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Abstract
We present two greedy algorithms that determine zero-error codes and lower bounds
on the zero-error capacity. These algorithms have many advantages, e.g., they do
not store a whole product graph in a computer memory and they use the so-called
distributions in all dimensions to get better approximations of the zero-error capacity.
We also show an additional application of our algorithms.

Keywords Shannon capacity · Zero-error code · Greedy algorithm · Strong product ·
Independence number

1 Preliminaries

Let G = (V , E) be a graph. The number of vertices and edges of G we often denote
by n and m, respectively, thus |V (G)| = n and |E(G)| = m. If u, v ∈ V (G) and
{u, v} ∈ E(G), then we say that u is adjacent to v and we write u ∼ v. The open
neighborhood of a vertex v ∈ V (G) is NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)}, and
its closed neighborhood is the set NG [v] = NG(v) ∪ {v}. The degree of a vertex
v, denoted by dG(v), is the cardinality of its open neighborhood. The minimum and
maximum degree of G is the minimum and maximum degree among the vertices of G
and is denoted by δ(G) andΔ(G), respectively. A graphG is regular if δ(G) = Δ(G).
By the complement of G, denoted by G, we mean a graph which has the same vertices
as G, and two vertices of G are adjacent if and only if they are not adjacent in G. If
U is a subset of vertices of G, we write G[U ] and G −U for (U , E(G) ∩ [U ]2) and
G[V (G)\U ], respectively. Furthermore, if U = {v}, then we write G − v rather than
G − {v}.

A preliminary version of this work was presented at COCOA’20 (Jurkiewicz 2020).
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Given two graphs G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)), the strong
product G1 � G2 is defined as follows. The vertices of G1 � G2 are all pairs of the
Cartesian product V (G1) × V (G2). There is an edge between (v1, v2) and (u1, u2) if
and only if {v1, u1} ∈ E(G1) and {v2, u2} ∈ E(G2), or v1 = u1 and {v2, u2} ∈ E(G2),
or v2 = u2 and {v1, u1} ∈ E(G1). The union G1 ∪ G2 is defined as (V (G1) ∪
V (G2), E(G1) ∪ E(G2)). In addition, if ◦ is a binary graph operation, then we write
G◦r to denote the r th power of G, i.e., G ◦ G ◦ · · · ◦ G, where G occurs r -times.

A clique (independent vertex set, resp.) in a graph G = (V , E) is a subset V ′ ⊆ V
such that all (no, resp.) two vertices of V ′ are adjacent. The size of a largest clique
(independent vertex set, resp.) in a graph G is called the clique (independence, resp.)
number of G and is denoted by ω(G) (α(G), resp.). A split graph is one whose vertex
set can be partitioned as the disjoint union of an independent set and a clique. A legal
coloring of a graph G is an assignment of colors to the vertices of G (C : V (G) → N)

such that any two adjacent vertices are colored differently.

2 Introduction

A discrete channel W : X → Y (or simply W ) is defined as a stochastic matrix1

whose rows are indexed by the elements of a finite input set X while the columns are
indexed by a finite output set Y . The (x, y)th entry is the probability W (y|x) that y is
received when x is transmitted. A sequence of channels {Wn : X n → Yn}∞n=1, where
Wn : X n → Yn is the nth direct power of W , i.e.,

Wn(y1y2 . . . yn|x1x2 . . . xn) =
n∏

i=1

W (yi |xi )

and X n is the nth Cartesian power of X , is called a discrete memoryless channel
(DMC) with stochastic matrixW and is denoted by {W : X → Y} or simply {W }. See
Shannon (1956), Csiszár and Körner (2011), Körner and Orlitsky (1998), Cover and
Thomas (2006) and McEliece (2004) for more details.

Let W : X → Y be a discrete channel. We define the ω-characteristic graph G of
W as follows. Its vertex set is V (G) = X and its set of edges E(G) consists of input
pairs that cannot result in the same output, namely, pairs of orthogonal rows of the
matrixW . We define α-characteristic graph G(W ) (we call it characteristic graph for
short) of W as the complement of the ω-characteristic graph of W . Let {W : X → Y}
be a DMC and so W : X → Y is the corresponding discrete channel. We define the
characteristic graph G({W }) of the discretememoryless channel {W } as {G(Wn)}∞n=1.
The Shannon (zero-error) capacity C0(W ) of the DMC {W : X → Y} is defined as
C(G(W )), where

C(G) = sup
n∈N

logα(G�n)

n
= lim

n→∞
logα(G�n)

n
.

1 We assume that W is non-empty.
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See Csiszár andKörner (2011), Körner andOrlitsky (1998), Cover and Thomas (2006)
and McEliece (2004) for more details. Let G be the characteristic graph of W and
�(G) = supn∈N

n
√

α(G�n). Then �(G) uniquely determines C0(W ).
Let W : X → Y be a discrete channel with the characteristic graph G. A sequence

of input letters is called an input word. Input words x1x2 . . . xn ∈ X n and x ′
1x

′
2 . . . x ′

n ∈
X n are orthogonal if the vectors Wn(·|x1x2 . . . xn) and Wn(·|x ′

1x
′
2 . . . x ′

n) are orthog-
onal. A zero-error code of block length n for a DMC is defined by a set of mutually
orthogonal input words (Körner and Orlitsky 1998; Cover and Thomas 2006). Fur-
thermore, an independent set I of the characteristic graph G(Wn) corresponds to the
zero-error code for Wn and G(Wn) is the same as G�n (Shannon 1956; Körner and
Orlitsky 1998).

The research on zero-error codes was initiated by Shannon in 1956. He found
capacities of a class of channels (graphs) that does not yield additional information
benefits (Shannon 1956) and he provided a method which enables constructing codes
for these channels. The research was continued by, among others, Lovász (1979)
in his IEEE Information Theory Society award work, in which he determined the
values of Shannon capacities for some channels with effective codes using the so-
called Lovász function. The class of channels examined by Lovász is represented by
the so-called vertex-transitive, self-complementary graphs. It is the only one class
containing channels with effective codes, for which the an explicit formula of the
Shannon capacity is known.

Recently, Polak and Schrijver (2019) andMathew andÖstergård (2017)made some
progress in research on channels represented by strong powers of cycles. Moreover,
Boche and Deppe (2020) proved that the zero-error capacity is uncomputable in the
Banach–Mazur and Borel–Turing senses. Earlier, Alon and Lubetzky (2006) showed
that the series of independence numbers of strong powers of a fixed graph can exhibit a
complex and unpredictable structure. In this article, we propose polynomial algorithms
that approximate the capacity for some channels.

In the next section, we describe the so-called fractional independence number
defined by Rosenfeld (1967), which is strongly related to the considered problem.

3 Fractional independence number

Computing the independence number of a graph G = (V , E) can be formulated by
the following integer program.

Maximize
∑

v∈V
xv

subject to ∀{u,v}∈E xu + xv ≤ 1 and ∀
v∈V xv ∈ S, (1)

where S = {0, 1}. Now let S = [0, 1]. Given a graph G, by α∗
2(G) we denote the

optimum of the objective function in the integer program (1). However, for a graph G
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and a set of not necessarily all its cliques2 C by α∗
C(G) we denote the optimum of the

objective function in the following integer program.

Maximize
∑

v∈V
xv

subject to ∀
C∈C

∑

v∈C
xv ≤ 1 and ∀

v∈V xv ∈ [0, 1]. (2)

If C is the set of all maximal cliques of size at most r in G, then we denote α∗
C(G) by

α∗
r (G). If C contains the set of all cliques (or equivalently all maximal cliques) of G,

then we denote α∗
C(G) by α∗(G) and it is called the fractional independence number

of G. It is worth to note that α∗ is multiplicative with respect to the strong product
(Scheinerman and Ullman 2011).

The following results present someproperties of the linear program(2). In particular,
the first observation establishes an order between the above-mentioned measures.

Observation 1 Let G be a graph and C, C′ be sets of its cliques. If C′ ⊆ C, then
α∗
C(G) ≤ α∗

C′(G).

Observation 2 Let G be a graph. If ω(G) = r , then α∗(G) = α∗
r (G).

Lemma 1 For every graph G and a non-empty set of its cliques C we have

|V (G)|
ω(G)

≤ α∗
C(G) ≤ |C|

ς(C)
+ RC(G), (3)

where ς(C) = min{∑C∈C |{v} ∩ C | : v ∈ ⋃
C∈C C} and RC(G) = |V (G)| −

| ⋃C∈C C |. Furthermore, the equalities hold in the inequality chain (3) if G is vertex-
transitive3 and C is the set of all largest cliques in G.

Proof It is well known (Gross et al. 2014) that for every graph G we have

α∗(G) ≥ |V (G)|
ω(G)

. (4)

From (4) and Observation 1, the left inequality holds in (3).
Given a linear program (2) and its optimum α∗

C(G). Since
∑

C∈C
∑

v∈C xv ≤ |C|,
so

∑

v∈V (G)

xv ≤ |C|
ς(C)

+ RC(G).

Hence α∗
C(G) ≤ |C|/ς(C) + RC(G).

2 We emphasize that the number of maximal cliques in G is at most exponential with respect to |V (G)|
(Fomin and Kratsch 2010), while the number of edges in G is at most quadratic with respect to |V (G)|.
3 A graph is vertex transitive if for any two vertices u and v of this graph, there is an automorphism such
that the image of u is v.
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If G is vertex-transitive and C is the set of all largest cliques in G, then C
covers the whole vertex set, i.e., V (G) = ⋃

C∈C C . Hence RC(G) = 0. Fur-
thermore, every vertex is contained in the same number of largest cliques. Hence
ς(C)|V (G)| = ω(G)|C|. ��
It is interesting that themeasureα∗ has a particular interpretation in information theory
(Shannon 1956; Körner and Orlitsky 1998).

4 Capacity approximation

It is well known (Shannon 1956) that4

α(G) ≤ i
√

α(G�i ) ≤ �(G) ≤ α∗(G) (5)

for each positive integer i . A graph G is of type I if �(G) = α(G), otherwise is of
type II. Furthermore, Hales (1973) showed that for arbitrary graphs G and H we have

α(G � H) ≤ min{α(G)α∗(H), α(H)α∗(G)}.

In contrast to the above results, in the next section we use the fractional independence
number to calculate lower bounds on the Shannon capacity and the independence
number of strong products.

A function β : G → R is supermultiplicative (resp. submultiplicative) on G with
respect to the operation ◦, if for any two graphs G1,G2 ∈ G we have β(G1 ◦ G2) ≥
β(G1) · β(G2) (resp. β(G1 ◦ G2) ≤ β(G1) · β(G2)). A supermultiplicative and
submultiplicative function is called multiplicative. The independence number α is
supermultiplicative on the set of all graphs with respect to the strong product, i.e.,
α(G � H) ≥ α(G) · α(H) for any graphs G and H . Let B be a lower bound on the
independence number α, i.e., α(G) ≥ B(G). If B(G�i ) > (α(G))i (i ≥ 2), then G is
of type II and is more interesting from an information theory point of view (Shannon
1956). It is possible if B(G�i ) > (B(G))i . Thus we require that B has the last two
properties for at least one graph, i.e., B recognizes some graphs of type II.

The residue R of a graph G of degree sequence S : d1 ≥ d2 ≥ d3 · · · ≥ dn is the
number of zeros obtained by the iterative process consisting of deleting the first term
d1 of S, subtracting 1 from the d1 following ones, and re-sorting the new sequence in
non-increasing order (Favaron et al. 1993). It is well known (Favaron et al. 1991) that
α(G) ≥ R(G). Unfortunately, the following negative result holds.

Proposition 1 Let G and H be regular5 or split graphs. Then R(G � H) ≤ R(G) ·
R(H).

Proof Let G and H be regular graphs. For a regular graph G, from Favaron et al.
(1991), we have R(G) = �∑n

i=1(1/(1 + di ))� = �(n/(1 + d(G)))�, where d(G)

4 There is a better upper bound on �(G), the so-called Lovász theta function (Lovász 1979).
5 This part of the proposition was found by my colleague Tytus Pikies (2015, personal communication).
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is the degree of each vertex of G. From Jurkiewicz (2017) we know that the ceiling
function is submultiplicative on non-negative real numbers with respect to the multi-
plication. Hence R(G�H) = �|V (G)||V (H)|/(1+(d(G)d(H)+d(G)+d(H)))� ≤
�|V (G)|/(1+ d(G))��|V (H)|/(1+ d(H))� = R(G) · R(H), since a strong product
of regular graphs is regular.

Let G and H be split graphs. From Barrus (2012) and Hammack et al. (2011), we
have α(G) = R(G) and α(G � H) = α(G) · α(H), respectively. Finally, we have
R(G � H) ≤ α(G � H) = α(G) · α(H) = R(G) · R(H). ��

We conjecture that the residue is submultiplicative on the set of all graphs with respect
to the strong product. This probably means that the residue does not recognize any
graphs of type II. There are more such bounds, e.g., the average distance (Jurkiewicz
2017), the Caro–Wei bound and the Wilf bound (Jurkiewicz and Pikies 2015). On the
other hand, it is hard to find bounds that recognize at least one graph of type II.

5 Greedy algorithmMIN

In this section, we analyze, in the context of DMCs codes, the so-called greedy algo-
rithm Min (Algorithm 5.1) that determines an independent set and a lower bound
on the independence number of a graph (Harant and Schiermeyer 2001). The algo-
rithmMin has complexity O(n2). Similar greedy algorithms can be found in literature
(Borowiecki and Rautenbach 2015).

Algorithm 5.1 Greedy Algorithm Min
1: function Min(G)
2: I ← ∅
3: while V (G) �= ∅ do
4: assign to v∗ an element v ∈ V (G) with the smallest d(v)

5: G ← G − NG [v∗]
6: I ← I ∪ {v∗}
7: return I

A greedy algorithm always makes the choice that looks best at the moment. That
is, it makes a locally optimal choice in the hope that this choice will lead to a globally
optimal solution (Cormen et al. 2009). Vertices chosen (in such a way) by Min often
strongly block an eventual choice of vertices in a further stage of the algorithm,making
generated independent sets are small, especially for strong products of graphs of type
II. In Table 1, we summarize results produced by Min for these graphs. On the other
hand, Min works well for strong products of investigated graphs of type I. Although
channels represented by graphs of type I do not yield additional information benefits,
we also need a fast method that determines zero-error codes for these channels. There
are at least two ways to do this, i.e., we can run Min on the characteristic graph G of
a channel (since I n is an independent set of G�n if I is an independent set of G) or
directly on a strong power of G. In Table 2, we summarize our results produced by
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Table 1 For each graphG ∈ G+
n,2 = {H : α(H�2) > α2(H)∧|V (H)| = n}we determined T = 10(11−n)

independent sets of the graph G�2 using the algorithm Min and from these T sets, we chose the largest
one, which is denoted by I

Greedy algorithm Min (results for G+
n,2)

n |G+
n,2| |I | ≤ α2(G) |I | > α2(G) |I | = α(G�2)

5 1 1 0 0

6 4 4 0 0

7 36 33 3 3

8 513 474 39 38

9 16,015 15,536 479 475

10 908,794 900,764 8030 7746

Table 2 For each graph
G ∈ G0

n,2 = {H : α(H�2) =
α2(H) ∧ |V (H)| = n} we
determined an independent set I
of the graph G�2

Greedy algorithm Min (results for G0
n,2)

n |G0
n,2| |I | < α2(G) |I | = α(G�2)

5 33 0 33

6 152 0 152

7 1008 20 988

8 11,833 300 11,533

9 258,653 10,076 248,577

10 11,096,374 682,341 10,414,033

The independent set I is a larger set of I ′ × I ′ and I ′′, where I ′ =
Min(G) and I ′′ = Min(G�2). In addition,weobtained |I | = α(G�2)

for all graphs on n = 1, 2, 3, 4

Min for some graphs of type I. It is important to note that, for all results, we randomly6

chose vertices with the smallest degrees in Min (in line 4).

6 Modification of greedy algorithmMIN

In this section, we present a new greedy algorithm that produces an independent set
(a DMC code) and a lower bound on the independence number of a strong product.
This value, from (5), also determines a lower bound on the Shannon capacity.

We try to improve Min, since from our research it follows that it does not work
well, i.e., it recognizes a small number of graphs of type II. Our goal is to get larger
independent sets for strong products of graphs of type II by a modification of the
mentioned algorithm. We begin by introducing definitions required in the rest of the
paper.

6 If the first/last found vertex with the smallest degree is chosen, then two last columns in Table 1 contain
zeros.
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A semigroup is a set S with an associative binary operation on S. A semiring is
defined as an algebra (S,+, ·) such that (S,+) and (S, ·) are semigroups and for any
a, b, c ∈ S we have a · (b + c) = a · b + a · c, (b + c) · a = b · a + c · a (Adhikari
and Adhikari 2014). Note that (G,∪,�) is a semiring, where G is the set of all finite
graphs. In addition, ∪ and � are commutative operations with neutral elements (∅,∅)

and K1, respectively.

Lemma 2 Let p, r be positive integers and G1,G2, . . . ,Gr be graphs. Then

( ⋃

i∈[r ]
Gi

)�p

=
⋃

p1+p2+...+pr=p

[(
p

p1, p2, . . . , pr

)
�
i∈[r ]G

�pi
i

]

and

α

⎛

⎝
( ⋃

i∈[r ]
Gi

)�p
⎞

⎠ =
∑

p1+p2+...+pr=p

[(
p

p1, p2, . . . , pr

)
α

(
�
i∈[r ]G

�pi
i

)]
,

where summations extend over all ordered sequences (p1, p2, . . . , pr ) of nonnegative
integers that sum to p.

Proof The first part of the theorem can be proved in analogous way to the one in
(Loehr 2011, Theorem 2.12) for rings (we only need the above mentioned properties
of the semiring (G,∪,�)).

The second part of the theorem follows from the fact that the independence number
is multiplicative with respect to the disjoint union ∪ for all graphs. ��
The considered modification of the greedy algorithm takes as input arbitrary graphs
G1,G2, . . . ,Gr and produces as output an independent set ofG� = G1�G2� . . .�
Gr . From Lemma 2, we can find connected components of G�. Hence, our greedy
algorithm can be applied to each connected component of G� separately, or to the
entire graph G� at once. We prefer the first method.

The next step of our modification is a reduction of factors of a strong product. For
each i ∈ {1, 2, . . . , r} and any u, v ∈ V (Gi ), if NGi [u] ⊆ NGi [v], then α(G1 �G2 �
. . . �Gi � . . . �Gr ) = α(G1 �G2 � . . . � (Gi − v) � . . . �Gr ) (Jurkiewicz 2020).
Let G be a factor of a strong product G�, for example G = Gi . Let > be a strict total
order on V (G). We reduce the factor G by Algorithm 6.1 (Reduction GR), which has
complexity O(Δ2m). This algorithm is correct (in the considered context) since we
remove vertices from the strong product, and hence we can only decrease or leave
unchanged its independence number.

For some graphs, which we take as input, e.g., for a path on n ≥ 6 vertices, we
need to recursively repeat (at most n times) the algorithm GR to get a smaller graph.
Sometimes, the algorithmGRproduces verticeswith degree zero. Such vertices should
be removed from a graph, but taken into account in the outcome.

Let G be a graph and k be a positive integer. Let A be a k-tuple of subsets of
V (G). By BG(A) we denote a sequence containing upper bounds on α(G[Ai ]) for
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Algorithm 6.1 Reduction GR
1: function GR(G)
2: R ← ∅
3: for all {u, v} ∈ E(G) do
4: if u > v then
5: if NG [u] = NG [v] then
6: R ← R ∪ {u}
7: else if NG [u] ⊆ NG [v] then
8: R ← R ∪ {v}
9: else if NG [v] ⊆ NG [u] then
10: R ← R ∪ {u}
11: return G − R

i ∈ {1, 2, . . . , k}. Let G = 2K3. Then, for example, V (G) = {1, 2, . . . , 6}, E(G) =
{{1, 2}, {2, 3}, {3, 1}, {4, 5}, {5, 6}, {6, 4}} and

BG(({1, 2, 3}, {4, 5, 6})) = (1, 1).

Let A′ be a k′-tuple of subsets of V (G). A distribution DG(A′) is a k′-tuple of non-
negative integers, and is our prediction about an arrangement of independent vertices
ofG in sets from A′. LetG� = G1�G2� . . .�Gr . Let i ∈ {1, 2, . . . , r}, S ⊆ V (Gi )

and VGi (S) = V (G1) × V (G2) × · · · × V (Gi−1) × S × V (Gi+1) × · · · × V (Gr ).
From Hammack et al. (2011), for each clique Q of Gi we have

α

(
�

j∈[r ]\{i}G j

)
= α(G1 � G2 � . . . � Gi−1 � Gi [Q] � Gi+1 � . . . � Gr ).

Thus, if Q = {Q1, Q2, . . . , Qk} (k ∈ N+) is a set of cliques of Gi and

αi ≥ α

(
�

j∈[r ]\{i}G j

)
, (6)

then we can choose BG�((VGi (Q1), VGi (Q2), . . . , VGi (Qk))) = (αi , αi , . . . , αi ),
where αi occurs k times. Let

αi =
⎢⎢⎢⎣

∏

j∈[r ]\{i}
α∗
E(G j )

(G j )

⎥⎥⎥⎦ .

The function α∗ is multiplicative with respect to the strong product for all graphs
(Scheinerman and Ullman 2011). Thus, from Observation 1 and (5) we get

αi ≥
⎢⎢⎢⎣

∏

j∈[r ]\{i}
α∗(G j )

⎥⎥⎥⎦ =
⌊
α∗

(
�

j∈[r ]\{i}G j

)⌋
≥ α

(
�

j∈[r ]\{i}G j

)
(7)
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and finallyαi holds the condition (6). Furthermore, from (7) and (3), for graphswithout
vertices with degree zero, also the following substitution

αi =
⎢⎢⎢⎣

∏

j∈[r ]\{i}

(|E(G j )|ς−1(E(G j )) + RE(G j )(G)
)
⎥⎥⎥⎦ =

⎢⎢⎢⎣
∏

j∈[r ]\{i}

|E(G j )|
δ(G j )

⎥⎥⎥⎦

holds the condition (6).
Let i ∈ {1, 2, . . . , r}. Algorithm 6.3 (Distribution Distr), which takes as input a

graph G = Gi and an upper bound αb = αi , determines a distribution for a graph
G�. The algorithm Distr, whose running time is O(n2), uses Algorithm 6.2 (Greedy
Coloring GC), which has complexity O(n + m) (Kubale 2004). The algorithm GC
takes as input a graph G and an arbitrary permutation P of the vertex set of G. GC
in Distr legally colors the complement of G and hence produces a partitionQ of the
vertex set of G into cliques (the so-called clique cover of G). Subsequently, Distr
distributes αb = αi potential elements of an independent set roughly evenly (about
αb/|Q| elements or less depending on the sum from line 19) among all vertices of Q
(as well as among all subgraphs ofG1�G2� . . .�Gi−1�Gi [Q]�Gi+1� . . .�Gr )
for all Q ∈ Q.

Algorithm 6.2 Greedy Coloring GC
1: function GC(G, P)

comment: In all algorithms, loops contained the keyword in are performed in a given order.
2: for each v in P do
3: assign to v the smallest possible legal color C(v) in G

4: return C

As we mentioned before, vertices chosen byMin strongly block an eventual choice
of vertices in a further stage of the algorithm. Our greedy algorithm, i.e., Algorithm
6.4 (Greedy AlgorithmMin-SP), significantly diminishes the mentioned effect by the
use of generated distributions. The vertex set ofG1�G2� . . .�Gr can be interpreted
as the r -dimensional cuboid of the size |V (G1)| · |V (G2)| · . . . · |V (Gr )|.Min-SP uses
distributions in all r dimensions. Earlier Baumert et al. (1971), Jurkiewicz et al. (2015)
andCodenotti et al. (2003), only one distributionwas used at one time in algorithms for
the maximum independent set problem in subclasses of the strong product of graphs
to reduce a search space. The important point to note here is that in cases that are more
interesting from an information theory point of view, i.e., if G1 = G2 = · · · = Gr ,
some parts of Min-SP are much simpler, e.g., we can determine one distribution and
then we use it in all dimensions.

Min-SP defines four sets N , V , F and I , where N is the closed neighborhood
of a chosen vertex v∗ (line 10), V is a set of vertices that are available for the next
iterations, F is a set of forbidden vertices that are not available for the next iterations
and I is an actual solution (an actual independent set). In lines 13–14 and lines 18–21,
Min-SP updates distributions and degrees of all vertices from V , respectively. In line
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Algorithm 6.3 Distribution Distr
1: function Distr(G, αb)

comment: V (G) = {v1, . . . , vn}
2: for each v ∈ V (G) do
3: distrv ← 0
4: assign to P vertices of G arranged in non-increasing order according to their degrees
5: C ← GC(G, P)

6: create the clique cover CC of G from the coloring C
7: sort cliques from CC in non-increasing order according to their sizes
8: sort vertices in cliques from CC in non-decreasing order according to their degrees
9: for each Q in CC do
10: q ← �αb/|Q|�
11: r ← αb mod |Q|
12: i ← 0
13: for each v in Q do
14: K ← q
15: if i < r then
16: K ← K + 1
17: m ← αb
18: for each Q′ in CC do

19: M ← max

{
k ∈ {0, . . . , K } : ∑

v′∈N (v)∩Q′
distrv′ + k ≤ αb

}

20: if m > M then
21: m ← M
22: distrv ← m
23: i ← i + 1
24: return (distrv1 , . . . , distrvn )

17, elements of N and F are removed from V , but only degrees of vertices from N
are updated.

An advantage of Min-SP is that we do not need to store edges of G� = G1 �
G2 � . . .�Gr in a computer memory. This is important since |E(G�)| almost always
fast increases with r . In the memory, we only keep factors of G�, and the adjacency
relation ∼ is directly checked from the conditions specified in the definition of the
strong product (line 20).

SometimesMin-SP produces I such that V (G�) − NG� [I ] �= ∅, where NG [I ] =⋃
v∈I NG [v] for I ∈ V (G) and a graph G. Thus, finally, it is possible to get a larger

independent set of G�, i.e., I ′ = I ∪Min(G� − NG� [I ]). We prefer such a method
in our computations. It turns out that we also do not need to store edges of G� if we
want to executeMin(G� − NG� [I ]). It can be done by a modification of Min similar
to that we performed, when we constructed Min-SP.

In Table 3, we summarize results produced byMin-SP. The algorithm has a running
time of O(|V |3).

We can approximate the Shannon capacity using (5) and the algorithm Min-SP.
We show it by the following example.
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Algorithm 6.4 Greedy Algorithm Min- SP
1: function Min- SP((G1,G2, . . . ,Gr ))

comment: v = (v1, v2, . . . , vr ), v∗ = (v∗
1 , v∗

2 , . . . , v∗
r )

2: I ← ∅
3: for i ← 1 to r do
4: distr (i) ← Distr(Gi , αi )

5: V ← V (G1) × V (G2) × . . . × V (Gr )

6: for each v ∈ V do
7: d(v) ← |NG1 [v1]| · |NG2 [v2]| · . . . · |NGr [vr ]| − 1

8: while V �= ∅ do
9: assign to v∗ an element v ∈ V with the smallest d(v)

10: N ← NG1 [v∗
1 ] × NG2 [v∗

2 ] × . . . × NGr [v∗
r ]

11: N ← N ∩ V
12: F ← ∅
13: for i ← 1 to r do
14: distr (i)

v∗
i

← distr (i)
v∗
i

− 1

15: if distr (i)
v∗
i

= 0 then

16: append to F elements v ∈ V with vi = v∗
i

17: V ← V \(N ∪ F)

18: for each v ∈ V do
19: for each v′ ∈ N do
20: if v ∼ v′ then
21: d(v) ← d(v) − 1
22: I ← I ∪ {v∗}
23: return I

Table 3 For each graphG ∈ G+
n,2 = {H : α(H�2) > α2(H)∧|V (H)| = n}wedetermined an independent

set I ′ of the graph G�2 using the algorithm Min-SP

Greedy algorithm Min- SP (results for G+
n,2)

n |G+
n,2| |I ′| ≤ α2(G) |I ′| > α2(G) |I ′| = α(G�2)

5 1 0 1 1

6 4 0 4 4

7 36 4 32 32

8 513 127 386 386

9 16,015 6306 9709 9652

10 908,794 505,089 403,705 403,469

It is worth to note that the gap between α2(G) and α(G�2) is small for the n that are small (Gyárfás et al.
2012)

Example 1 We consider strong products of some fullerenes,7 since they are regular,
symmetrical (Fowler andManolopoulos 2007) andhence are not so easy for solvers and
programs that calculate the independence number. Furthermore, fullerenes are often of
type II. The algorithmMin- SP produced the following upper bounds: α(F20�F20) ≥
56, α(F24 � F24) ≥ 85 and α(F28 � F28) ≥ 123, where symbols F20, F24 and F28

7 A fullerene graph is the graph formed from the vertices and edges of a convex polyhedron, whose faces
are all pentagons or hexagons and all vertices have degree equal to three.
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mean 20-fullerene (dodecahedral graph), 24-fullerene and 28-fullerene (α(F20) = 8,
α(F24) = 9 and α(F28) = 11(Fowler et al. 2007)), respectively. Therefore, from (5),
the Shannon capacity �(F24) ≥ 2

√
85 = 9.21954.. > α(F24) = 9 and �(F28) ≥

2
√
123 = 11.09053.. > α(F28) = 11, but �(F20) ≥ α(F20) = 8 (we conjecture that

α(F20 � F20) = 64).

7 Another modification with additional conditions and relaxed
distributions

In this section, we propose another modification of greedy algorithm Min, which is
similar to Min-SP, but in addition, it uses distances between vertices of the strong
product. We write down the new polynomial algorithm Min-SP2 (Algorithm 7.1) in
a more compact form to make additional elements more visible. The modification,
besides the advantages of Min-SP, has better accuracy (Table 4), but sometimesMin-
SP gives a larger independent set than Min-SP2.

Algorithm 7.1 Greedy Algorithm Min- SP2
1: function Min- SP2((G1,G2, . . . ,Gr ))

comment: v = (v1, v2, . . . , vr ), v∗ = (v∗
1 , v∗

2 , . . . , v∗
r )

2: I ← ∅
3: for i ← 1 to r do
4: distr (i) ← RDistr(Gi , αi )

5: V ← V (G1) × V (G2) × . . . × V (Gr )

6: for each v ∈ V do
7: d(v) ← |NG1 [v1]| · |NG2 [v2]| · . . . · |NGr [vr ]| − 1

8: while V �= ∅ do
9: assign to V ∗ the set of elements v ∈ V with the min. d(v)

10: assign to V ∗ the set of elements v ∈ V ∗ with the max.
∑r

i=1 distr
(i)
vi

11: for each v ∈ V ∗ do
12: D(v) = ∞
13: for each v′ ∈ I do
14: if v and v′ differ on exactly one coordinate i then
15: if D(v) > dGi (vi , v

′
i ) then D(v) = dGi (vi , v

′
i )

16: assign to v∗ an element v ∈ V ∗ with the largest D(v)

17: I ← I ∪ {v∗}
18: for i ← 1 to r do
19: distr (i)

v∗
i

← distr (i)
v∗
i

− 1

20: N ← NG1 [v∗
1 ] × NG2 [v∗

2 ] × . . . × NGr [v∗
r ]

21: assign to V the set of elements v ∈ V \N with 	r
i=1distr

(i)
vi > 0.

22: update the degree d(v) of each vertex v ∈ V

23: return I

In contrast to Min-SP, Min-SP2 determines a set V ∗ of all vertices of V with
the smallest degree (line 9). The set V is defined exactly the same as in Min-SP. In
each iteration, Min-SP2 takes vertices from V ∗ with the largest

∑r
i=1 distr

(i)
vi (i.e.,

it chooses vertices from „the least crowded region”, line 10). We also realized that
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Table 4 For each graphG ∈ G+
n,2 = {H : α(H�2) > α2(H)∧|V (H)| = n}wedetermined an independent

set I ′ of the graphG�2 using the algorithmMin- SP2, which has better accuracy thanMin-SP. By accuracy
of these algorithms for examined graphs,wemean the sumof all numbers in the last columnof an appropriate
table

Greedy algorithm Min-SP2 (results for G+
n,2)

n |G+
n,2| |I ′| ≤ α2(G) |I ′| > α2(G) |I ′| = α(G�2)

5 1 0 1 1

6 4 0 4 4

7 36 2 34 34

8 513 112 401 401

9 16,015 5945 10,070 10,047

10 908,794 465,706 443,088 441,226

independent vertices in a copy of a factor of a strong product are often placed far apart.
Hence, in lines 11–16,Min-SP2 calculates D(v) for each v ∈ V ∗ and selects one with
the largest D(v), where D(v) measures the minimum distance from v to the set of
vertices of I that differ on exactly one coordinate with v. In contrast toMin,Min-SP2
gives the best results if we choose the first vertex v with the smallest d(v). It is worth
to note here that we always randomly relabel all input graphs at the beginning of our
algorithm.

We observed an interesting phenomenon: When distributions used in Min-SP2
(lines 3–4) are not so precise (are relaxed), i.e., if numbers in distributions are too large
(too optimistic), then this algorithmoften produces optimal results. For example, letCn

be a cycle on n vertices, the following distribution (2, 2, 2, 2, 2, 2, 2) is too optimistic
for C�2

7 since α(C�2
7 ) = 10 < 7 × 2 = 14, but Min-SP2 for this strong product and

distribution always gives a maximum independent set.

Theorem 1 Let distr (1) = distr (2) = (2, 2, 2, 2, 2, 2, 2). Then

|Min-SP2((C7,C7))| = α(C7 � C7).

Proof Without loss of generality (wlog), we relabel vertices of C7. Let V (C7) =
{0, 1, 2, 3, 4, 5, 6} and

E(C7) = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 0}}.

At the beginning, the degree of each vertex is 8. From symmetry, we assume (wlog)
that the first chosen vertex by Min-SP2 is (1, 1). Now, (1, 3), (3, 1), (1, 6), (6, 1)
have the minimum degree equal to 5. Again, from symmetry, we assume (wlog) that
(1, 3) is the chosen vertex. Since distr (1)

1 = 0 and distr (2)
1 = distr (2)

3 = 1 it
follows that V ∗ = {(3, 2), (6, 2)} after line 10. From symmetry, we assume (wlog)
that v∗ = (3, 2). Now, (3, 0), (3, 4) have the minimum degree equal to 4. Again, from
symmetry, we assume (wlog) that (3, 4) is the chosen vertex. In the next iteration
distr (1)

1 = distr (1)
3 = 0, hence v∗ = (2, 6), which has the minimum degree equal
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to 4. Then (0, 5), (0, 6), (4, 0), (4, 6) are vertices from V with the minimum degree
equal to 4, but (0, 6), (4, 6) have the less sum (3 < 4) from line 10. Let v∗ = (0, 5)
(resp. v∗ = (4, 0)). Then (5, 4), (5, 5) (resp. (6, 1), (6, 0)) are vertices from V with
the minimum degree equal to 3.

We consider a new chosen vertex v∗ = (5, 4) (resp. (6, 1)). Other two cases will be
considered later. Then (4, 6), (5, 2), (6, 2) (resp. (0, 6), (5, 3), (6, 3)) have the mini-
mum degree equal to 3, but (6, 2) and (4, 6) (resp. (5, 3) and (0, 6)) have the largest
sum (3 > 2) from line 10 and D((6, 2)) = 3 (resp. D((5, 3)) = 3) is larger than
D((4, 6)) = D((5, 2)) = 2 (resp. D(((0, 6)) = D((6, 3)) = 2). Thus v∗ = (6, 2)
(resp. (5, 3)). In the next iteration,Min-SP2 choose (6, 0) (resp. (5, 5)) since only this
vertex has the minimum degree equal to 2 and then V contains the last two adjacent
vertices: (4, 0), (4, 6) (resp. (0, 5), (0, 6)) with equal degrees. Hence, in these cases
|Min-SP2((C7,C7))| = 10 = α(C7 � C7).

We now consider a new chosen vertex v∗ = (5, 5) (resp. (6, 0)). Then, in the next
two iterations, Min-SP2 chooses (4, 0) and then (6, 0) (resp. (0, 5) and then (5, 5))
since these vertices have the minimum degree. In the last iteration, V contains four
vertices: (5, 2), (5, 3), (6, 2), (6, 3) that form the clique on four vertices. Thus, also
in these cases |Min-SP2((C7,C7))| = 10 = α(C7 � C7). ��
In our computational experiments, we got many optimal results produced by
Min-SP2 with relaxed distributions and we did not find any counterexamples for
|Min-SP2((C2k+1,C2k+1))| = α(C2k+1 � C2k+1) with distr (1) = distr (2) =
(�k/2�, �k/2�, . . . , �k/2�), where �k/2� occurs (2k + 1)–times and k ≥ 2.

According to the above considerations, we propose a relaxed version of the function
Distr, which we call Relaxed Distribution RDistr (Algorithm 7.2).

Algorithm 7.2 Relaxed Distribution RDistr
1: function RDistr(G, αb)

comment: V (G) = {v1, . . . , vn}
2: for each v ∈ V (G) do
3: distrv ← ∞
4: for each u ∈ V (G) do
5: Q ← {u} ∪ Min(G − NG [u])
6: for each v ∈ Q do
7: if distrv > �αb/|Q|� then
8: distrv ← �αb/|Q|�
9: return (distrv1 , . . . , distrvn )

8 Community detection problems

Chalupa and Pospíchal (2014) investigated the growth of large independent sets in the
Barabási–Albert model of scale-free complex networks. They formulated recurrent
relations describing the cardinality of typical large independent sets and showed that
this cardinality seems to scale linearly with network size. Independent sets in social
networks represent groups of people, who do not know anybody else within the group.
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Hence, an independent set of a network plays a crucial role in community detection
problems, since vertices of this set are naturally unlikely to belong to the same com-
munity (Chalupa and Pospíchal 2014; Whang et al. 2013). These facts imply that the
number of communities in scale-free networks seems to be bounded from below by a
linear function of network size (Chalupa and Pospíchal 2014).

Leskovec et al. (2010) introduced theKronecker graph networkmodel that naturally
obeys common real network properties. In particular, the model assumes that graphs
have loops and corresponds to the strong product (Hammack et al. 2011). Let i ≥ 1
and G ′ = G�i . As mentioned earlier, the function α is supermultiplicative and α∗
is multiplicative with respect to the strong product for all graphs. Thus (α∗(G))i =
α∗(G ′) ≥ α(G ′) ≥ (α(G))i and hence |V (G ′)|c′ ≥ α(G ′) ≥ |V (G ′)|c, where8
c′ = log(α∗(G))/ log(V (G)) and c = log(α(G))/ log(V (G)). We have just showed
that the cardinality of maximum independent sets, in the mentioned model, scale
sublinearly with network9 size. Furthermore, ifG is of type I, then α(G ′) = |V (G ′)|c.
These considerations show that the number of communities in scale-free networks
seems to be bounded from below by a sublinear (rather than a linear) function of
network size. It is worth pointing out that we can approximate (resp. predict) the
number of communities, in the mentioned model (resp. real complex network), using
Algorithms 6.4 or 7.1 (Greedy Algorithm Min-SP, Min-SP2).
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