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We construct the unique two-dimensional (2D) kinematics which is work-conjugate to the exact, resul-
tant local equilibrium conditions of the non-linear theory of branching shells. It is shown that the com-
patible shell displacements consist of the translation vector and rotation tensor fields defined on the
regular parts of the shell base surface as well as independently on the singular surface curve modelling
the shell branching. Discussing relations between limits of the translation vector and rotation tensor
fields when approaching the singular curve, and analogous fields given only along the singular curve
itself, several types of the junctions are described. Among them are the stiff, entirely simply connected
and partly simply supported junction as well as the elastically and dissipatively deformable junction,
and the non-local elastic junction. For each type of junction the explicit form of the principle of virtual
work is derived.
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1. Introduction

Already Reissner (1974, 1982) noticed that the 2D kinematic
structure of the general theory of regular shells, which is uniquely
induced by the exact, resultant local shell equilibrium equations,
corresponds to that proposed by Cosserat and Cosserat (1909).
Libai and Simmonds (1983, 1998) formulated the 2D kinematics
for shells modelled by a non-material weighted surface of mass
taken as the shell base surface during deformation process. When
the base surface is taken to be a material surface arbitrary located
in the shell-like body, the 2D shell kinematics was discussed by
Makowski and Stumpf (1990) and Chróścielewski et al. (1992)
and summarised in detail in the book by Chróścielewski et al.
(2004), where references to other papers are given. In the above
works the 2D shell kinematics was uniquely established as the
work-conjugate dual structure following from some 2D integral
identity of the virtual work type. As a result, the unique 2D shell
displacements are described by six fields: three components of
the translation vector u and three independent parameters of the
rotation tensor Q fields describing the gross deformation of the
shell cross section.

In case of irregular shell structures, called also multi-shells, sev-
eral special cases of 2D six-field shell kinematics were discussed by
Makowski and Stumpf (1994), Chróścielewski et al. (1997, 2004)
and Pietraszkiewicz (2001). In those works it was assumed that
the region of irregularity (branching, self-intersection, stiffening,
ll rights reserved.

: +48 58 341 61 44.
raszkiewicz).
technological junction, etc.) is small as compared with other
dimensions of the shell base surface and its size can be disre-
garded. Such an assumption introduced an undefinable error into
the resultant dynamic continuity conditions at the singular surface
curves and points modelling the regions of irregularity. Konopińska
and Pietraszkiewicz (2007) removed this inaccuracy and formu-
lated the exact, resultant 2D equilibrium conditions for the general,
non-linear six-field theory of branching and self-intersecting
shells.

In this note by extending the results of Konopińska (2007) we
construct the dual structure work-conjugate to the exact resultant
equilibrium conditions derived by Konopińska and Pietraszkiewicz
(2007). This structure represents the unique 2D kinematics on the
irregular shell base surface M for the branching shell. We begin
with the integral identity (9) in which initially arbitrary vector
fields v and w are interpreted as the kinematically admissible vir-
tual translations du and rotations x corresponding to the real
deformation of the shell base surface. This allows us to introduce
the 2D principle of virtual work (21) formulated on the irregular
material base surface M which includes the stationary singular
curve C modelling the region of shell branching. As a result, the
shell displacements consist of two fields u, Q on MnC and inde-
pendent two fields uC, QC defined only along C. Then we discuss
relations between limits of the fields u, Q when approaching C
and the fields uC, QC themselves. In this way several types of junc-
tions at C can be described. Among them are the stiff, entirely
simply connected, partly simply supported and partly deformable
junctions. For each type of junction we characterize its specific
kinematics and establish the appropriate form of the principle of
virtual work.

http://dx.doi.org/10.1016/j.ijsolstr.2011.03.029
mailto:pietrasz@karol.imp.gda.pl
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.029
http://www.sciencedirect.com/science/journal/00207683
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2. Notation and local equilibrium conditions

A shell is a 3D thin solid body identified in a reference (unde-
formed) placement with a region B of the physical space E having
E as its 3D translation vector space. The position vector x = x � o of
any point x 2 B relative to an origin o 2 E can be given by

xðx; nÞ ¼ xðxÞ þ ntðxÞ; ð1Þ

where x(x) = x(x, 0) is the position vector of a point x of some unde-
formed base surface M, while n is the distance from M to x along the
unit vector t not necessarily normal to M.

The position vector y = v(x) = y � o relative to the same origin
o 2 E of any shell point y in the deformed placement B ¼ vðBÞ
can always be represented by

yðx; nÞ ¼ yðxÞ þ zðx; nÞ; zðx;0Þ ¼ 0; ð2Þ

where y = v(x) is the position vector of the deformed material base
surface M ¼ vðMÞ, and z is a deviation of y 2 B from M ¼ vðMÞ.

For the branching and self-intersecting shells Konopińska and
Pietraszkiewicz (2007) worked out the through-the-thickness inte-
gration procedure leading to the exact, resultant local equilibrium
conditions for any part P 2M which includes the singular surface
curve C modelling the common junction of regular branches Mk,
k = 1, . . . ,n, of M, with n = 3 for the branching and n = 4 for the
self-intersection.

In the referential description these resultant local equilibrium
conditions consist of the equilibrium equations in P �MnC,

DivsN þ f � ~f ¼ 0; DivsM þ axðNFT � FNTÞ þ c � ~c ¼ 0; ð3Þ

the static boundary conditions along that part @Pf � @Mf where the
resultant forces and couples are prescribed,

n� � Nm � ~n ¼ 0; m� �Mm � ~m ¼ 0; ð4Þ
the static continuity conditions along C \P,

sNmtþ f C � ~f C ¼ 0; sMmtþ cC � ~cC ¼ 0; ð5Þ

and the static boundary conditions

ne � ni � ~nx ¼ 0;
me �mi þ ye � ne � yi � ni � ~mx ¼ 0

ð6Þ

at the singular points xi, xe 2 C \ @Mf, see Fig. 1.
In (3)–(5), (N,M) 2 E � TxM are the surface stress resultant and

stress couple tensors of the 1st Piola–Kirchhoff type, which are re-
lated to the corresponding stress resultant and stress couple vectors
nm, mm, defined along any edge oP of a regular part P �M by the
surface Cauchy theorem nm = Nm, mm = Mm, where m 2 TxM is the unit
vector externally normal to oP. In (3)–(6), (f,c) 2 E are the surface
resultant force and couple vectors, Grads and Divs denote the refer-
ential surface gradient and divergence operators on M, (n⁄,m⁄) 2 E
are the boundary resultant force and couple vectors along @Mf,
Fig. 1. The branching shell element: (a) the 3D s
(fC,cC) 2 E are the compensating curvilinear resultant force and
couple vectors along C, while ni, mi and ne, me are the compensating
concentrated force and couple vectors applied at the initial xi and
end xe points of C, respectively. Additionally, ax(A) means the axial
vector of the skew tensor AT = �A, sat is the jump of the vector field
a(x) at the singular surface curve C, and ð�Þ0 � d

ds ð�Þ.
In Konopińska and Pietraszkiewicz (2007) the compensating

concentrated forces ne, ni and couples me, mi were equivalently
represented by curvilinear integrals over some distributed loads
n, m along C. In the present paper we do not use this equivalent
representation.

The relations (3) and (4) are formally equivalent to those given
for the regular shell for example by Libai and Simmonds (1983)
and Makowski and Stumpf (1990). The static relations (5) and (6)
complete by some correcting terms various analogous approxi-
mate relations proposed by Makowski and Stumpf (1994),
Chróścielewski et al. (1997, 2004) and Pietraszkiewicz (2001) using
alternative approximate reduction procedures.

To avoid ambiguity, let us recall that in this paper the surface
gradient Grads of a differentiable vector field v(x) 2 E is the 2nd-
order tensor field Gradsv(x) 2 E � TxM defined by

fGradsvðxÞga ¼
d
dt

vðxþ taÞjt¼0 for any t 2 R; a 2 TxM: ð7Þ

The surface divergence Divs of a differentiable tensor field
A(x) 2 E � TxM is the vector field DivsA(x) 2 E satisfying

fDivsAðxÞg �b¼DivsfATðxÞbg¼ trfGradsðATðxÞbÞg for any b2E: ð8Þ
3. Work-conjugate shell kinematics

Let (v,w) 2 E be two vector fields smooth in regular points of
MnC, and (vC, wC) 2 E be two other vector fields smooth along C
including the initial xi and end xe points of P \ C. Then for any part
P �M containing a part of C, Fig. 1, we can set the integral identityZZ

PnC

~f � v þ ~c �w
� �

daþ
Z

P\@Mf

~n � v þ ~m �wð Þds

�
Z

P\C

~f C � vC þ ~cC �wC

� �
ds� ~nx � vC � ~mx �wC ¼ 0: ð9Þ

Introducing (3)–(6) into (9) we can transform the identity as
suggested in Chróścielewski et al. (2004, Chapter 3).

In particular, note that by simple algebra

ðDivsNÞ � v ¼ N 	 Gradsv ; ðDivsMÞ �w ¼M 	 Gradsw;

axðNFT � FNTÞ �w ¼ �1
2
ðNFT � FNTÞ 	W ¼ N 	 ðWFÞ;

ð10Þ

where 	 is the scalar product in the tensor space such that for any A,
B 2 E � TxM, A 	 B = tr(ATB), W = w � 1 is the skew tensor, and 1
means the unit tensor of E � E.
hell, (b) the corresponding 2D base surface.
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Let us apply in the reverse order the divergence theorem used
by Konopińska and Pietraszkiewicz (2007, f. (23)–(26)). Then the
first integral of (9) with (10) can be transformed as follows:

ZZ
PnC

~f � v þ ~c �w
� �

da ¼
ZZ

PnC
DivsN þ fð Þ � vf

þ DivsM þ axðNFT � FNTÞ þ c
h i

�w
o

da

¼ �
ZZ

PnC
N 	 Gradsv � N 	 ðWFÞf

þM 	 Gradswgdaþ
Z

P\C
sNm � vtð

þsMm �wtÞdsþ
Z

PnC
ðf � v þ c �wÞda

þ
Z

P\@Mf

ðNm � v þMm �wÞds

þ
Z

P\@Md

ðNm � v þMm �wÞds: ð11Þ

In (11), @Md = @Mn@Mf is the complementary part of @M where the
kinematic boundary conditions u = u⁄, Q = Q⁄ are prescribed, and
the jumps along the singular curve C are defined by

sNm � vt ¼
X3

k¼1

Nkmk � vk; sMm �wt ¼
X3

k¼1

Mkmk �wk: ð12Þ

In (12), Nk and Mk are the one-sided finite limits of N and M when
the respective boundary @Mk coinciding with C is approached,
respectively, and mk 2 TxMk is the unit vector externally normal to
@Mk.

The second integral of (9) can be divided into two parts

Z
P\@Mf

~n � v þ ~m �wð Þds ¼
Z
@P\@Mf

n� � v þm� �wð Þds

�
Z
@P\@Mf

Nm � v þMm �wð Þds: ð13Þ

The third integral of (9) can also be rewritten in two parts

�
Z

P\C

~f C � vC þ ~cC �wC

� �
ds ¼ �

Z
P\C

sNmt � vC þ sMmt �wCð Þds

�
Z

P\C
f C � vC þ cC �wCð Þ ds;

ð14Þ

where all fields are defined only along C.
Since P is an arbitrarily chosen part of M, the results presented

in (11)–(14) are valid for the whole M as well, so that (9) with (11),
(13) and (14) for the whole M with C leads to

�
ZZ

MnC
N 	 Gradsv �WFð Þ þM 	 Gradswf gda

þ
ZZ

MnC
f � v þ c �wð Þdaþ

Z
@Mf

n� � v þm� �wð Þds

�
Z

C
f C � vC þ cC �wCð Þdsþ

Z
@Md

Nm � v þMm �wð Þds

þ
Z

C
sNm � vt� sNm

 � vC þ sMm �wtf

�sMmt �wCgds� ne � vCe � ni � vCið Þ

� me þ ye � neð Þ �wCe � mi þ yi � nið Þ �wCif g ¼ 0: ð15Þ
Let the real shell deformation be described by the translation
vectors u = y � x 2 E and uC = yC � xC 2 E of the base surface as
well as the rotation tensors Q and QC 2 SO(3) of the shell cross sec-
tions defined as Q = di � ti, QC ¼ dC

i � tC
i , where di, dC

i and ti = (ta,t),
tC

i ; i ¼ 1;2;3;a ¼ 1;2, are triads of orthonormal directors in the
deformed and undeformed placement associated with MnC and
C, respectively. Then the vector fields v, vC and w, wC may be
interpreted, in particular, as the kinematically admissible virtual
translations and rotations

v ¼ du; vC ¼ duC; w ¼ ðdQÞQ T � x; wC ¼ ðdQCÞQ
T
C � xC; ð16Þ

such that du = x = 0 along @Md, and d is the symbol of virtual change
(variation). With such virtual displacements the integral over @Md

in the third row of (15) vanishes. In the last two rows of (15) the
terms at points (xi,xe) 2 @Md identically vanish as well, because
the compensating concentrated forces and couples are defined only
at (xi,xe) 2 @Mf.

Moreover, two integrals in the second row, the first integral
in the third row and terms in the last two rows of (15) may
now be interpreted as the external virtual work performed by
the given surface f, c, boundary n⁄, m⁄ and compensating con-
centrated ni, ne, mi, me loads as well as by the compensating
loads fC, cC prescribed along C, respectively. In this context
the first surface integral in (15) should have the meaning of
internal virtual work performed by N, M on the respective vir-
tual strain measures Gradsdu �XF, Gradsx, where X = x � 1.
These virtual strain measures should now be expressed by vari-
ations of appropriately defined global 2D stretch and bending
measures on MnC.

The 2D strain measures on MnC corresponding to the 2D virtual
strain measures were discussed in Chróścielewski et al. (2004),
Pietraszkiewicz et al. (2005) and Eremeyev and Pietraszkiewicz
(2006). It was found that

Gradsdu�XF ¼ dcE; Gradsx ¼ dcK ; ð17Þ

where dc(�) = Qd{QT(�)} is the co-rotational variation of (�), and the
2D stretch and bending tensors are defined by
E ¼ JF� QI; K ¼ CF� QB: ð18Þ
In (18), I = Gradsx 2 E � TxM and J ¼ gradsy 2 E� TyM are the inclu-
sion operators on MnC and M nC; F 2 TyM � TxM is the tangential
surface deformation gradient such that dy = Fdx, while B and C
are the structure curvature tensors of the base surface in the unde-
formed MnC and deformed M n C placements, respectively, defined
as follows:

T ¼ ti � ei; ax dTð ÞT�1
n o

¼ Bdx; B 2 E� TxM;

D ¼ QT ¼ di � ei; ax dDð ÞD�1
n o

¼ Cdy; C 2 E� TyM;

ð19Þ

where ei are the orthonormal base vectors of a 3D inertial frame of
reference.

The description of shell deformation given in (16)–(19) is
equivalent to that proposed by Cosserat and Cosserat (1909).

If we introduce the virtual strain energy density in MnC defined
as

r ¼ N 	 dcE þM 	 dcK; ð20Þ
then the principle of virtual work following from (15) for the
branching shell can be given in the form

http://mostwiedzy.pl


Fig. 2. Stiff junction.

Fig. 3. Entirely simply connected junction.

W. Pietraszkiewicz, V. Konopińska / International Journal of Solids and Structures 48 (2011) 2238–2244 2241

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

ZZ
MnC

rda ¼
ZZ

MnC
f � duþ c �xð Þda

þ
Z
@Mf

n� � duþm� �xð Þds

�
Z

C
f C � duC þ cC �xCð Þds

þ
Z

C
sNm � dut� sNmt � duC þ sMm �xtf

�sMmt �xCgds� ne � duCe � ni � duCið Þ
� me þ ye � neð Þ �xCe � mi þ yi �mið Þ �xCif g: ð21Þ

In the PVW (21), two surface integrals over MnC and one line
integral along @Mf are the classical contributions appearing for
the regular base surface. All other terms in (21) take into account
that now M is the irregular surface containing the singular curve
C modelling the surface branching. The minus sign in front of some
terms reflects the virtual works of compensating loads which had
to be subtracted in Konopińska and Pietraszkiewicz (2007) to as-
sure the exact global force and couple equilibrium of the branching
shell.

The line integral along C in the fourth and fifth rows of (21)
contains the jump terms which explicit forms depend on the type
of junction modelled by C. This integral describing the shell-
junction interaction (S-JI) for some types of shell junction will be
discussed in detail below.

4. Junctions at shell branching

Let us discuss in more detail the branching shell whose unde-
formed base surface M consists of three regular parts Mk,
k = 1,2,3, joined together along the common junction modelled
by the singular curve C, see Fig. 1.

In general, one can independently characterise the behaviour of
all six components of u and Q when C is approached along a path
within each Mk. This would lead to a large variety of junctions char-
acterised by any of 36 combinations of such relations for each Mk.

In this paper we assume that the translations of the base surface
always remain continuous during deformation, i.e. the kinematic
continuity conditions uk = uC are always satisfied, where uk mean
the one-sided limits of u on each Mk when C is approached.

Since

sNm � dut ¼ sNmt � hdui þ hNmi � sdut; ð22Þ

where hai means the average value of a at C, by translational con-
tinuity conditions we have hdui = duC and sdut = 0, so that in this
case

sNm � dut ¼ sNmt � duC: ð23Þ

With (23), the first two terms in the S-JI integral of the fourth and
fifth rows of (21) cancel each other out. As a result, different types
of junctions along C can now be characterised by additional con-
straints put on one-sided limits Qk of Q when C is approached.

4.1. Stiff junction

The junction is called stiff along C if both u and Q are continu-
ous on the whole M including C, see Fig. 2, that is

uk ¼ uC; Q k ¼ QC; k ¼ 1;2;3: ð24Þ

In this case in the integrand of the S-JI integral we have not only
(23) but also

sMm �xt ¼ sMmt �xC; ð25Þ

so that the S-JI integral identically vanishes. As a result, the kine-
matics of the branching shell with all junctions stiff along C is
entirely described by two fields u, Q smooth in the whole M con-
taining C. The corresponding PVW reads
ZZ

MnC
rda ¼

ZZ
MnC

f � duþ c �xð Þda

þ
Z
@Mf

n� � duþm� �xð Þds

�
Z

C
f C � duC þ cC �xCð Þds

� ne � due � ni � duið Þ
� me þ ye � neð Þ �xe � mi þ yi � nið Þ �xif g; ð26Þ

where due, dui and xe, xi are the virtual translation and rotation
vectors of M evaluated at the points xe, xi 2M, respectively.

4.2. Entirely simply connected junction

The junction is called entirely simply connected along C if only u
is continuous at C but Q is not constrained when approaching C
along a path on each Mk, see Fig. 3.

In this case, when approaching C we have to satisfy the follow-
ing independent static continuity conditions:

Mkmk ¼ 0; k ¼ 1;2;3: ð27Þ

Then, besides of (23), the third and fourth terms of S-JI integral
identically vanish

sMm �xt ¼ 0; sMmt �xC ¼ 0: ð28Þ

The relations (23) and (28) mean that the S-JI integral vanishes
as well and the corresponding PVW reduces to (26). In this case the
relation of any Qk to the rotation field QC cannot be uniquely estab-
lished, because definition of QC itself is not unique.

4.3. Partly simply supported junction

The shell junction can be called partly simply supported along C
if u is continuous at C, one of Qk is not constrained while the
remaining two of Qk are assumed to coincide with QC when C is

http://mostwiedzy.pl


Fig. 4. Partly simply supported junctions of the branching shell.
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approached. Since in our branching shell there are three branches
Mk, each of them may be regarded as simply supported in the junc-
tion C, while the remaining two are then assumed to be stiffly con-
nected with each other, see Fig. 4.

Let us assume, for definiteness, that the branches M1 and M2 are
stiffly connected with each other and the branch M3 is simply sup-
ported, see Fig. 4(b). Then the continuity conditions along C
become

uk ¼ uC; Q 1 ¼ Q 2 ¼ QC; M3m3 ¼ 0;
duk ¼ duC; x1 ¼ x2 ¼ xC; x3 – xC:

ð29Þ

Let m , s , n be the orthonormal triad along C that defines Q
C C C C

with sC tangent to C in the positive direction as in Fig. 1(b). Then
choosing orientations of M1 and M2 defined by the unit normals n1

and n2 and taking nC = n2jC, as is shown in Fig. 4(b), we may relate
mC to the respective m1 and m2 according to

mC ¼ sC � nC ¼ �
1

cos a
m1 ¼ þm2; ð30Þ

where a is the angle between m1 and the tangent space TxM2 along
C, see Fig. 4(b). In this case, within the Lagrangian description used
in the PVW (21) we obtain

sMm �xt ¼ ðM1m1Þ �x1 þ ðM2m2Þ �x2 þ ðM3m3Þ �x3

¼ M2 �M1 cos að ÞmCf g �xC ¼ sMmt �xC; ð31Þ

and this term cancels out with the last term in the S-JI integral of
(21). Then the curvilinear S-JI integral (21)4,5 vanishes as well
leading to the same form (26) of the PVW as for the stiff and en-
tirely simply connected junctions. However, now QC is defined by
the kinematic continuity conditions (29)1 while Q3 can be found
only in the process of solution of the boundary value problem,
Fig. 5. The junction of M3 in undeforme
in which the static continuity conditions M3m3 = 0 is taken into
account.
5. Deformable junctions

Let us discuss again the junction of the branching shell for
which the translational continuity conditions uk = uC still hold
along C and the rotation tensor QC of C is defined again by two
stiffly connected branches M1 and M2, so that Q1 = Q2 = QC. But
now the branch M3 is assumed to be connected along the junction
C in some deformable manner, Fig. 5.

The junction of M3 is called deformable along C if, besides of the
continuity conditions given above, the edge couple vector
m3 = M3m3 2 E depends on Q 3; Q 03 and/or dQ3 as follows:

m3 ¼ m̂3 Q 3;Q
0
3; dQ 3

� �
– 0; ð32Þ

where ð:Þ0 ¼ d
ds ð:Þ is derivative along C. Of course, higher-order

derivatives and higher-order variations of Q3 may enter the function
m̂3 as well, if necessary.

Let us discuss in more detail the influence of separate ingredi-
ents of the function m̂3 on the form of S-JI integral of (21).
5.1. Elastic junction

The junction of M3 is called elastic along C if m3 in (32) depends
on Q3 alone,

m3 ¼ m̂3ðQ 3Þ: ð33Þ

Using the results of Section 4.3, the moment terms in the S-JI inte-
gral with account of (33) can be given by
d (a) and deformed (b) placements.

http://mostwiedzy.pl
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sMm �xt ¼ ðM2 �M1 cos aÞmCf g �xC þ m̂3ðQ 3Þ �x3;

sMmt �xC ¼ ðM2 �M1 cos aÞmCf g �xC þ m̂3ðQ 3Þ �xC:
ð34Þ

For the elastic junctions of M3 the S-JI integral in the PVW (21)
should be replaced by

S-JI ¼
Z

C
m̂3ðQ 3Þ � ðx3 �xCÞds: ð35Þ

For some elastic junctions it is more appropriate to use the lin-
ear function m̂3,

m3 ¼ A 	 Q 3 ¼ A/3; ð36Þ

where A and A are given 3rd-order and 2nd-order junction stiffness
tensors, respectively, composed of scalar coefficients, and /3 = /i is
the equivalent finite rotation vector of Q3 with / as the angle of
rotation about the rotation axis defined by the unit vector i. For
such linearly elastic junction of M3 the S-JI integral becomes

S-JI ¼
Z

C
ðA 	 Q 3Þ � ðx3 �xCÞds ¼

Z
C

/ðAiÞ � ðx3 �xCÞds: ð37Þ
5.2. Non-locally elastic junction

The junction of M3 is called non-locally elastic along C if m3 in
(32) depends on Q 03 alone,

m3 ¼ m̂3ðQ 03Þ: ð38Þ

Let us take into account that Q T
3Q 03 ¼ �ðQ

T
3Q 03Þ

T is the skew ten-
sor expressible through its axial vector j3 by, see Pietraszkiewicz
and Badur (1983, f. (4.22)),

Q T
3Q 03 ¼ j3 � 1; j3 ¼ /0iþ fsin /1� ð1� cos /Þi� 1gi0; ð39Þ

so that (38) can equivalently be expressed by

m3 ¼ m̂3fQ 3ðj3 � 1Þg ¼ ~m3ðj3Þ: ð40Þ

For the non-locally elastic junction the S-JI integral takes the form

S-JI ¼
Z

C
m̂3ðQ 03Þ � ðx3 �xCÞds ¼

Z
C

~m3ðj3Þ � ðx3 �xCÞds: ð41Þ

If, in particular, the functions m̂3 in (38) and ~m3 in (40) are lin-
ear, then

m3 ¼ G 	 Q 03 ¼ Gj3; ð42Þ

where now G and G are known 3rd-order and 2nd-order stiffness
tensors composed of scalar coefficients, respectively. For such
non-locally linearly elastic junction the S-JI integral reads

S-JI ¼
Z

C
ðG 	 Q 03Þ � ðx3 �xCÞds ¼

Z
C
ðGj3Þ � ðx3 �xCÞds: ð43Þ
5.3. Dissipative junction

The deformable junction of M3 can be called dissipative along C
if m3 in (32) depends on dQ3 alone,

m3 ¼ m̂3ðdQ 3Þ: ð44Þ

Taking again into account that Q T
3dQ 3 ¼ �ðQ

T
3dQ 3Þ

T is the skew
tensor expressible through its axial vector x3 by

Q T
3dQ 3 ¼ x3 � 1;

x3 ¼ ðd/Þiþ fsin /1� ð1� cos /Þi� 1gdi; ð45Þ

the relation (44) can equivalently be expressed by

m3 ¼ m̂3fQ 3ðx3 � 1Þg ¼ m3ðx3Þ: ð46Þ

In this case the S-JI integral takes the form
S-JI ¼
Z

C
m̂3ðdQ 3Þ � ðx3 �xCÞds ¼

Z
C

m3ðx3Þ � ðx3 �xCÞds: ð47Þ

If, in particular, the functions m̂3 in (44) and m3 in (46) are lin-
ear, then

m3 ¼ H 	 dQ 3 ¼ Hx3; ð48Þ

where again H and H are known 3rd-order and 2nd-order stiffness
tensors composed of scalar coefficients, respectively. For such line-
arly dissipative junction the S-JI integral becomes

S-JI ¼
Z

C
ðH 	 dQ 3Þ � ðx3 �xCÞds

¼
Z

C
ðHx3Þ � ðx3 �xCÞds: ð49Þ
6. Conclusions

It has been shown that the unique 2D kinematics of the branch-
ing shell consists of the translation vector u and rotation tensor Q
fields defined on the regular parts of the shell base surface as well
as of independent fields uC, QC defined only along the singular sur-
face curve C modelling the shell branching.

For the branching shell we have derived the 2D principle of vir-
tual work (21), in which different types of junctions are taken into
account by appropriate forms of the shell-junction interaction inte-
gral. It has been found that the S-JI integral vanishes for the stiff,
entirely simply connected and partly simply supported junctions.
In case of deformable junctions, the S-JI integral has been explicitly
calculated for the elastic and dissipative junctions as well as for the
non-locally elastic junction, and their particular linear behaviour is
characterized as well.

The 2D principle of virtual work (21), with S-JI integrals corre-
sponding to the particular type of junctions along C, may be used
to develop appropriate computer programs for analyses of branch-
ing shells with various types of junctions.
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Polish).

Konopińska, V., Pietraszkiewicz, W., 2007. Exact resultant equilibrium conditions in
the non-linear theory of branching and self-intersecting shells. International
Journal of Solids and Structures 44, 352–369.

Libai, A., Simmonds, J.G., 1983. Nonlinear elastic shell theory. In: Hutchinson, J.W.,
Wu, T.Y. (Eds.), Advances in Applied Mechanics, vol. 23. Academic Press, New
York, pp. 271–371.

Libai, A., Simmonds, J.G., 1998. The Nonlinear Theory of Elastic Shells, second ed.
University Press, Cambridge.

Makowski, J., Stumpf, H., 1990. Buckling equation for elastic shells with rotational
degrees of freedom undergoing finite strain deformation. International Journal
of Solids and Structures 26, 353–368.

Makowski, J., Stumpf, H., 1994. Mechanics of Irregular Shell Structures. Institut für
Mechanik, Ruhr-Universität, Mitteilung Nr 95, Bochum, pp. 1–206.

http://mostwiedzy.pl
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