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On the Role of Polarimetric Decomposition
and Speckle Filtering Methods for C-Band
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Abstract—Previous wetlands studies have thoroughly verified
the usefulness of data from synthetic aperture radar (SAR) sensors
in various acquisition modes. However, the effect of the processing
parameters in wetland classification remains poorly explored. In
this study, we investigated the influence of speckle filters and
decomposition methods with different combinations of filter and
decomposition windows sizes on classification accuracy. We used
a C-band Radarsat 2 image acquired over a wetland located in
northeast Poland. We processed the SAR data using various speckle
filters: boxcar, intensity-driven adaptive-neighborhood (IDAN),
improved Lee sigma, refined Lee (in 5×5 to 11×11 pixel window
sizes), and a nonlocal NL-SAR. Next, we processed the nonfiltered
and filtered data using nine polarimetric decompositions, also in
5×5 to 11×11 pixel window sizes. The extracted polarimetric
features were applied as an input dataset in the random forest clas-
sification model in single- and multidecomposition scenarios. In the
single-decomposition scenario, the Cloude–Pottier decomposition
produced the highest (72%) and the Touzi decomposition achieved
the lowest (38%) accuracy. The IDAN filter with an 11×11 filter
window and a 9×9 decomposition window had the highest, and
the nonfiltered data with a 5×5 decomposition window had the
lowest accuracy in the multidecomposition scenario. The most im-
portant features were the alpha parameter from the Cloude–Pottier
decomposition, the polarimetric contribution of the Shannon en-
tropy, and the volume backscattering components. The results
stress the importance of appropriate processing parameters in
the SAR data classification workflow, and the study guides in
selecting the most suitable combination of radar image processing
parameters for wetland classification.

Index Terms—Classification, polarimetric decomposition,
synthetic aperture radar (SAR), speckle filtering, wetlands.

I. INTRODUCTION

IN RECENT years, many studies focused on the application
of different synthetic aperture radar (SAR) data in wetlands

mapping using various acquisition setups. The studies showed
an impact on the classification accuracy of the SAR band, polar-
ization mode, multiple acquisition dates [1]–[5], and incidence
angles of the beam [6], [7]. At the same time, the selection
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of the polarimetric processing parameters of the SAR images
was rarely justified, while only several studies demonstrated that
these parameters influence the workflow.

The first parameter which affects the polarimetric decompo-
sition product is the speckle filtering method [8], [9]. It was
shown that the application of the speckle filtering improved the
classification accuracy [10], and that the improvement depends
on both the speckle filtering algorithm and the filter window
size [11]–[14].

In speckle filtering of full polarimetric images in wetland
areas, the most often used methods were the refined Lee filter [4],
[15] with a 5×5 [2] or 7×7 window [5], the boxcar filter with a
5×5 window [7], [16], [17], and the improved Lee sigma filter
with a 3×3 [3] or 5×5 window [1]. These filters reduce speckle
based on the local window, while a recent approach is to use
nonlocal filters, which were useful in coastal studies [18], [19]
and floodplain boundary preservation [20]. The nonlocal filters
often have different parametrization than local filters and use an
adaptive approach instead of a defined filtering window.

Most of the wetland studies processed SAR data with one
method of speckle filtering without comparison with others and
determining the impact of the filtering method on the classifica-
tion results. A study conducted in Indian coastal wetlands using
ERS-1 SAR data showed that the 5×5 window size for the Lee
filter was superior in suppressing the noise and preserving the
image contrast when compared to 3×3 and 7×7 windows [21].
Research that is more comprehensive compared the application
of the boxcar, Frost, Gamma map, Lee, Lee sigma, and median
filters for single-channel SAR images with 3×3 and 5×5 kernel
sizes in mapping flooded areas [22]. Similarly, a study conducted
in Canadian boreal wetlands compared five different speckle
filters [23]. These studies evaluated the performance of different
filters without focusing on a wide range of filtering window
sizes. Unfortunately, studies showing the effect of the multiple
polarimetric speckle filters with different (small and large) filter
window sizes on classification results are lacking.

The second important parameter in the decomposition cal-
culation workflow is the decomposition window size, which
determines the area for decomposition input averaging. Accord-
ing to our literature review, authors rarely test the effect of the
decomposition window size in SAR polarimetric studies. The
lack of interest in this parameter may be due to the expectation
that averaging polarimetric data for the decomposition may have
a similar effect as averaging during the speckle-filtering step.
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However, it was shown that the decomposition window size
influences the classification results for the city of Prague [14].
Therefore, it is interesting to test this relationship for other
speckle filtering methods including with the decomposition
window size smaller than the filter window size.

Finally, the key step in SAR polarimetric workflow is the
polarimetric decomposition, which makes it possible to de-
compose a complex coherency or covariance matrix into real
parameters or components, which are used as a classification
input. Many studies have confirmed the applicability of po-
larimetric SAR data in wetland classification. The Shannon
entropy parameter provided the best classification results and
was the most discriminating SAR feature regardless of the
polarization mode and frequency [5], [15], [24]. Several other
studies showed that the Cloude–Pottier decomposition, which
also decomposes Shannon entropy, was an important classifi-
cation feature [6], [25]. On the other hand, the helix scatter-
ing component from the Yamaguchi decomposition was useful
in detecting the flooded vegetation class in certain configura-
tions [4]. Another study showed that the decompositions based
on the scattering model (Freeman–Durden, Yamaguchi) and the
van Zyl decomposition classified Amazon wetlands better than
eigenvector-based decompositions (Touzi, Cloude–Pottier) [2].
For the classification of boreal wetlands, the Yamaguchi and
Touzi decompositions were more useful than the Cloude–Pottier
and Freeman–Durden decompositions [1]. In addition, the phase
parameter from the Touzi decomposition was able to distinguish
between fen and bog wetlands in Canada, which was not possible
using Cloude–Pottier decomposition parameters and backscatter
coefficients [26]. To summarize the aforementioned studies,
various polarimetric decomposition methods in different study
areas were successfully used, however, there is no consistent
conclusion on which SAR features are the most useful for
wetland classification.

In this study, we investigated the effect of preprocessing
parameters, such as speckle filters and polarimetric decom-
positions with various combinations of filter and decompo-
sition window sizes on wetland classification accuracy. We
processed a Radarsat 2 image with boxcar, intensity-driven
adaptive-neighborhood (IDAN), refined Lee, and improved Lee
sigma filters using four different filter window sizes (5×5,
7×7, 9×9, and 11×11) as well as with a nonlocal-SAR (NL-
SAR) filter. Then from the nonfiltered and filtered images, we
extracted 30 polarimetric features from nine decomposition
methods (Cloude, Cloude–Pottier, Freeman–Durden, general-
ized Freeman–Durden, Pauli, Sinclair, Touzi, van Zyl, and Ya-
maguchi). In the decomposition step, we also used four different
decomposition window sizes (5×5, 7×7, 9×9, and 11×11).
The calculated polarimetric parameters, together with the to-
pographic slope, were used as an input in a random forest super-
vised classification model. We used three scenarios of input data
combinations: 1) single-decomposition, 2) multidecomposition
with the same speckle filter, and 3) with all (decomposition and
filtering methods) data. Finally, we discuss the parameters used
to identify the interrelations of the parameters and to assist in
selecting the optimal workflow for wetlands classification.

An important factor in our study was the spatial resolu-
tion of the radar image because the recommended filter and

decomposition windows may be useful only for the processing of
data with a similar spatial resolution. In addition, the frequency
of the SAR data influences the ability to discriminate wetland
classes, so our results refer only to C-band SAR images.

II. METHODS

A. Data Acquisition and Processing

A Radarsat-2 C-band, single look complex (SLC) image in
fine quad polarization (FQ3) mode was acquired for the study
area on the 30th of March 2019 [Fig. 1(b)]. In FQ3 mode, the
incidence angle is approx. 21° and the spatial resolution of the
image is approximately 10.2×6 m (range × azimuth). The SAR
image was processed using the python snappy package, which
is an extension of the ESA SNAP 8.0 remote sensing process-
ing software. The image processing consisted of radiometric
calibration, polarimetric speckle filtering, polarimetric decom-
position, and range-Doppler terrain correction. The DEM used
in the terrain correction was shuttle radar topography mission
(SRTM) 1 Arc-Second Global. We also produced a nonfiltered
dataset where instead of the speckle-removal step the polari-
metric coherency matrix was calculated. After the preprocessing
and classification, the spatial resolution was 12.7×7.6 m. The
nonsquare pixel size was due to projecting the raster data in
geographical coordinates into a Cartesian coordinate reference
system.

We implemented the speckle filtering with five different fil-
ters: 1) boxcar, 2) IDAN, 3) improved Lee sigma, 4) refined
Lee, and 5) nonlocal NL-SAR. The boxcar filter is a simple
averaging filter that replaces the center pixel by the mean value
of all pixels in a sliding window. It presents the best filtering
performance over homogeneous areas [27]. The refined Lee filter
selects a directional window from eight edge-aligned windows,
based on determining the most homogeneous part of the sliding
window. The minimum mean square algorithm is applied for
pixels in the nonedge area in the edge-aligned window [28].
The IDAN filter does not select pixels from homogeneous areas
as a constant sliding window. Instead, it uses region-growing
techniques that select as many pixels as possible, all following
the same statistical population as the pixel of interest. The pixel
is filtered with the minimum mean square error (MMSE) filter
computed using all selected pixels [29]. The improved Lee sigma
filter first detects pixels that represent strong scattering targets,
which remain unfiltered. The filter then selects pixels within the
sigma range from a window and applies MMSE to the coherency
matrix [30]. The nonlocal filter is a novel paradigm for the
preservation of the image’s fine structure, details, and texture
in image denoising. It smooths images by deriving data-driven
weights from the similarity between small image patches. The
NL-SAR algorithm defines the nonlocal neighborhoods based
on pixel similarity evaluated by multichannel comparison of
patches. Several nonlocal estimations are performed, and the
best one is locally selected to form a single restored image with
good preservation of radar structures [31].

In this study, we used filter windows with the following
sizes: 5×5, 7×7, 9×9, and 11×11 pixels. The number of looks
parameter was 1 for IDAN, refined Lee, improved Lee sigma,
and NL-SAR filters. In the improved Lee sigma filter, the sigma
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Fig. 1. (a) True color Landsat 8 image of the study area acquired on 2nd April 2019, i.e., three days after the (b) Radarsat-2 image used in this study. The Radarsat
2 image is presented in the Pauli color composition: red – double, green – volume, and blue – surface. Panels 1–4 (c) show different vegetation types and flooding
conditions present in the study area.

value was 0.9 and the target window size was 3×3. In the IDAN
filter, the adaptive neighborhood size parameter was 25, 50, 80,
and 120 pixels, which correspond to the number of pixels in
the filter windows with sizes from 5×5 to 11×11 used for the
remaining filters (except the NL-SAR). In the NL-SAR filter,
the search window radius parameter was set to 1 to 12 pixels
range, the patch size with the half-width parameter was set to
0 to 5 pixels range, and the patch similarity criterion function
was the generalized likelihood ratio. Note that the NL-SAR
parameter values correspond to the filter window sizes applied in
the remaining filtering methods. We also used nonfiltered data
in form of a coherency matrix, since some SAR methods are
based on speckled data [32].

In the polarimetric decomposition steps, we used coherent de-
compositions using the scattering matrix, and model-based and
eigenvector-based decompositions using the covariance matrix
or coherency matrix. Coherent decompositions express the scat-
tering matrix as a combination of scattering responses of simpler
objects, known as canonical objects [28]. The model-based
decompositions are based on the assumption that the reflection
from an object can be modeled as the sum of the different
types of scattering: surface (single, or odd), double (even), and
volume [33], and added in Yamaguchi decomposition helix [34].
Eigenvector-based decomposition uses eigenvector and eigen-
values analysis of the coherency matrix. The method assumes
that the presence of a scattering mechanism is indicated by a
nonzero eigenvalue and when all eigenvalues have equal values,
the scattering is random [28].

We decomposed the SAR image with the following co-
herent decompositions: Sinclair, and Pauli; model-based de-
compositions: Freeman–Durden, generalized Freeman–Durden,
and Yamaguchi; eigenvector-based decompositions: Cloude,
Cloude–Pottier, Touzi, and van Zyl. We also calculated two
Shannon entropy contributions related to intensity and polarime-
try [35], whose sum corresponds to the entropy component in the
Cloude–Pottier decomposition. We calculated the eigenvector-
and model-based decompositions in a decomposition window

with the following sizes: 5×5, 7×7, 9×9, and 11×11 pixels.
The various window sizes were not used in the Pauli and Sinclair
decompositions as these methods decomposed the coherency
matrix in each pixel without averaging (i.e., 1×1 window) in
the SNAP software.

The aforementioned methods extend our preliminary study
design, which investigated only two speckle-filtering methods
in one decomposition and filtration window size [36], to give a
broader look at the effect of polarimetric processing parameters
on the classification accuracy and the individual polarimetric
features’ importance.

B. Study Area

The study was conducted in the lower Biebrza basin (approx.
220 km2), located in northeastern Poland (53.3°N, 22.6°E;
Fig. 1). The basin is composed mostly of fen wetlands, which
are flooded yearly in spring due to river flooding and snowmelt,
rainfall, and groundwater discharge in areas located further away
from the river [37]. The wetlands have been subjected to only
minor anthropogenic influence over the last few centuries and
are currently protected by National Park status in Poland and by
the Ramsar and Natura 2000 acts internationally. Notably, the
lower Biebrza basin is considered a reference site for comparable
fen and floodplain European wetlands [38]. The majority of the
terrain is overgrown by the low vegetation, such as sedges, reeds,
scrubs, meadows, and their mosaics; within the wetlands, some
patches of alder and birch tree are present, as well as a major
alder forest located in the southern part (Fig. 1).

C. Field Measurements

Measurements of the flooding extent and vegetation types in
different locations of the study area were carried out on the
27–29th of March 2019. We used a handheld GPS receiver with
a horizontal accuracy of approx. 2 m. The vegetation was dry
and leafless except for the coniferous trees in the upland. Such
conditions are typical for spring floods in European temperate
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zone wetlands. We collected 113 points and refined them locally
with additional 413 points based on an analysis of a 1×1-m
LiDAR-based digital elevation model developed in 2015, a 15-
cm orthophoto map, and a Landsat 8 satellite image [Fig. 1(a)]
acquired a week after the field measurements. We distinguished
six land cover classes that reflected well the flooding conditions
during the sampling, labeled as dense vegetation (DV), not
flooded terrain (NFT), soil (SL), open water (OW), flooded veg-
etation below 10-cm high (FVB), and flooded vegetation above
10-cm high (FVA). The discrimination between the FVA and
FVB classes was conducted based on approximated vegetation
height above the water. These classes included such vegetation
as meadows, grasslands, as well as deeply flooded sedges, and
reeds [Fig. 1(c): 3, 4]. In the DV class, we included both flooded
and not flooded vegetation that was too high and too dense for
the C-band SAR beam to scatter from the water surface beneath
the vegetation. The vegetation types in the DV class were high
reeds, dense sedges with tussocks, and forests [Fig. 1(c): 1, 2].
The OW class was mostly present in the proximity (< 2 km) of
the river, where the flooding was the deepest and no vegetation
was emerging. The NFT and SL classes were only present in
the upland and were covered mostly by agriculture in various
development states.

D. Image Classification

After processing the SAR image, we produced (for each
decomposition and each decomposition window size) 18 sets
of data including five speckle filtering methods boxcar, IDAN,
improved Lee sigma, refined Lee (in four filter windows), and
NL-SAR (in only one filtering parameter set), as well as nonfil-
tered coherency matrix. Further, the processed dataset and the
topographic slope raster were sampled in the 526 field measure-
ment locations and randomly split into training and validation
subsets (50/50%). We used the training subsets as the input to
the random forest machine learning classification model.

The random forest algorithm is an ensemble classifier based
on decision trees. This algorithm is popular in remote sensing
studies due to the accuracy of its classifications and robust-
ness [39]. The samples and variables are selected randomly from
the input dataset and used to train the trees. The final class label
is decided by voting using the class assignment by all trees (in
this research 1000) [40].

We ran the random forest classification for each combina-
tion of processing parameters in the following three scenarios
(Fig. 2).

1) Each decomposition product was used separately as the
model input.

2) All decomposition products with the same speckle filtering
method were used as the model input.

3) All decomposition products with the same combination of
filter and decomposition window size were used together
as the model input.

Our initial tests showed that classification results were er-
roneous in the area of the high-slope valley margin, situated
nearly perpendicular to the Radarsat-2 azimuth axis. The errors
were due to shadow and overlay radar distortions caused by

that landform. We were not able to correct this region using
the SAR terrain correction methods. These regions produced
erroneous classification results in each classification, which was
undesired in this study. Therefore, we introduced slope as a
classification feature in each classification model. The slope
allowed the random forest algorithm to learn to distinguish flat
wetland surfaces (OW, FVB, FVA, DV classes) from sloppy
landforms affected by radar distortions (mostly in NFT, SL,
DV classes). Effectively, the classification accuracy improved
by about 1–2% in our preliminary study (not discussed here).

E. Validation

To validate the random forest classifications from the different
scenarios and variants, we calculated the overall accuracy [%]

z = 100
k

n
(1)

where k is the number of correctly classified pixels, and n is
the number of all pixels in the validation subset. For each class,
we calculated the user accuracy (precision), which is a ratio
of correctly classified pixels in a class to the total number of
pixels that were classified in that class, and the producer accuracy
(sensitivity), which is a ratio of the number of correct pixels in
a class by the total number of pixels in that class in reference
data.

We performed the Kruskal–Wallis [41] and Dunn [42] tests
to determine whether using different speckle filtering and de-
composition methods lead to significantly different classifi-
cation accuracy. The Kruskal–Wallis is a nonparametric rank
test, which shows if two or more groups have equal medians
without pointing out the between-group differences. To point
out exactly which groups have a different median, we performed
the Dunn post-hoc test with the Bonferroni correction of the
p-values. In this study, the Kruskal–Wallis and Dunn tests are
used to show whether the accuracy, (1), of multiple classification
models grouped by a given filtering or decomposition method is
significantly different from another group. Hence, this approach
shows if there is a pattern in classification accuracy resulting
from the polarimetric methods applied in processing of the SAR
data.

F. Ranking the Importance of SAR Features

For each classification model in scenario 2, we identified the
most important parameters or components from each polarimet-
ric decomposition. The random forest algorithm provides an
assessment of the importance of input features during the clas-
sification process. To evaluate the importance of each predictor,
the mean decrease in the Gini index is calculated based on the
Gini impurity metric. The Gini impurity shows how much a
predictor reduces the impurity in a particular class [39]. Finally,
predictor importance is calculated as the average of decreasing
the Gini impurity across all trees in the forest [40]. To achieve
reliable comparison, we ranked the predictors’ importance only
for models from scenario 2, where each model used the same
predictors set differentiated only by a speckle filtering method.
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Fig. 2. Flowchart describing the classification scenarios used in this study. Each decomposition and speckle filter (except NL-SAR) was conducted in multiple
window sizes, but this dimension of analysis is removed from the figure for clarity.

G. Sensitivity of Accuracy to Processing Window Size

To quantify the effect of increasing the decomposition and
filter window sizes on the classification accuracy, we used a sen-
sitivity approach. Here, we define the sensitivity as the average
slope of accuracy for subsequently increasing decomposition
or filter window sizes. This approach is analogous to other
methods used for model parameters sensitivity analysis. The
filter windows sensitivity [%] is

sf =

∑n
i=1

∑m
j=2

zi,j−zi,j−1

fi,j−fi,j−1

n(m− 1)
(2)

and the decomposition window sensitivity [%] is

sd =

∑n
i=2

∑m
j=1

zi,j−zi−1,j

di,j−di−1,j

(n− 1)m
(3)

where z is accuracy [%] (1); f and d are half of the window size
(2.5, 3.5, 4.5, or 5.5) of the filter and decomposition windows,
respectively; and i and j are variant numbers out ofn andm total
numbers of variants of the filter and decomposition windows,
respectively.

III. RESULTS

A. Scenario 1

In scenario 1, we performed in total 540 classifications of
single decompositions with different processing parameters
combinations (Fig. 3). The median accuracy for the Cloude–
Pottier decomposition models was the highest (66.4%) and was
significantly different from other decompositions except for the
Pauli (Fig. 3 and Table II). The highest accuracy (72.1%)
was for a model using the Cloude–Pottier decomposition with
the IDAN filter, 9×9 speckle filtering window, and the 11×11
decomposition window (Fig. 7, Table I). The user accuracy for
this classification was the highest for the DV class (83%) and
the lowest for the NFT class (62%), and the producer accuracy
was the highest for the DV class (87%) and the lowest for the
SL class (64%) (Table I).

The lowest accuracy (37.7%) was obtained for the Touzi
decomposition with a nonfiltered coherency matrix and the 7×7
decomposition window size. The median accuracy of the models
using Touzi decomposition (50.6%) was significantly different
from other decompositions except for the Cloude (Table II). The
user accuracy for this classification was the highest for the FVB
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Fig. 3. Accuracy of random forest classification models in scenario 1. Panels are varied by the filter used (columns) and decomposition calculated (rows). Within
each panel, accuracy is shown per filter window size (panel columns) and decomposition window size (panel rows). Filter abbreviations: nonfiltered coherency
matrix (NF), boxcar (BC), intensity-driven adaptive-neighborhood (IDAN), improved Lee sigma (ILS), refined Lee (RL), and NL-SAR (NL). Decomposition
abbreviations: Sinclair (SR), Pauli (PL), Freeman–Durden (F-D), generalized Freeman–Durden (G F-D), Yamaguchi (Yamag.), and Cloude–Pottier (C-P). The
accuracy color scale is the same in Figs. 3, 4, and 6.

class (48%) and the lowest for the NFT class (24%), and the
producer accuracy was the highest for the DV class (51%) and
the lowest for the NFT class (24%) (Table I).

In the scope of the filtering method used, the median of the
classification accuracies from scenario 1 was the highest for
datasets processed with IDAN (61.6%). The Dunn test showed
that the IDAN median accuracy was significantly different from
the median accuracies of the other speckle filters except for the
NL-SAR filter whose median accuracy was 60.7% (Table III).
The lowest median accuracy was for the nonfiltered coherency

matrix (54%) which was not significantly different from the
median accuracy of the boxcar (56.8%), and refined Lee (57.6%)
filters.

B. Scenario 2

In scenario 2, the classification of all decompositions with
the same speckle filter was performed in 72 different processing
combinations (Fig. 4). The highest accuracy (84%) was obtained
for images processed with the IDAN filter with the 11×11 filter
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TABLE I
CONFUSION MATRICES FOR THE LOWEST (LEFT) AND HIGHEST (RIGHT) ACCURACY VARIANTS FOR SCENARIOS 1 (A, B), 2 (C, D), AND 3 (E, F)

z – overall accuracy (1), UA – user accuracy, PA – producer accuracy. Classes abbreviations: dense vegetation (DV), not flooded terrain (NFT), soil (SL), open water (OW),
flooded vegetation below 10-cm high (FVB), and flooded vegetation above 10-cm high (FVA).

TABLE II
PAIRWISE DUNN TEST FOR MEDIAN ACCURACY DIFFERENCE BETWEEN GROUPS DEFINED BY POLARIMETRIC DECOMPOSITIONS IN SCENARIO 1

A significant difference is indicated by a p-value < 0.05. Decomposition abbreviations: Sinclair (SR), Pauli (PL), Freeman–Durden (F-D), generalized Freeman–Durden
(G F-D), Yamaguchi (Yamag.), and Cloude–Pottier (C-P).

TABLE III
PAIRWISE DUNN TEST FOR MEDIAN ACCURACY DIFFERENCE BETWEEN

GROUPS DEFINED BY SPECKLE FILTERS IN SCENARIO 1

A significant difference is indicated by a p-value < 0.05. Filter abbreviations: nonfil-
tered coherency matrix (NF), boxcar (BC), intensity-driven adaptive-neighborhood
(IDAN), improved Lee sigma (ILS), refined Lee (RL), and NL-SAR (NL).

and 9×9 decomposition window sizes (Figs. 4 and 7, Table I).
The user accuracy for this classification was the highest for the
DV class (90%) and the lowest for the SL class (77%), and the

producer accuracy was the highest for the DV class (97%) and
the lowest for the SL and FVB classes (77%) (Table I).

The classification model based on a 5×5 decomposition of
nonfiltered coherency matrix had the lowest accuracy (66%).
The user accuracy for this classification was the highest for the
OW class (77%) and the lowest for the FVA class (56%), and
the producer accuracy was the highest for the DV class (77%)
and the lowest for the FVA class (61%). In 56% of the analyzed
combinations of processing window sizes, the classification of
images processed with the IDAN filter provided the highest
accuracies. The lowest accuracies were produced by the decom-
positions of the nonfiltered coherency matrix (69% of variants).
The highest average accuracy was 79% for four variants: 11–11,
11–9, 7–11, and 9–11 (filter-decomposition window size). The
lowest accuracy (72%) was obtained by the 5×5 filter and 5×5
decomposition windows.
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Fig. 4. Accuracy of random forest classification models in scenario 2. Panels are varied by filters used (columns). Within each panel, accuracy is shown per filter
window size (panel columns) and decomposition window size (panel row). Filter abbreviations: nonfiltered coherency matrix (NF), boxcar (BC), intensity-driven
adaptive-neighborhood (IDAN), improved Lee sigma (ILS), refined Lee (RL), and NL-SAR (NL). The accuracy color scale is the same in Figs. 3, 4, and 6.

The sensitivity of accuracy to the decomposition window size
was the highest for the nonfiltered variant where the increase of
decomposition window increased the accuracy by sd = 3.18%
on average. The second highest sensitivity was for improved
Lee sigma (sd = 2.07%), followed by IDAN (sd = 1.84%),
refined Lee (sd = 1.65%), NL-SAR (sd = 1.40%), and boxcar
(sd = 0.80%) scenario 2 variants. The sensitivity of accuracy to
filter window size was the highest for the improved Lee sigma
variant, where the increase of filtering window size increased
the accuracy by sf = 1.78% on average. The second highest
sensitivity was for boxcar (sf = 0.64%), followed by IDAN
(sf = 0.16%), and refined Lee (sf = 0.10%) scenario 2 variants;
nonfiltered and NL-SAR variants were not evaluated because
they did not have the filtering window size parameter.

The alpha parameter from the Cloude–Pottier decomposition
was the most important predictor for wetlands classification in
our case study (except for the topographic slope, which is not a
polarimetric feature; Fig. 5). Other important predictors were the
polarimetric contribution of the Shannon entropy, volume com-
ponents (except the Cloude decomposition). The double scatter-
ing component from Pauli decomposition and the alpha param-
eter from Touzi decomposition were moderately important. The
least important predictors were the double (except the Cloude
and Pauli decompositions) and helix scattering components.

C. Scenario 3

In this scenario, we performed the classification of all polari-
metric decompositions and processed with five various speckle
filters in 16 different combinations of processing windows sizes.
Thus, one variant from this scenario includes data from 54 vari-
ants from scenario 1 or six variants from scenario 2. The highest
overall accuracy (86.3%) was achieved by images processed
with an 11×11 filter and 11×11 decomposition window sizes
(Figs. 6 and 7, Table I). The user accuracy for this classification
was the highest for the DV class (95%) and the lowest for the
FVB class (74%), and the producer accuracy was the highest
for the DV class (95%) and the lowest for the FVB class (80%)
(Table I). The variant with 5×5 speckle filtering and 5×5 decom-
position window sizes produced the lowest accuracy (76.7%).

The user accuracy for this classification was the highest for the
DV class (84%) and the lowest for the FVB class (65%), and
the producer accuracy was the highest for the DV class (97%)
and the lowest for the SL class (68%). The median accuracy
was 81%.

In this scenario, the accuracy was slightly more sensitive to
the decomposition window (sd = 1.53%) than the filter window
(sf = 1.30%) sizes.

The classified map for the most accurate classification model
from scenario 3 (Fig. 7) was similar to the classified map for the
best result from scenario 2, as shown also by the low differences
in the user’s and producer’s accuracies for each class (Table I).
However, the classified map for the best result from scenario 1
showed more noise than the maps for the most accurate models
from scenarios 2 and 3.

IV. DISCUSSION

A. Effect of Speckle Filtering and Filter Window Size on
Classification

The overall accuracies of classification from scenarios 1 and
2 indicate that the application of the speckle filtering in the SAR
processing workflow improved the classification results. In both
scenarios, the nonfiltered data provided the lowest accuracy,
which illustrates that even robust machine learning algorithms,
like the random forest, require speckle filtering before the clas-
sification of PolSAR data.

The IDAN speckle filter was overall the most effective in
producing a highly accurate classification model while the NL-
SAR filter produced slightly lower accuracies (the difference in
median accuracy was 1% for scenario 1 and 2% for scenario 2).
The boxcar filter provided the lowest accuracies of all of the
tested speckle filtering methods. The median of the accuracies
in both scenarios for the refined Lee and improved Lee sigma
methods were equal, however, the refined Lee filter provided the
highest accuracies for combinations of small filter windows and
large decomposition windows, while the improved Lee sigma
filter produced the best models with both processing windows
being large.
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Fig. 5. Box plot of the random forest models predictor importance for each parameter and component of polarimetric decompositions (panel names) in scenario
2. Decomposition abbreviations: Freeman–Durden (F-D), generalized Freeman–Durden (G F-D). The topographic slope (bottom right panel) was not a polarimetric
decomposition feature. The higher the Gini index value the predictor is more important.

The comparison of results for data from different sensors
(especially between the satellite and airborne or ground-based)
may not be reliable. However, the filter mechanics and filter
effects on the images are similar no matter the sources of data,
which gives some basis for comparison of our research with
studies using different sensors. The performance of classifica-
tion models using different speckle filters in this study is partially
in contradiction with the results obtained in a study of land cover
classification in South Korea, where the IDAN, refined Lee,
and improved Lee sigma methods produced good classification
images with similar accuracies, but the highest classification

accuracies were achieved by the boxcar filter [12]. The accura-
cies were therein calculated using a different approach and the
data acquired by ground-based SAR was the sub-meter spatial
resolution, which may be the cause of the differences in the
results. Another research conducted on SAR images of San
Francisco also showed results inconsistent with ours, in which
the refined Lee filter had better performance than the IDAN
based on the Cloude–Pottier decomposition analysis [43]. This
was because the study area was much more urbanized than our
study, although some vegetation was also present. The refined
Lee filter, which preserves well straight edges by selecting
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Fig. 6. Accuracy of random forest classification models in scenario 3, where
columns show filter window sizes and rows show decomposition window sizes.
The accuracy color scale is the same in Figs. 3, 4, and 6.

edge-aligned rectangular windows [28], likely processed better
urban area images in that study, because of the presence of
features with straight edges.

The results from scenario 2 showed that the impact of the
filter window size on the classification accuracy depended on
the applied speckle filtering method (Fig. 4). The increase in
the size of the filter window for the IDAN method resulted in
small changes in the classification accuracies, and each applied
window size provided good classification results. This param-
eter influenced more the improved Lee sigma filter, where the
accuracy for the 5×5 window size was 74% and for the best
variant (11×11) was 80%.

The highest accuracy for boxcar was achieved by the 9×9
window and for refined Lee by the 7×7 window in scenario 2.
The filters applied here were tested and provided similar clas-
sification accuracy in a case study in Mumbai, India, which
processed C-band (Radarsat 2) and L-band (PALSAR 2) images
with a ground resolution of 8 and 24 m, respectively [11].
Additionally, that study investigated the effect of filter windows
and recommended minimum windows of 5×5 for the boxcar and
7×7 for the refined Lee algorithms. Another study demonstrated
that the most effective method for filtering high-resolution C-
band ground-based SAR image (0.7 m in range and from 0.5 to
3.4 m in azimuth) was the refined Lee with a filter window size of
5×5 and 7×7 [12]. However, a study of ALOS-PALSAR urban
image classification (spatial resolution 20 m), which processed
data only with the refined Lee filter, indicated that the highest
classification accuracy was obtained for 3×3 and 5×5 window
sizes [14].

The effects of speckle filtering on the results from scenario 2
were also assessed visually by comparison of the Pauli decom-
position and classification images (Fig. 8), as a visual inspection
is one of the methods used to assess the effectiveness of a filter

in smoothing out speckle and preserving image details [22]. An-
other method for assessment of filtration results is the equivalent
number of looks (ENL) metric. The ENL method is reliable for a
large, homogeneous area in an SAR image [28]. However, in our
case, wetlands are heterogeneous with small vegetation patches
and narrow water bodies. Because of that, we decided not to use
ENL here.

As shown in the visual comparison, the boxcar filter blurred
the image and enlarged strong target signatures [Fig. 8(d)]. For
large sliding window sizes, using the boxcar method resulted
in losing details and degraded image resolution [Fig. 8(f)]. The
refined Lee and boxcar produced a better-filtered image for small
windows (5×5, 7×7), which was also shown by Kang [12]. The
refined Lee filter preserved single objects well but blurred the
river edges for all window sizes [Fig. 8(p) and (r)]. The improved
Lee sigma filter showed the most effective performance in main-
taining objects’ shapes [Fig. 8(l) and (n)]. The river edges were
not blurry, and the width of the river was similar to the nonfiltered
image. However, the oxbow lake was partially obscured by
vegetation. The IDAN filter preserved well the water objects, but
it enlarged their surfaces by 2–20 m depending on the window
size [Fig. 8(h) and (j)]. In addition, the IDAN filter did not retain
small point scatters, such as isolated shrubs. The application of
the IDAN and improved Lee sigma filters with large kernel sizes
(9×9 or 11×11) smoothed homogeneous areas without blurring
the edges as with the boxcar and refined Lee filters. The NL-SAR
filter preserved well the river edges and terrain details, similar to
the improved Lee sigma filter. In addition, NL-SAR smoothed
the homogenous areas comparably to the IDAN and improved
Lee sigma filters [Fig. 8(t)].

Effectively, the speckle filters affected the classified object’s
shape, which was especially visible for linear objects like rivers
and oxbow lakes. For large filter windows, the linear objects were
preserved only by the IDAN, improved Lee sigma, and NL-SAR
filters [Fig. 8(i), (k), (m), (o), and (u)]. The linear objects
classified using the boxcar filter were characterized by strong
blurring, rounding of edges, and size increase when compared
to the other filters [Fig. 8(e)]. The refined Lee method obtained
similar results as the improved Lee sigma but only for the 5×5
filter window size [Fig. 8(q)]. The classification with the refined
Lee filter with 11×11 filter windows showed a loss of the linear
objects, and the objects’ boundaries became distorted [Fig. 8(s)].
This was due to the use of the edge-aligned windows in the
refined Lee method, which in the case of large filter windows
were not suitable for complex edges of natural objects. Overall
these results indicate that a better approach to filtering SAR im-
ages of natural wetlands was to use pixel-brightness similarities
(IDAN, improved Lee sigma) and nonlocal (NL-SAR) than the
edge-aligned window (refined Lee) and boxcar filters.

In our case, the use of the NL-SAR filter caused high commis-
sion errors of the FVA class to all other classes except SL with
the majority of commissions to the DV class. For comparable
variants in scenario 2, the user accuracy of FVA class was 62%
for NL-SAR and 80% for IDAN in the 5×5 filtration window.
As a result, large patches of FVA were present around the river
for NL-SAR as opposed to the comparable variants filtered
using IDAN or improved Lee sigma (Fig. 8). This indicates that
NL-SAR performed too aggressive filtering in our case, which
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Fig. 7. Classified maps for the most accurate model from scenarios (a) 1, (b) 2, and (c) 3. Corresponding confusion matrices are presented in Table I right column.
(a) Scenario 1 Cloude-Pottier in 11×11 window and IDAN in 9×9 window. (b) Scenario 2 all decompositions in 9x9 window and IDAN in 11×11 window.
(c) Scenario 3 all filters and decompositions in the 11×11 window.

led to losing polarimetric information related to discrimination
of high (>10 cm) vegetation emerging from the water. This issue
requires a more detailed analysis, which we leave for future
research.

Although the IDAN filter achieved the highest accuracies in
scenarios 1 and 2, according to the literature review, it has never
been applied before for processing SAR images of inundated
river wetlands. The NL-SAR, which gave the best results in the
segmentation of watercourses images located in marshes [20],
also in our study provided high classification accuracy. The most
often used filter in wetlands classification is the refined Lee
filter [4], [15] with a 5×5 window [2] or a 7×7 window [5].
Several studies applied the boxcar filter with a 5×5 [7], [16], [17]
window size, or the improved Lee sigma filter with a 3×3 [3] or
5×5 [1] window. This shows the underestimation of the IDAN
and NL-SAR filters in research, which may be due to the lack
of an easy-to-use implementation until recently.

B. Effect of Polarimetric Decomposition on Classification in
Scenario 1

Overall, scenario 1 indicated that the Cloude–Pottier decom-
position, regardless of the filter used and the size of the pro-
cessing windows, provided the highest classification accuracies.
The model-based decompositions (Freeman–Durden, General-
ized Freeman–Durden, and Yamaguchi) and van Zyl (based
on eigenvectors, but may be considered as model-based [2])
obtained similar classification accuracies (for the same decom-
position or filtering window size variants) which were always
lower than the Cloude–Pottier. The high classification accuracy
in the Cloude–Pottier decomposition is confirmed by another
study that distinguished similar classes [4]. Conversely, other
studies using X- and S-band airborne data [3] or conducted
for wetlands in the full vegetative stage [1], [2] showed that

applying the Cloude–Pottier decomposition was less successful
when compared to model-based decompositions.

The lowest accuracy in scenario 1 was achieved by the Touzi
decomposition. It was caused by its helicity and orientation
components, which had relatively low importance in our study.
Yet, the alpha angle showed clear spatial patterns of the scatter-
ing mechanisms. Similarly, a study of the efficiency of various
SAR features and decomposition methods for discriminating
wetland classes in Canada did not recommend using the Touzi
decomposition for wetland classification due to its noisy re-
sults [44]. Conversely, other studies demonstrated that the Touzi
decomposition allows for accurate wetlands classification when
a different methodology is applied. A study in the Canadian
wetland showed that using the Touzi decomposition data pro-
duces higher classification accuracy than Cloude–Pottier and
Freeman–Durden decompositions (each scenario used SAR in-
tensities as additional input data) [45]. Yet that study, was
conducted in bog-dominated wetlands, which are characterized
by sphagnum vegetation that is different from fen vegetation
present in the Biebrza basin.

C. Importance of Polarimetric Predictors in Scenario 2
Classification Models

The highest values of the polarimetric predictors’ importance
achieved the alpha parameter and polarimetric contribution of
the Shannon entropy from the Cloude–Pottier decomposition.
On contrary, another study showed that Shannon entropy and
intensity contribution of Shannon entropy were the most dis-
criminating predictors, while the polarimetric contribution of
Shannon entropy and the alpha parameter were the least dis-
criminating predictors for grassland classification [5].

For the model-based polarimetric decompositions, the volume
components were the most important scattering mechanism.
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Fig. 8. Comparison of the speckle filtering effect and resulting classification, for various terrain objects, in the Pauli decomposition and classification images with
a 5×5 decomposition window size from scenario 2. The selected objects in the compared images are shrubs, tussocks, and a river with an oxbow lake, indicated
with the small, medium, and large red boxes, respectively. The orthophoto map (panel a) was acquired before flooding, therefore, no flooding extent is visible.
(a) ortophoto. (b) non-filtered. (c) non-filtered. (d) boxcar 5×5. (e) boxcar 5×5. (f) boxcar 11×11. (g) boxcar 11×11. (h) IDAN 5×5. (i) IDAN 5×5. (j) IDAN
11×11. (k) IDAN 11×11. (l) improved Lee sigma 5×5. (m) improved Lee sigma 5×5. (n) improved Lee sigma 11×11. (o) improved Lee sigma 11×11. (p) refined
Lee 5×5. (q) refined Lee 5×5. (r) refined Lee 11×11. (s) refined Lee 11×11. (t) NL-SAR. (u) NL-SAR.
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This was because volume scattering is the dominant scattering
mechanism over vegetation canopies. The surface and double
scattering components had considerably lower importance. This
is counterintuitive because one would expect that the presence
of water (surface scattering) [46] and an emergent vegetation
boundary (double scattering) [16] are good indicators of the
presence of flooding. Overall, it was more important for the
random forest models to identify the volume scattering than
the surface or double scattering to assign a proper classification
label. Similar results were presented in another study that used
satellite data from the same sensor with a close acquisition
date [5].

The volume components from Pauli and Sinclair decomposi-
tions had similar, high importance when compared to the vol-
ume components from model-based decompositions. Another
interesting feature was the double scattering component, which
was important for the Cloude and Pauli decomposition and not
important for the model-based decompositions. This suggests
that the model-based decompositions identified a lesser contri-
bution of volume (e.g., vegetation paths) and double scattering
(e.g., present at the boundary of open water and vegetation)
mechanisms in this study area.

The helix component from the Yamaguchi decomposition,
which was considered less relevant in a natural environment [34]
had the lowest importance for our study area. This component
was evaluated as useless for wetland classification in other
studies using quad-pol Radarsat-2 data [5], [44]. On the other
hand, for PALSAR 2 data, the helix component improved the
classification accuracy [4], which may be due to the longer
wavelength of the L-band used in that study than the C-band
used here.

The alpha component from Touzi decomposition was one
of the most important parameters in the classification model,
which was also confirmed in another study [44]. This component
defines the dominant scattering mechanism alike the Cloude–
Pottier alpha parameter, therefore, it may be important for our
study area due to the presence of different scattering mechanisms
in the mosaic of inundation, emergent, and dense vegetation
in the Biebrza wetlands. Importantly, temporal changes in the
alpha component and other Touzi decomposition parameters can
be used to discriminate between different wetland vegetation
types [47]. Yet, in another study, the phase parameter from
Touzi decomposition was considered an important variable due
to the ability to discriminate between fen and bog wetlands [26].
However, our results did not show this effect because the lower
Biebrza wetland is dominated by fen wetlands without bog
vegetation.

D. Effect of Decomposition Window Size on Classification
Accuracy

The increase in the size of the decomposition win-
dow resulted in the improvement of the overall accuracy
obtained with eigenvectors-based decompositions, such as
Cloude, Cloude–Pottier, and Touzi. Conversely, the results for
the model-based decompositions (Freeman–Durden, general-
ized Freeman–Durden, van Zyl, and Yamaguchi) had higher
classification accuracies for smaller decomposition windows

(5×5, 7×7). According to the previous study [14], these results
confirm that there is no single, optimal decomposition window
size for all polarimetric decompositions. However, we identified
is some relations between groups of decompositions and the
decomposition window sizes. A large decomposition window
was more suitable for eigenvector-based decompositions, and a
smaller one for model-based decompositions. We believe this
is due to the eigenvector-based decompositions estimate the
main backscattering mechanism using an angular component
(the alpha component in Cloude–Pottier and Touzi), which may
need a larger decomposition window to decrease noise than
the intensity components of each scattering mechanism in the
model-based decompositions.

Our study demonstrated that the decomposition window size
impacts classification accuracy, which was previously shown
for cases when decomposition windows were larger than the
filter windows [14]. We summarized the results from scenario 1
(Fig. 3) to see how many times the classification accuracy for a
decomposition window size smaller than the filter window size
will be higher than 5% (which is approx. the 95% confidence
interval size for our classification accuracy) given the same
decomposition and filter method. The classification accuracies
were higher seven out of 54 times for the IDAN, and seven out
of 54 times for the improved Lee sigma filter. The boxcar and
the refined Lee filter accuracies were never higher than 5% in
this analysis. Therefore, the decomposition window size is an
important parameter when using filters that properly preserve
the object shape, i.e., IDAN, and improved Lee sigma. For these
filters, the application of a decomposition window smaller than
the filter window can improve the classification accuracy when
compared to variants with the decomposition window size the
same or larger than the filter window size. The NL-SAR was
not tested in this analysis due to too few cases resulting from
different parametrizations than local filters. However, we expect
the NL-SAR filter will show similar behavior as IDAN, and
improved Lee sigma filters.

E. Entire Dataset Classification in Scenario 3

The aim of scenario 3 was to verify if the use of all decom-
position products processed with various speckle filters on the
classification input would improve the classification accuracy.
The difference between the highest accuracies from scenarios 1
and 3 was 14%, which is a considerable improvement. However,
only two combinations of processing windows in scenario 3
achieved higher accuracy than the best result from scenario 2.
The accuracy gain in scenario 3 was 1.8% when compared to
scenario 2. This is a rather small improvement, especially given
that the preparation of the input dataset and creating a random
forest model for one variant in scenario 3 (2.5 h) takes four times
longer than for one variant in scenario 2 (0.6 h).

In scenario 2, the inclusion of multiple decomposition data
allowed for better discrimination of FVA from DV and NFT
classes. The most of misclassifications in the best scenario 2
occurred between OW, SL, and FVB classes. These misclassi-
fications were increased in the best model of scenario 3, which
used multiple decompositions and multiple filtering data. Hence,
although scenario 3 increased overall accuracy in reference to
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scenario 2 the difficult classes decreased their user and producer
accuracy. This may be a result of fitting to noise, which is an
undesired behavior of classification models with a large number
of predictors.

F. Sensitivity of Accuracy to Processing Window Size

The values of the sensitivity analysis for the IDAN filter were
about ten times higher for the decomposition window than for
the filter window. This means that the decomposition window
size influences the classification accuracy more than the filter
window size, and is an important parameter for the IDAN filter.
The same applies to the results of the refined Lee, improved Lee
sigma, and NL-SAR filters.

In the case of the boxcar filter, both filter and decomposition
windows had a similar, low impact on accuracy. This is because
the boxcar filter and the averaging in the decomposition window
finally produce the same effect.

As expected, the decomposition window size was an impor-
tant parameter for the nonfiltered coherency matrix because
increasing the decomposition window size caused an increasing
averaging of input data and decreased the noise.

The sensitivity analysis from scenario 3 demonstrated that
the decomposition window had a slightly greater impact on
the classification accuracy than the filter window. This could
be due to mixing different filter methods, which produced an
antagonistic effect on the sensitivities, effectively producing
similar sf and sd figures.

G. Outlook

In our study, we used several well-established filters and
the NL-SAR filter, which belongs to a group of relatively
novel and promising nonlocal speckle filters. The NL-SAR filter
showed good filtering performances for wetland classification,
therefore, in future research, other nonlocal filters should be
tested. Another promising method is the SimiTest, which is
based on the similarity test for complex Wishart distributed
covariance matrices, using polarimetric and interferometric in-
formation [48]. SimiTest showed that it smoothed speckle in
the homogenous area and preserved the details better than
the boxcar and refined Lee filters. Also, the extension of this
method, named CCM+SimiTest, which proposed the new con-
text covariance matrix formulation and a fast similarity test
computation scheme, achieved more satisfying performance
on speckle reduction and details preservation than local and
nonlocal filters [49]. Yet another approach, is to use the coeffi-
cient of variance and Pauli basis (CVPB-NLM) to measure the
similarity, which showed higher ENL metrics than the refined
Lee filter [50].

Except for the polarimetric decomposition methods described
in this study, some recently developed methods require testing
in wetlands classification. One of such methods could be the
general double- and odd-bounce scattering models with indepen-
dent orientation angles, which improved the discrimination of
the built-up patches from the forest areas [51]. Other interesting
approaches focus directly on polarimetric parameters, such as
the oscillation amplitudes and oscillation centers of each ele-
ment of a coherency matrix, which yielded good performance

for man-made target characterization [52], or the null angle
parameters, which were sensitive to crop types and produced
high classification accuracy even with very limited training
samples [53].

Unfortunately, the limitation of incorporation of new method-
ologies in PolSAR studies is low reproducibility. Most of the
recently proposed methods are lacking accessible source code or
software implementation. Own implementation of models and
algorithms is possible, however, requires additional resources
and testing.

V. CONCLUSION

In this study, the Radarsat 2 image of a fen wetland in northeast
Poland was classified in multiple scenarios to test the effect of the
following polarimetric methods and their processing parameters
on the classification accuracy.

1) Five Speckle Filters: boxcar, IDAN, improved Lee sigma,
refined Lee, and NL-SAR, and a nonfiltered coherency
matrix.

2) Four Filter Window Sizes: 5×5, 7×7, 9×9, and 11×11
(except the nonlocal NL-SAR filter).

3) Nine Polarimetric Decompositions: Cloude, Cloude–
Pottier, Freeman–Durden, generalized Freeman–Durden,
Pauli, Sinclair, van Zyl, and Yamaguchi.

4) Four Decomposition Window Sizes: 5×5, 7×7, 9×9, and
11×11.

Further, the data were used as an input in random forest clas-
sification models that discriminated six land cover classes in a
flooded wetland environment. The data were classified in single-
and multidecomposition scenarios. We aimed to demonstrate the
impact of processing parameters on classification accuracy, to
find the best combination of processing parameters and the most
suitable polarimetric decomposition for wetland mapping.

Our results show that the selection of the processing param-
eters significantly influences classification accuracy. Scenario 1
(single decomposition) and scenario 2 (multiple decompositions
with the same speckle filter) showed that the IDAN filter with
an 11×11 filter window size and a 9×9 decomposition window
size provided the highest classification accuracy. However, the
selection of the filtering method and the window size has to
take into account the expected degree of detail preservation. If
single- or few-pixel scatters (e.g., shrub, tree) are present in the
study area, and should be preserved, we recommend using the
refined Lee or improved Lee sigma with small filtering win-
dows. Such parametrization may result in insufficient speckle
removal within the homogeneous areas, and the introduction
of single misclassified pixels. When the aim is to smooth the
homogeneous areas and preserve the edges of the objects without
retaining small terrain details, the best results are obtained when
using the IDAN and improved Lee sigma filters with a large
window. In our study, the nonlocal NL-SAR filter retained well
the small terrain objects and resulted in a strong smoothing for
homogenous areas, which effectively led to some misclassifica-
tions of inundated vegetation.

This research showed that classification models using po-
larimetric features from multiple decompositions (scenarios 2
and 3) usually provide higher accuracy than the classification
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models using components or parameters from one polarimetric
decomposition. The exception was the Cloude–Pottier decom-
position, which had the highest overall accuracy in scenario 1,
and had higher accuracy than several variants from scenario 2.
The predictors’ importance of the classification models demon-
strated that the Cloude–Pottier decomposition components and
the volume components from the Yamaguchi, Pauli, Sinclair, and
van Zyl decompositions were the most important parameters for
wetland classification in this study.

Our study showed that the decomposition window has a
different effect on model-based and eigenvector-based decom-
positions. We suggest using a smaller (5×5, 7×7) decomposi-
tion window for model-based, and a larger (9×9, 11×11) for
eigenvector-based decomposition. We suggest processing the
SAR data with a decomposition window size smaller than the
filter window size for filters, which preserves the object’ s shape
well (IDAN, and improved Lee sigma).

Overall, based on the accuracy of all scenarios, we recom-
mend performing classification with the Cloude–Pottier, van
Zyl, Yamaguchi, and Pauli decompositions processed with the
IDAN speckle filter.

Finally, the vegetation of wetlands around the world is very
diverse, so our conclusions are representative for comparable
fen wetlands of the temperate climate zone. An analogous study
conducted in a different study area would be desired to support
our result. Apart from that, future research should extend the
methods to speckle filters and polarimetric decomposition de-
scribed in the outlook section, different SAR bands, especially
longer wavelengths, and different spatial resolutions.
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Since 2020, she has been working on her Ph.D.
dissertation on flooded areas detection on SAR im-
ages with an application of different machine learning
and deep learning methods with the Department of
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