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Abstract. We discuss new type of surface waves which exist in elastic
media with surface energy. Here we present the model of a coating made
of polymeric brush. From the physical point of view the considered model
of surface elasticity describes a highly anisotropic surface coating. Here the
surface energy model could be treated as 2D reduced strain gradient
continuum as surface strain energy depends on few second spatial
derivatives of displacements. From the mechanical point of view the
proposed model relates to 2D coating made of long fibers undergoing
stretching and bending deformations. We consider here anti-plane surface
waves. The dispersion relation is derived and its dependence on the
material parameters is analysed.

1 Introduction

Surface waves play an important role in mechanics of solids and fluids. In particular, such
waves may be used for manufacturing of various devices of acoustoelectronics as they may
carry information on the material properties and their changes in the vicinity of the free
surface [1-3]. Recently, with the development of the nanotechnologies it is well-established
that the material behaviour at the nanoscale may be significantly different in comparison
with the same material behaviour in the bulk. In particular, positive or negative size-effect
can be observed at the nanoscale. Among various approaches used for material modelling at
the nanoscale the theory of surface elasticity is widely applied, see, e.g., [4-6]. In the
literature are known various approaches to description of surface effects, see, e.g., Gurtin-
Murdoch model [7, 8], Steigmann-Ogden model [9, 10], and others, see [6]. The
characteristic feature of these models is the presence of surface stresses which generalize
the surface tension for solids. Surface stresses may significantly change the behaviour of
solutions of corresponding boundary-value problems. In particular, unlike classic linear
isotropic elasticity [1] there exists new class of surface anti-plane waves that are shear
waves decaying exponentially with the depth [11, 12].
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Here we discuss new type of surface anti-plane waves localized near the surface an
elastic half-space considering surface strain and kinetic energies. Motivating by discrete
model of polymeric brushes we proposed reduced surface elasticity model. The elastic
energy of the brush is described with the use of the Stockmayer potential [13-15]. The latter
is a Lennard-Jones potential with additional term responsible for dipole interactions
between neighbouring elements of polymeric chains. As a result, we get in the model
translational and rotational interactions between chains. Using the homogenization
approach discussed in [16-18] for fiber-reinforced materials, we obtain the elastic
parameters used in the surface elasticity.

The paper is organized as follows. First we recall the solution form for anti-plane
deformations of a half-space. Then we introduce new model of surface elasticity and derive
the corresponding boundary conditions with use of the least action principle. Finally, the
dispersion relations are derived and their dependence on the material parameters is
analysed.

2 Anti-plane deformations of an elastic half-space
2.1 Anti-plane solutions in the bulk

Let us consider an elastic half-space x3 < 0. Hereinafter x;, k=1, 2, 3, are Cartesian
coordinates whereas i are the corresponding base vectors. The anti-plane deformations of
the half-space take one of the forms [1]

u=u; (x2, x3, 1) i, or  u=u; (x1,x3,0) iy, (1)

where u is the displacements vector and ¢ is time.
For anti-plane deformations the motion equations reduce into wave equations with
respect to u; and u»

(022 +05%) ur = @ Bluy, )
1 (012 + 05%) ur = @ Blus. 3)

For brevity here we use the following notations: O denotes the partial derivative with
respect to xx, O, stands for the derivative with respect to #, u and g are the shear modulus and
mass density, respectively.

Assuming steady-state behaviour we are looking for solution of (2) and (3) in the form

uq = U, exp(io?), 4)

where o is a circular frequency, i is imaginary unit, and U, is amplitude. As a result, (2) and
(3) take the form

L@ +0) U =-00? U, Q)
(@2 +0:) Ur=-0a? Us. 6)

Decaying with the half-space depth solutions of (5) and (6) are given by
U, = Uy exp(A x3) exp(ik x2), U, = Up exp(A x3) exp(ik x1), @)

where A=\ (k, ©) = (k- o/u @?)”, k is a wavenumber, U, are constants, a=1, 2.
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Nontrivial solution in form (7) exists if and only if it satisfies to the corresponding
boundary conditions at x3 = 0. The latter lead to a dispersion relation that is dependence
between k and . It is known that for the classic linear elasticity with free surface that
relates to the boundary condition

wosu, =0, (®)

anti-plane surface waves do not exist [1].

2.2 Surface elasticity model

Here we consider an elastic coating made of ordered polymeric chains attached along the
surface. Chains interact each other and with the substrate according to the Stockmayer
potential. For the theory of polymeric brushes we refer to [13-15] and the reference therein.
From the mechanical point of view such coating can be represented as a discrete system of
parallel long fibers. Each fiber can be modelled as an elastic beam. For simplicity let us
assume that the fibers are oriented along x;-axis. After averaging procedure as discussed in
[16-18] we obtain the surface strain energy density. Under infinitesimal anti-plane
deformations it has the form

2W=K[(Oou1 *+(01102)*1+Ki(012u2)?, ©)

where K; and K, are positive elastic surface moduli related to the shear and bending
deformations, respectively. Obviously, (9) presents highly anisotropic media as the energy
depends on the spatial derivatives of displacements of different order

In addition we introduce the surface kinetic energy as in the Gurtin-Murdoch model [8]

2K=m[(& u1)* 3 u2)*], (10)

where m is the surface mass density.

2.3 Boundary conditions

In order to get the proper boundary conditions we apply the variational technique based on
the stationarity of the least action functional, see, e.g., [11, 12] for details. With (9) and (10)
we get the following boundary conditions

W o5 ur = - m o ur+ K, 022un, (11)
WOs ur = - m 8¢ ur+ K 01%us - Ki0r*us, (12)

which are valid for (2) and (3), respectively. Eq. (11) corresponds to the Gurtin-Murdoch
model for anti-plane deformations [11], whereas (12) includes additional term describing
the bending energy as in the Steigmann-Ogden model [10]. The model (9) and (10) results
in different boundary conditions at the free surface depending on the direction of the
surface wave propagation. Let us note that (12) is a special case of the weakly nonlocal
models of surface elasticity introduced in [19] within the framework of the direct approach.

2.4 Dispersion relations
Substituting (7) into (11) and (12) we have the dispersion relations

Ak, ®)=m w? - K i2, 13)
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LAk, ©) =m o - K, K- Ky k. (14)

Dispersion relation (13) was analysed in details in [11], whereas (14) was analysed in [19].
Let us note that the presence of the term K, k* changes the behaviour of dispersion curves,
see [19] for details.

3 Conclusions

Here we present new model of surface elasticity under small deformations. Unlike Gurtin—
Murdoch [7, 8] and Steigmann-Ogden [9, 10] models of surface elasticity the presented
strain energy density corresponds to new strongly anisotropic model of surface elasticity,
which can be treated as one-dimensional extension of the Gurtin-Murdoch model towards
Steigmann-Ogden model of surface elasticity since the strain energy has term related with
the bending energy, but only in one direction. The presented elastic model is an example of
two-dimensional anisotropic strain-gradient media with different differential properties in
different directions: it possesses bending stiffness only in one direction. The model can be
interpreted as an elastic membrane reinforced by a family of ordered elastic beams. There
are some similarities with recently proposed metamaterials based on pantographic beam
lattices, see [16-18, 20] and review [21].

Considering anti-plane deformations within the proposed model we discuss here the
propagation of surface anti-plane waves that is also known as shear horizontal (SH-) waves,
which are polarized perpendicularly with respect to the sagittal planes. The dispersion
relations are derived. It is interesting that the dispersion properties depend on the direction
of the wave propagation.

The Author acknowledges financial support from the Russian Science Foundation under the grant No
15-19-10008-P.
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