d(y, A).

Case4:x,y € A = A — UL, Si;. If for some exterior major vertex s; € S, the vertex x belongs to the y — s; path or the
vertex y belongs to the x — s; path, then d(x, A;) # d(y, A;). Otherwise, there exist at least two exterior major vertices s;, s;
such that the x — y path and the s; — s; path share more than one vertex (if not, then x, y & A’). Let W be the set of vertices
belonging to the s; — s; path. Let u, v € W such that d(x, u) = min,ew{d(x, z)} and d(y, v) = min,ew{d(y, z)}. We suppose,
without loss of generality, that d(s;, u) > d(v, s;). Hence, if d(x, v) = d(y, v), thend(x, u) # d(y, u), and if d(x, u) = d(y, u),
then d(x, v) # d(y, v). We have

dx,A)) = dx, u) +d(u,s;) + 1
#dy,u) +du,s) +1
=dy,A)

or

dx,A) = dx, v) +d(v,s) + 1
#dy,v) +d,s)+1
= d(y, A).

Therefore, for different vertices x, y € V, we have r(x|IT) # r(y|IT). O

One example where pd(T) = « +  — 1is the tree in Fig. 1.

Any vertex adjacent to a leaf of a tree T is called a support vertex. In the following result & denotes the number of support
vertices of T and 6 denotes the maximum number of leaves adjacent to a support vertex of T.

Corollary 2. For any tree T of order n > 2,pd(T) <& +6 — 1.

Proof. If T is a path, then§ = 2 and 6§ = 1, so the result follows. Now we suppose T is not a path. Let v be an exterior major
vertex of terminal degree t. Let x be the number of leaves adjacentto v andlety = t — x.Sincex +y < £ andx < 6, we
deducexk +7 <£&+6. O

The above bound is achieved, for instance, for the graph of order six composed of two support vertices a and b, where a
is adjacent to b and four leaves; two of them are adjacent to a and the other two leaves are adjacent to b. One example of a
graph for which Theorem 1 gives a better result than Corollary 2 is the graph in Fig. 1.

Since the number of leaves, n(T), of a tree T is bounded below by & 4+ 6 — 1, Corollary 2 leads to the following bound.

Remark 3. For any tree T of order n > 2, pd(T) < n{(T).

Now we are going to characterize all the trees for which pd(T) = n;(T). It was shown in [7] that pd(G) = 2 if and only if
the graph G is a path. So by the above remark we obtain the following result.
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Fig. 3. A comet graph where 3 = 6 = pd(T) < ny(T).

Remark 4. Let T be a tree of order n > 4.1fn{(T) = 3, then pd(T) = 3.

Theorem 5. Let T be a tree with ni(T) > 4. Then pd(T) = n{(T) if and only if T is the star graph.

Proof. If T = S, is a star graph, it is clear that pd(T) = ny(T). Now, let T = (V, E) # S, such that pd(T) = n{(T) > 4. Note
that by (3) we have ex(T) = 1. Lett = n{(T) and let 2 = {uq, u,, ..., u;} be the set of leaves of T. Let u € V be the unique
exterior major vertex of T. Let us suppose, without loss of generality, u is a leaf of T such that d(u;, u) = maxyee {d(u;, u)}.

For the leavesuy, up, u; € £2 letthe paths P = uupuy, . . ., Ug Uy, Q = Ullgqlyy, . . ., Uy, U aNd R = Uiy, . . ., Uy, Up.
Now, let us form the partition IT = {Aq, A;, ..., A3, A}, such that Ay = {uqq, Urp, ..., Uiy, U, U, Ugs, - o, Ugy, U, Ap =
{up1, up, ..., Uy, Up, U}, A = {ui}, i€ {3,..., t—2}andA =V — Uf;f A;. Let us consider two different verticesx,y € V.
Hence, we have the following cases.

Case 1: x,y € Aj.Letus suppose x € Pand y € Q.If d(x, A;) = d(y, A;), then we have

dix,A) = d(x,u) + 1
=d(x,A) + 1
=d(y,A) +1
=d(y,A) +2
> d(y, A).

Now, ifx,y € Porx,y € Q, thend(x, A) # d(y, A).

Case 2: X,y € Ay. If x = u;1 ory = uyq, then let us suppose for instance, x = u;q, sowe have d(x, A1) = 1 < 2 < d(y, Ay).
On the contrary, ifx, y € R, then d(x, A) # d(y, A).

Case 3: x,y € A Ifd(x,A;) = d(y,A),thent > 5 and there exists a leaf u;, i # 1,2,t — 1, t, such that d(x, A;)) =
dx, up) # d@y, up) = d@y, A).

Therefore, for different vertices x, y € V we haver(x|IT) # r(y|IT) and IT is aresolving partitionin T, a contradiction. O

Let T be the comet graph shown in Fig. 3. A resolving partition for T is IT = {A1, Ay, A3}, where A; = {x, t}, A, = {y, z}
and A3 = {u, w}. In this case, = pd(T) = 3 < 4 = n(T).

Remark 6. For any tree T of order n > 2, pd(T) > 6.

Proof. Since different leaves adjacent to the same support vertex must belong to different sets of a resolving partition, the
result follows. O

Other examples where pd(T) = 6 are the star graphs and the graph in Fig. 2.

Theorem 7. Let T be a tree which is not a path. If every vertex belonging to the path between two exterior major vertices of
terminal degree greater than one is an exterior major vertex of terminal degree greater than one, then

pd(T) < max{x, v + 1}.

Proof. We suppose T = (V, E) is not a path. Let S = {s1, 55, ..., S, } be the set of exterior major vertices of T with terminal
degree greater thanone and letB; = {s;}, i=1,...,«k.Ifk < v+ 1,thenfori e {k +1,..., T + 1} we assume B; = (. Let
l; be the terminal degree of s;, i € {1, ..., «}.If l; < i, then we denote by {s;;, ..., sy} the set of terminal vertices of s;. On
the contrary, if [; > i, then the set of terminal vertices of s; is denoted by {s1, . . ., Sii—1, Sii+1, - - - , Si+1}. Also, for a terminal
vertex s;; of a major vertex s; we denote by S; the set of vertices of T, different from s;, belonging to the s; —s;; path. Moreover,
we assume S; = { for the following three cases: (1)i = j,(2)i < < vandj e {i+2,...,7 4+ 1},and (3)i > l; and
je{li+1,..., t+1}.Now,lett = max{«, 7+ 1} andlet IT = {A, A,, ..., A;} be composed of the sets A; = B;U (UL, S;) ,
i=1,...,t. Since every vertex belonging to the path between two exterior major vertices of terminal degree greater than
one is an exterior major vertex of terminal degree greater than one, then /7 is a partition of V.

Let us show that I7 is a resolving partition. Let x, y € V be different vertices of T.If x, y € A;, we have the following three
cases.
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Fig.4. I1 = {{1, 8,11, 14}, {2, 5, 12, 15}, {3, 6, 9, 16}, {4, 7, 10, 13}} is a resolving partition.

Case 1: x, y € Sj. Inthis case d(x, Aj)) = d(x, s;) # d(y, s;)) = d(y, A)).

Case2:x € Sjjandy € Sy, j # k. If d(x, Ar) = d(y, Ax) we have d(y, Aj)) > d(y, sy) = dy, A = d(x, A > d(x,sj) =
d(x, Aj).

Case 3: x = s;and y € Sji. As s; has at least two terminal vertices, there exists a terminal vertex s; of s;, | # j, such that
d(x,A) = d(x,Sy) = 1.Hence, d(y,A) > d(y,s;) > 1 = d(x, A). Therefore, for different vertices x,y € V, we have
rx|IT) #r|I). O

The above bound is achieved, for instance, for the graph in Fig. 4.

3. On the partition dimension of generalized trees

A cut vertex in a graph is a vertex whose removal increases the number of components of the graph and an extreme vertex
is a vertex such that its closed neighborhood forms a complete graph. Also, a block is a maximal biconnected subgraph of the
graph. Now, let § be the family of sequences of connected graphs G1, G,, ..., G¢, k > 2, such that G; is a complete graph
Kyn,,n1 > 2,and G;,i > 2,is obtained recursively from G;_; by adding a complete graph K;,;, n; > 2, and identifying a vertex
of Gi_; with a vertex in K.

From this point we will say that a connected graph G is a generalized tree if and only if there exists a sequence {G1, G,
..., Gy} € §such that Gy = G for some k > 2. Notice that in these generalized trees every vertex is either a cut vertex or an
extreme vertex. Also, every complete graph used to obtain the generalized tree is a block of the graph. Note that if every G;
is isomorphic to K5, then Gy is a tree, thus justifying the terminology used. In this section we will be centered in the study
of partition dimension of generalized trees.

Let G = (V, E) be a generalized tree and let Ry, Ry, .. ., R, be the blocks of G. A cut vertex v € V is a support cut vertex
if there is at least one block R; of G, in which v is the unique cut vertex belonging to the block R;. An extreme vertex is an
exterior extreme vertex if it is adjacent to only one cut vertex. Let S = {s1, s, ..., s;} be the set of support cut vertices of
G and let {sj1, sp2, - . ., sy;} be the set of exterior extreme vertices adjacent to s; € S. Also, let Q = {Q;, Qa, ..., Qy} be the
set of blocks of G which contain more than one cut vertex and more than one extreme vertex and let {gi1, g2, . . . , qi;} be
the set of extreme vertices belonging to Q; € Q. Now, let ¢ = maxi<i<;,1<j<¢{li, tj}. With the above notation we have the
following result.

Theorem 8. For any generalized tree G,

(+v0+¢—1, ifp =3

pd(G)5{§+ﬂ+1, if ¢ <2
Proof. For each support cut vertex s; € S, let A; = {s;1} and for each block Q; € Q, let B; = {gj1}. Let us suppose ¢ > 3.
Foreveryj € {2,...,l;} we take M = {s;} and, if; < ¢ — 1, then for everyj € {lit1,..., ¢ — 1} we consider M = ¥.
Analogously, for every j € {2, ..., t;} we take Nj = {q;;} and, ift; < ¢ — 1, then for everyj € {ti;1,..., ¢ — 1} we consider

Ny = @. Now, let G; = ™" (M U Ny), withj € {2, ..., ¢ — 1.

Let us prove that IT = {A, A1, Ay, ..., A;,B1, By, ..., By, (5, G5, ..., Cyp—1} is aresolving partition of G, where A =V —
Ule A — Ul B — U?z_zl Gi. To begin with, let x, y be two different vertices of G. We have the following cases.

Case 1: xis a cut vertex or y is a cut vertex. Let us suppose, for instance, x is a cut vertex. So there exists an extreme vertex
si1 such that x belongs to a shortest y — s;; path or y belongs to a shortest x — s;; path. Hence, we have d(x, A;) = d(x, s;1) #
d(y, sin) = d(y, A).

Case 2: x, y are extreme vertices. If x, y belong to the same block of G, then x, y belong to different sets of I7. On the
contrary, if x, y belong to different blocks in G, then let us suppose that there exists an extreme vertex ¢ such thatd(x, c) < 1
ord(y,c) < 1. We can suppose ¢ € A;, forsomei € {1,...,¢},orc € B;, for somej € {1,...,9}. Without the loss of
generality, we suppose that d(x, c) < 1. Since x and y belong to different blocks of G, we have d(y, c) > 1. So we obtain
eitherd(x,A;)) =d(x,c) <1 <d(y,c) =dy,A)ordx, B) =dx,¢c) <1<d(y,c)=d(y,B).
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Fig. 5. IT = {{4}, {7}, {10}, {5, 8, 11}, {1, 2, 3, 6, 9, 12}} is a resolving partition for the generalized tree.

Now, if there exists no such a vertex c, then there exist two blocks H, K ¢ Q withx € H and y € K, which contain more
than one cut vertex and only one extreme vertex. Sox,y € A. Let u € H be a cut vertex such that d(y, u) = max,cy d(y, v).
Hence, there exists an extreme vertex s;; such that u belongs to a shortest x — s;; path and d(y, s;1) = d(y, u) + d(u, si1). As
x, y belong to different blocks and d(y, u) = max,cp d(y, v) we have d(y, u) > 2. Thus,

dy,A) = dy, sin)

d(y,u) + d(u, si)
> 2+d(u, siy)
1+d(u, sip)
d(x,u) + d(u, sp)
= d(X, A,’).

\%

Hence, we conclude that if ¢ > 3, then for every x,y € V, r(x|IT) # r(y|IT). Therefore, IT is a resolving partition.
On the other hand, if ¢ < 2, then IT" = {A, Ay, Az, ..., A;, B1,Ba, ..., By} is a partition of V. Proceeding as above we
obtain that [T’ is a resolving partition. O

The above bound is achieved, for instance, for the graph in Fig. 5, where { = 3, ¢ = 0 and ¢ = 3. Also, notice that for
the particular case of trees we have ¢ = &, ¢ = 6 and ©¥ = 0. So the above result leads to Corollary 2.
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