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Abstract— Accurate identification of stochastic systems with
fast-varying parameters is a challenging task which cannot
be accomplished using model-free estimation methods, such
as weighted least squares, which assume only that system
coefficients can be regarded as locally constant. The current
state of the art solutions are based on the assumption that
system parameters can be locally approximated by a linear
combination of appropriately chosen basis functions. The paper
shows that when the internal correlation structure of estimated
parameters is known, the tracking performance of the local
basis function estimation algorithms can be further improved by
means of regularization. The optimal form of the regularization
matrix is derived analytically and it is shown that the best
settings of the regularized algorithm can be determined in the
computationally efficient way using cross-validation.

I. INTRODUCTION

Consider the problem of identification of a time-varying
finite impulse response (FIR) system governed by

y(t) =
n∑
j=1

θ∗j (t)u(t− j + 1) + e(t)

= θH(t)ϕ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, y(t) denotes the complex-valued output signal, ϕ(t) =
[u(t), . . . , u(t − n + 1)]T denotes regression vector made
up of past values of the complex-valued input signal, θ(t) =
[θ1(t), . . . , θn(t)]T denotes the vector of time-varying system
impulse response coefficients, and {e(t)} denotes white noise
independent of {u(t)} and {θ(t)}. The symbol ∗ denotes
complex conjugate and H – complex conjugate transpose
(Hermitian transpose).

The FIR model (1) is used, among others, to approximate
nonstationary communication channels, both terrestial and
underwater [1], [2]. Channel identification, i.e., estimation of
its impulse response, is needed, for example, for equalization
purposes – recovery of the transmitted signal {u(t)} from the
received sequence {y(t)} [1].

When system coefficients vary slowly with time, their
estimation can be carried out using the time-localized ver-
sions of the least squares or maximum likelihood approach
[3] - [5]. The corresponding estimation algorithms, such as
weighted least squares or weighted maximum likelihood, are
not based on any explicit model of parameter variation – it
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the Gdańsk University of Technology, Faculty of Electronics, Telecom-
munications and Informatics, Department of Automatic Control, ul.
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is only assumed that system parameters can be regarded as
“locally constant”, i.e., that the system is locally stationary.
In the case of fast varying systems such a simple estimation
strategy fails because the achievable estimation accuracy
is not sufficient to guarantee satisfactory operation of the
underlying model-based decision system [6].

Fast parameter changes can be tracked successfully if
the system model (1) is extended with an explicit model
(hypermodel) of parameter variation. When such a hyper-
model is stochastic, the problem of parameter estimation can
be reformulated as a problem of filtering/smoothing in the
appropriately defined state space. It can then be solved using
the Kalman filtering methodology [7] - [9].

An alternative solution, pursued in this paper, is based on
adopting a deterministic hypermodel of parameter changes.
In this approach each parameter trajectory is locally approx-
imated by a linear combination of known functions of time,
called basis functions (BF) [10] - [15].

In the majority of studies devoted to the BF approach,
basis functions are used to generate interval estimates of
parameter trajectories. Recently a new class of identification
algorithms was described, which combines the BF approach
with the local estimation technique [16], [17]. The proposed
local basis function (LBF) estimators provide a sequence of
point estimates of system parameters corresponding to differ-
ent locations of a sliding analysis window of a fixed width.
As shown in [16], such a point approach yields more accurate
estimates than the interval one. In the follow-up paper [18]
it was shown that the tracking performance of the local basis
function estimation algorithms can be further improved by
means of regularization. The two-stage regularization scheme
proposed in [18] does not assume any specific knowledge of
the internal correlation structure of estimated parameters. In
the current submission it will be shown that identification
results can be further improved if such a statistical insight is
available, which is the case in some (e.g. telecommunication)
applications. The optimal form of the regularization matrix is
derived analytically and it is shown that the best settings of
the regularized LBF algorithm (the width of the local analysis
interval, the number of basis functions) can be determined
in a computationally efficient way using the leave-one-out
cross-validation approach.

II. LOCAL BASIS FUNCTION ESTIMATORS

In the LBF approach the time-varying system parameters
are approximated, in the sliding analysis window T (t) =
[t − k, t + k] of width K = 2k + 1, by a linear com-
bination of known linearly independent functions of time
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f1(i), . . . , fm(i), i ∈ Ik = [−k, k], called basis functions.
Typical choices of basis functions are powers of time (lo-
cal Taylor expansion) or harmonic functions (local Fourier
expansion). In the case considered we will assume that
each coefficient of the estimated impulse response can be
expressed in the form

θj(t+ i) = fT(i)αj(t), i ∈ Ik
j = 1, . . . , n

(2)

where f(i) = [f1(i), . . . , fm(i)]T and αj(t) denotes the
vector of complex-valued basis expansion coefficients. The
hypermodel (2) can be expressed in a more compact form

θ(t+ i) = F(i)α(t), i ∈ Ik (3)

where

F(i) = In ⊗ fT(i), α(t) = [αT
1 (t), . . . ,αT

n (t)]T (4)

and ⊗ denotes the Kronecker product of the respective
vectors and/or matrices.

Some caution is needed when interpreting the hypermodel
(3). According to (3), the vector of hyperparameters α is
assumed to be constant in the entire analysis window T (t) =
[t−k, t+k]. However, since the value of α may change along
with the position of the window T (t), it is written down as
a function of time (note that the two statements made above
are not contradictory). The estimation of α will be carried
out independently for each position of the sliding analysis
window, i.e., it will be repeated for consecutive values of t,
which is typical of local estimation frameworks.

Denote by w(i), i ∈ Ik, w(0) = 1, a symmetric, nonnega-
tive, bell-shaped window which will be used to put more
emphasis on data gathered at instants close to t than on
instants far from t. For convenience, but without any loss of
generality, we will assume that the adopted basis functions
are w-orthonormal, namely

k∑
i=−k

w(i)f(i)fT(i) = Im . (5)

where Im denotes the m × m identity matrix. Orthonor-
malization of any set of basis functions can be carried out
sequentially using the well-known Gram-Schmidt procedure
[5].

Combining (1) with (3), one arrives at

y(t+ i) = αH(t)ψ(t, i) + e(t+ i), i ∈ Ik (6)

where ψ(t, i) = ϕ(t + i) ⊗ f(i) denotes the generalized
regression vector. The LBF estimates of θ(t) were defined
in [16] in the form

α̂LBF(t) = arg min
α

k∑
i=−k

w(i)|y(t+ i)−αHψ(t, i)|2

= P−1(t)p(t)

θ̂LBF(t) = F0α̂
LBF(t) (7)

where

P(t) =

k∑
i=−k

w(i)ψ(t, i)ψH(t, i)

p(t) =

k∑
i=−k

w(i)y∗(t+ i)ψ(t, i)

(8)

and F0 = F(0) = In ⊗ fT0 , f0 = f(0).

III. REGULARIZED LBF ESTIMATORS

Regularization is a technique which was originally in-
troduced to solve ill-conditioned inverse problems [19]. As
shown later, regularization also allows one to improve the
bias-variance trade-off of the applied estimation schemes,
and hence – to increase their accuracy [20]. In the approach
discussed in this paper both aspects of regularization will be
taken advantage of. The idea is to add to the minimized cost
function a term, often referred to as a regularizer, which
reduces the norm of the solution. In agreement with this
principle, we will introduce the L2 regularizer of the form

||θ(t)||2R = θH(t)Rθ(t) = αH(t)FT
0 RF0α(t) (9)

where R = DHD > 0 denotes the n × n positive definite
regularization matrix. Note that such regularization, different
from that applied in [18], penalizes the norm of θ(t), the
estimation of which is a real purpose of system identification,
and only indirectly penalizes the norm of the vector of
hyperparameters α(t), which is not of our primary interest.
The regularized LBF estimators (RLBF) will be defined in
the form

α̂RLBF(t|R) = arg min
α

{ k∑
i=−k

w(i)|y(t+ i)−αHψ(t, i)|2

+ ||α||2FT
0 RF0

}
= S−1(t)p(t)

θ̂RLBF(t|R) = F0α̂
RLBF(t|R) (10)

where

S(t) = P(t) + FT
0 RF0 = P(t) + BHB

B =DF0 = D⊗ fT0 . (11)

IV. COMPUTATIONAL COMPLEXITY OF LBF AND RLBF
ALGORITHMS

Since LBF and RLBF estimates are evaluated in the sliding
window mode, i.e., computations are repeated for every new
location t of the analysis window T (t), the computational
burden is high. It can be lowered if the applied window
w(i) and the vector of basis functions f(i) are recursively
computable. Taking advantage of this property, one can easily
derive recursive algorithms for computation of the mn × 1
vector p(t) and the mn×mn generalized regression matrix
P(t), needed to evaluate LBF and RLBF estimates – for
more details see [16]. In this way the computational cost
of evaluation of p(t) and P(t)/S(t) can be lowered from
O(mnK) and O(m2n2K) flops (multiply-add operations)
per time update, to O(mn) and O(m2n2) flops, respectively,
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i.e., it becomes independent of the window width K =
2k + 1.

Once the quantities p(t) and P(t)/S(t) are updated, the
LBF or RLBF estimates can be evaluated by solving the
corresponding systems of linear equations P(t)α̂LBF(t) =
p(t) or S(t)α̂RLBF(t) = p(t), respectively. In both cases
the associated computational burden is roughly equal to
O(m3n3) flops. We note, however, that this cost can be
significantly reduced to as little as 3mn flops per time
update if the iterative dichotomous coordinate descent (DCD)
technique, described in [21], is applied. The DCD approach,
which is a low-complexity computational scheme suitable for
finite precision implementations, was originally proposed to
speed up evaluation of finite-memory recursive least squares
estimates. Later it was successfully applied to computation
of LBF estimates – see [6].

As demonstrated in [17], when the number of estimated
hyperparameters mn becomes comparable with (is not much
smaller than) the width of the analysis window K, the
matrix P(t) is often poorely conditioned, which may result
in some sort of bursting behavior of the LBF algorithm.
Note that regularization improves numerical conditioning of
the identification problem since the condition number of the
matrix S(t) (the ratio of its maximum and minimum singular
values) is usually smaller than that of R(t).

V. OPTIMIZATION OF THE REGULARIZATION MATRIX

We will optimize the regularization matrix R when some
prior knowledge about statistical properties of θ(·) is avail-
able. In the sequel we will assume that

(A1) {u(t)} is a zero-mean circular white noise with covari-
ance matrix Φ = cov[ϕ(t)] = σ2

uIn.
(A2) {e(t)}, independent of {u(t)}, is a zero-mean circular

white noise with variance σ2
e .

(A3) {θ(t)} is a sequence, independent of {u(t)} and {e(t)},
with known correlation matrix E[θ(t)θH(t)] = Q > 0.

Circular white noise is a sequence of independent and iden-
tically distributed (i.i.d.) random variables with independent
real and imaginary parts. Note that assumptions (A1)-(A2)
are typical of wireless communication systems.

We will derive the formula for the mean square parameter
estimation error matrix in the case where the parameter
trajectory obeys the model (3). After straightforward calcu-
lations, one obtains

α̂RLBF(t|R)−α(t) = −[P(t) + BHB]−1BHBα(t)

+ [P(t) + BHB]−1ξ(t) (12)

where

ξ(t) =

k∑
i=−k

w(i)e∗(t+ i)ψ(t, i). (13)

Under the assumptions made above it can be shown that for
growing k the regression matrix P(t) converges in the mean
squared sense to the constant matrix P̄ = E[P(t)] = σ2

uImn

– see [16]. This justifies the following approximation valid
for sufficiently large values of k

S−1(t) = [P(t) + BHB]−1 ∼= [σ2
uImn + BHB]−1

=
1

σ2
u

[Imn + B̃HB̃]−1 (14)

where B̃ = D̃F0 and D̃ = D/σu. Using this approximation,
one obtains

α̂RLBF(t|R)−α(t) ∼= ρ1(t) + ρ2(t) (15)

where

ρ1(t) = −[Imn + B̃HB̃]−1B̃HB̃α(t)

ρ2(t) =
1

σ2
u

[Imn + B̃HB̃]−1ξ(t) .
(16)

In the sequel we will use the following result

Lemma 1

It holds that

[Imn + B̃HB̃]−1 = Imn − In ⊗
[

f0f
T
0

fT0 f0

]
+ [In + R̃]−1 ⊗

[
f0f

T
0

fT0 f0

]
(17)

where

R̃ =
fT0 f0
σ2
u

R . (18)

Proof - see Appendix 1.

Using (17) and the identity

(A⊗B)(C⊗D) = (AC)⊗ (BD) (19)

which holds true for Kronecker products (provided that all
dimensions match), one arrives at

F0[Imn + B̃HB̃]−1 = [In + R̃]−1 ⊗ fT0 (20)

Note that

θ̂RLBF(t|R)− θ(t) = F0[α̂RLBF(t|R)−α(t)]
∼= δ1(t) + δ2(t) (21)

where δ1(t) = F0ρ1(t) and δ2(t) = F0ρ2(t).
Since Bα(t) = Dθ(t) = (D⊗ 1)θ(t), one obtains

B̃HB̃α(t) =
1

σ2
u

(DH ⊗ f0)(D⊗ 1)θ(t). (22)

Hence, combining (16), (20) and (22), and using the identity
(19), one arrives at

δ1(t) = −[In + R̃]−1DHD
fT0 f0
σ2
u

θ(t)

= −[In + R̃]−1R̃θ(t) (23)

and consequently (since the matrix R̃ is Hermitian)

E[δ1(t)δH1 (t)] = [In + R̃]−1R̃QR̃[In + R̃]−1 (24)
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where the expectation is carried out over different realiza-
tions of {θ(t)}.

In order to evaluate E[δ2(t)δH2 (t)], observe that

E[ξ(t)ξH(t)] = E

[ k∑
i=−k

k∑
j=−k

w(i)w(j)e∗(t+ i)e(t+ j)

× [ϕ(t+ i)⊗ f(i)][ϕH(t+ j)⊗ fT(j)]

]
= σ2

e E

[ k∑
i=−k

w2(i)[ϕ(t+ i)ϕH(t+ i)]

⊗ [f(i)fT(i)]

]
= σ2

eσ
2
u[In ⊗W] (25)

where

W =

k∑
i=−k

w2(i)f(i)fT(i) (26)

and the expectation is over ϕ(t) and e(t). Combining (16),
(20) and (25), and using (19), one obtains

E[δ2(t)δH2 (t)] =
σ2
e

σ2
u

[
[In + R̃]−1 ⊗ fT0

]
[In ⊗W]

×
[
[In + R̃]−1 ⊗ f0

]
=

σ2
e

σ2
uNk

[In + R̃]−1[In + R̃]−1

(27)

where

Nk = [fT0 Wf0]−1 =

{
k∑

i=−k

[w(i)fT0 f(i)]2

}−1
(28)

denotes the so-called equivalent width of the analysis win-
dow, different from its effective width Lk =

∑k
i=−k w(i) –

see [5].
Note that E[δ1(t)δH2 (t)] = E[δ2(t)δH1 (t)] = 0, which

leads to the following expression for the mean square pa-
rameter tracking error matrix

E

{
[θ̂RLBF(t|R)− θ(t)][θ̂RLBF(t|R)− θ(t)]H

}
∼= E[δ1(t)δH1 (t)] + E[δ2(t)δH2 (t)]

= η[In + R̃]−1[R̃Q̃R̃ + In][In + R̃]−1

= MSE(R̃) (29)

where

η =
σ2
e

σ2
uNk

, Q̃ =
Q

η
. (30)

Optimization of (30) will be based on the results of the
following Theorem 1

Theorem 1

For any nonnegative definite matrix R̃ it holds that

MSE(R̃) ≥ MSE(Q̃−1) (31)

Proof - see Appendix 2.

According to Theorem 1, the optimal choice of R̃ is given
by R̃opt = Q̃−1, i.e.,

Ropt =
σ2
e

NkfT0 f0
Q−1 . (32)

Remark 1

So far we have been assuming that the variance σ2
e is constant

and known. When the noise intensity varies with time, σ2
e

can be replaced in (32) with the following LBF estimate

σ̂2
e(t) =

1

Lk

k∑
i=−k

w(i)

∣∣∣∣y(t+ i)− [α̂LBF(t)]Hψ(t, i)]

∣∣∣∣2
=

1

Lk

[
c(t)− [α̂LBF(t)]Hp(t)

]
(33)

where

c(t) =

k∑
i=−k

w(i)|y(t+ i)|2.

VI. ADAPTIVE REGULARIZATION

In order to use the optimal regularization formula (23), one
needs to know the correlation profile of the process {θ(t)}.
As an example, consider the underwater acoustic (UWA)
communication system. When the UWA system is fixed in
the position, such a statistic can be determined experimen-
tally by averaging identification results obtained in many
trials. However, even in this simple case, the correlation ma-
trix Q = E[θ(t)θH(t)] is likely to depend on environmental
factors such as the water temperature and weather conditions.
Transmitter/receiver motion makes the picture even more
complicated [2]. Therefore, to make the system more robust,
at each time instant t the cancellation unit may be allowed
to choose the best fitting variant amongst a certain number
of the available correlation profiles. As a selection rule, one
can use the leave-one-out cross validation approach. In this
framework, the degree of fit of the model is defined as the
local sum of squared unbiased interpolation errors (deleted
residuals)

ε0(t|R) = y(t)− [θ̂RLBF
0 (t|R)]Hϕ(t) (34)

where θ̂RLBF
0 (t|R) denotes the holey estimate of θ(t),

obtained by excluding from the estimation process, governed
by (10), the “central” measurement y(t)

α̂RLBF
0 (t|R) =

= arg min
α

{ k∑
i=−k
i 6=0

w(i)|y(t+ i)−αHψ(t, i)|2

+ ||α||2FT
0 RF0

}
= S−10 (t)p0(t)

θ̂RLBF
0 (t|R) = F0α̂

RLBF
0 (t|R) (35)

where (note that w(0) = 1)

S0(t) = S(t)−ψ(t, 0)ψH(t, 0)

p0(t) = p(t)− y∗(t)ψ(t, 0).
(36)
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Lemma 2

It holds that

ε0(t|R) =
ε(t|R)

1− β(t)
(37)

where β(t) = ψH(t, 0)S−1(t)ψ(t, 0) and

ε(t|R) = y(t)− [θ̂RLBF(t|R)]Hϕ(t) (38)

denotes the residual error.

Proof - see Appendix 3.

According to (37), the deleted residuals can be easily
computed in terms of residual errors, which means that im-
plementation of the holey estimation scheme is not necessary
to evaluate (34).

Consider now the case where several RLBF algorithms,
equipped with different regularization matrices R ∈ R =
{R1, . . . ,RM}, are run simultaneously yielding interpola-
tion errors ε0(t|Ri), i = 1, . . . ,M . Selection of the best-
fitting value of R can be made using the following cross-
validation decision rule

Ropt(t) = arg min
R∈R

L∑
i=−L

|ε0(t+ i|R)|2 (39)

where L determines the size of the local decision window.
The range of applicability of the adaptive decision rule

(39) is not restricted to selection of the regularization matrix
R. Tracking capabilities of LBF estimators may strongly
depend on the number of basis functions m and on the
choice of the width of the analysis interval K = 2k + 1.
It is known that small values of m and large values of k
increase the bias component of the mean square parameter
estimation error (MSE) and decrease its variance component.
For large values of m and small values of k, one observes the
opposite effect. Hence, to minimize MSE, which is the sum
of its bias and variance components, the values of m and
k should be chosen so as to guarantee a good bias-variance
trade-off [16]. Similar as in the case of selection of R, the
best compromise can be seeked using the parallel estimation
approach: not one, but several RLBF algorithms yielding
the estimates θ̂RLBF

m|k (t), k ∈ K, m ∈ Mk, corresponding
to different values of m and k, can be run in parallel and
compared using the accumulated interpolation error statistic
specified above. Moreover, the same approach can be used to
select the most suitable basis set although, as demonstrated
in [16], when standard general purpose functional bases are
used (Taylor, Fourier, Slepian), this choice is usually of less
importance.

Remark 2

Evaluation of β(t), which is a part of (37), requires compu-
tation of S−1(t) which may be, but must not be, a byproduct
of evaluation of α̂RLBF(t). The associated computational
burden is O(m3n3) per time update. This computational bur-
den can be reduced to O(n2) if the following approximation,

based on (14) and (17), is used

β̂(t) =
1

σ2
u

[ϕH(t)⊗ fT0 ][Imn + B̃HB̃]−1[ϕ(t)⊗ f0]

=
fT0 f0
σ2
u

ϕH(t)[In + R̃]−1ϕ(t). (40)

Suppose that R̃ is chosen in the optimal form, i.e., R̃ =
ηQ−1. The matrix Q can be written down in the form
Q = VΛVH where Λ = diag{λ1, . . . , λn} is the diagonal
matrix made up of the eigenvalues of Q, and V, VVH =
VHV = In, denotes the unitary matrix made up of its
normalized eigenvectors. Both Λ and V can be computed
prior to identification. Using this decomposition, one easily
finds out that

[In + R̃]−1 = [In + ηQ−1]−1 = VΓVH (41)

where

Γ = diag

{
λ1

η + λ1
, . . . ,

λn
η + λn

}
. (42)

When the true variance σ2
e is replaced with its estimate (33),

the only modification needed is replacement of η in (41)-(42)
with its (time-varying) estimate

η̂(t) =
σ̂2
e(t)

σ2
uNk

. (43)

VII. COMPUTER SIMULATIONS

The application, studied recently, which particularly well
fits the technique developed in this paper, is adaptive self-
interference cancellation in full-duplex (FD) underwater
acoustic communication systems [6]. FD UWA systems,
designed to maximize the limited capacity of acoustic links,
simultaneously transmit and receive data in the same fre-
quency band. Due to the close spacing of the transmit and
receive antennas, the far-end signal is strongly contaminated
by the so-called self-interference (SI) introduced by the near-
end transmitter. Self-interference is a multipath propagation
effect caused, among others, by multiple reflections of the
emitted signal from the water surface and/or the bottom.
The model of the received signal is given by (1), where
{u(t)} denotes the near-end (known) signal and {e(t)}
is a mixture of the far-end signal and the channel noise
(ambient and/or site-specific). Note that in this case our
goal is extraction of the signal {e(t)} from {y(t)}, which
can be easily done provided that channel parameters are
known. Adaptive (on-line) identification of the channel is
needed due to its time variability – the effect caused by
the transmitter/receiver motion and/or by inherent changes
in the propagation medium. An interesting feature of this
application is that it allows one to work with a decision
delay, which means that estimation of channel parameters
can be based not only on past signal samples but also on a
certain number of “future” (with respect to the moment of
interest) ones. Hence, channel identification can be carried
out using noncausal estimation algorithms with improved
tracking capabilities, such as the ones described in this paper.
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Simulation was carried out for the model of the self-
interference channel of the full-duplex UWA system, de-
cribed in [6]. Following [6], it was assumed that all complex-
valued analog signals are sampled at the rate of 1 kHz, and
that the bandwidth of channel coefficient variation is 1 Hz,
which can be regarded as fast changes in the UWA case. The
channel was modeled as a 50-tap FIR filter with complex-
valued coefficients that vary independently of each other. The
time varying impulse response coefficients were generated by
lowpass filtering of discrete time circular (with independent
real and imaginary components) white Gaussian noise with
the variance chosen according to

var[θj(t)] = ζj−1, j = 1, . . . , 50

which reflects the decaying power delay profile caused by
the spreading and absorption loss. The value of ζ was set to
0.69 so that the ratio between the variance of the first arrivals
(j = 1) and that of the latest arrivals (j = 50) was equal
to 80 dB [6]. Typical trajectories of system parameters are
shown in Fig. 1.

Fig. 1. Typical trajectories of system parameters.

The generated input signal was circular white binary
u(t) = ±1±j and the measurement noise was circular white
Gaussian with variance σ2

e equal to 0.0065, 0.065 and 0.65,
which corresponds to the input signal-to-noise ratio

SNR =
E[|θH(t)ϕ(t)|2]

σ2
e

=
σ2
u

σ2
e

50∑
j=1

var[θj(t)]

equal to 30 dB, 20 dB and 10 dB, respectively.
The estimation design parameters were set to k = 100,

w(i) = cos πi2k , i ∈ Ik, (recursively computable cosinusoidal
window) and m = 3 (Legendre basis). Based on the available
prior knowledge of the estimated impulse response (exponen-
tially decaying and spatially uncorrelated), the regularization
matrix was adopted in the form

R(t) =
σ̂2
e(t)

NkfT0 f0
diag{1, γ−1, γ−2, . . . , γ−49}.

Three hypothetical values of γ were considered: 0.5, 0.7 and
0.9, none of which was equal to ζ. Optimization was carried

TABLE I
FIT[%] SCORES OBTAINED FOR 3 SIGNAL-TO-NOISE RATIOS FOR THE

ALGORITHMS DESCRIBED IN THE TEXT.

Alg. \SNR 30 dB 20 dB 10 dB
LBF 95.7 86.6 57.5

RLBF1 95.0 89.8 79.5
RLBF2 97.3 92.6 80.8
RLBF3 95.8 86.8 62.6

A1 96.8 91.3 78.0
A2 97.0 91.4 70.2

tsRLBF 96.5 89.1 66.1

out numerically using (39) by searching, at each time instant
t, for the best value of γ ∈ {0.5, 0.7, 0.9}.

Performance was evaluated in terms of the following
normalized root mean squared error measure of fit used in
[20]

FIT(t) = 100

1−

[∑50
j=1 |θj(t)− θ̂j(t)|2∑50
j=1 |θj(t)− θ̄(t)|2

]1/2 (44)

where θ̄(t) = 1
50

∑50
j=1 θj(t). The maximum value of

FIT(t), equal to 100, corresponds to the perfect match
between the true and estimated impulse response. The final
scores, further referred to as FIT (%), were obtained by
combined time averaging (10000 time steps) and ensemble
averaging (20 realizations of scaling coefficients) of the
instantaneous/realization-constrained measures. Data gener-
ation was started 1000 time instants prior to t = 1 and
was continued for 1000 time instants after t = Ts, where
Ts = 10000 denotes simulation time.

Table 1 compares results obtained for the LBF algorithm,
three RLBF algorithms with fixed values of γ: RLBF1

(γ = 0.5), RLBF2 (γ = 0.7) and RLBF3 (γ = 0.9), and
2 algorithms with adaptive scheduling of γ, using β(t) and
β̂(t) (A1 and A2, respectively). In all cases L was set to
30. The last row of Table 1 shows results obtained for the
two-stage regularized LBF algorithm, denoted by tsRLBF,
proposed in [18].

According to the results summarized in Table 1, regu-
larization improves channel identification results (in spite
of the discrepancy between the true value of γ and the
assumed one). Furthermore, adaptive scheduling of γ yields
performance comparable with that given by the best algo-
rithms incorporated in the parallel estimation scheme. As
expected, regularization provides the largest performance
improvements for small values of SNR. Interestingly (and
somewhat surprisingly), for SNR≥ 20 dB the simplified
decision rule works slightly better than the original rule
which incorporates the exact value of β(t). Finally, note
that the new adaptive regularization scheme performs better
than the t-sRLBF algorithm, which does not incorporate prior
knowledge of the correlation structure of θ(t).

Figure 2 shows FIT scores for all 20 process realizations,
i.e., for all excitation patterns corresponding to different
random choices of scaling coefficients. Note that adaptive al-
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gorithms with regularization yield consistently better results
than the not regularized LBF algorithm (i.e., results that are
better not only in the mean sense but also for every process
realization).

Fig. 2. FIT scores obtained for all 20 process realizations. For adaptive
algorithms A2 and A3 the lines practically coincide.

In the second simulation experiment the value of the rate
of decay was fixed (γ = 0.7), while the values of the
design parameters k and m were selected in an adaptive
way using the simplified version of the cross-validation
test. Two variants of the window width k were considered
K = {100, 200}. The corresponding choices of m were

TABLE II
FIT[%] SCORES OBTAINED FOR 3 SIGNAL-TO-NOISE RATIOS AND

DIFFERENT COMBINATIONS OF m AND k FOR THE ALGORITHMS

DESCRIBED IN THE TEXT.

10 dB

Method k/m 1 3 5

LBF 100 75.9 57.5 x
200 78.9 77.1 68.2

RLBF
100 86.9 80.8 x
200 85.6 87.6 84.1
A3 80.9

20 dB

LBF 100 88.1 86.6 x
200 84.2 92.7 90.0

RLBF
100 92.5 92.6 x
200 87.8 95.3 94.0
A3 92.8

30 dB

LBF 100 90.2 95.7 x
200 84.9 97.5 96.8

RLBF
100 93.5 97.3 x
200 88.0 98.2 97.8
A3 97.4

restricted to M100 = {1, 3} and M200 = {1, 3, 5}. The
combination {k = 100,m = 5} was excluded as it would
require estimation of nm = 250 hyperparameters from K =
2k+ 1 = 201 data points. Note that, for all combinations of
m and k, the regularized LBF algorithms yield better results
than their not regularized versions.

VIII. CONCLUSION

It was shown that regularization can improve parameter
tracking capabilities of the local basis function algorithms
used for identification of fast-varying FIR systems. First,
the optimal regularization matrix was designed in the case
where the correlation matrix of the estimated vector of
system parameters is known. Then the adaptive regularization
scheme was proposed, based on parallel estimation and
cross-validation. It was shown that the obtained results are
consistently better than those yielded by the local basis
function algorithm without regularization. They are also
better than results provided by the general purpose two-stage
regularized algorithm proposed earlier.
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[18] A. Gańcza, M. Niedźwiecki and M.Ciołek, “Regularized local basis
function approach to identification of nonstationary processes,” IEEE
Transactions on Signal Processing, vol. 69, pp. 1665-1680, 2021.

[19] A. Tikhonov and V. Arsenin, Solutions of Ill-posed Problems. Win-
ston/Wiley, 1977.

[20] L. Ljung, T. Chen, “What can regularization offer for estimation of
dynamical systems?,” Proc. of the 11th IFAC Workshop on Adaptation
and Learning in Control and Signal Processing, Caen, France, pp. 1-8,
2013.

[21] Y.V. Zakharov, G.P. White and J. Liu, “Low-complexity RLS al-
gorithms using dichotomous coordinate descent iterations,” IEEE
Transactions on Signal Processing, vol. 56, pp. 3150-3161, 2008.

[22] T. Chen, H. Ohlsson and L. Ljung “On the estimation of transfer func-
tons, regularizations and Gaussian processes - Revisited,” Automatica,
vol. 48, pp. 1525-1535, 2012.

APPENDIX 1 [proof of Lemma 1]

Using the Woodbury matrix identity [3] , one obtains

[Imn + B̃HB̃]−1 = Imn − B̃H[In + B̃B̃H]−1B̃

Note that

B̃B̃H = (D̃⊗ fT0 )(D̃H ⊗ f0) = fT0 f0D̃D̃H.

Hence

[Imn + B̃HB̃]−1

= Imn − [D̃H ⊗ f0][In + fT0 f0D̃D̃H]−1[D̃⊗ fT0 ]

= Imn −
{

D̃H[In + fT0 f0D̃D̃H]−1D̃
}
⊗ [f0f

T
0 ].

Observe that

[In + fT0 f0D̃
HD̃]−1 = In − fT0 f0D̃

H[In + fT0 f0D̃D̃H]−1D̃

Combining the last two results, and noting that fT0 f0D̃
HD̃ =

(fT0 f0/σ
2
u)R = R̃, one arrives at (17).

APPENDIX 2 [proof of Theorem 1]

The relationship (31) is a variant of a similar result shown
in [22] (see Theorem 1 there).

Let P̃ = R̃−1. Note that (29) can be rewritten in the form

MSE(P̃) = η[In + P̃]−1[P̃P̃ + Q̃][In + P̃]−1.

Set X = −[In + P̃]−1, X0 = [In + Q̃]−1 and note that
XP̃ = −(In+X), X0Q̃ = −(In+X0). Using this notation,
one obtains

MSE(P̃) = η(In + X)(In + X) + ηXQ̃X

MSE(Q̃) = η(In + X0)(In + X0) + ηX0Q̃X0

In the sequel we will use the following simple identity

ACA−BCB = (A−B)C(A−B)

+ ACB + BCA− 2BCB.

Applying this identity and noting that the matrices X, X0

and Q̃ are Hermitian, and (In + X0) = −X0Q̃ = −Q̃X0,
one arrives at

∆1 = (In + X)(In + X)− (In + X0)(In + X0)

= (X−X0)(X−X0)−XQ̃X0 −X0Q̃X + 2X0Q̃X0

and

∆2 = XQ̃X−X0Q̃X0 = (X−X0)Q̃(X−X0)

+ XQ̃X0 + X0Q̃X− 2X0Q̃X0.

This leads to MSE(P̃)−MSE(Q̃) = η(∆1 + ∆2)
= η(X−X0)[In + Q̃](X−X0) ≥ 0, which proves (31).

APPENDIX 3 [proof of Lemma 2]

Using the matrix inversion lemma [3], one obtains

S−10 (t) = S−1(t) +
S−1(t)ψ(t, 0)ψH(t, 0)S−1(t)

1− β(t)

which, after straightforward calculations, leads to

α̂RLBF
0 (t|R) = S−10 (t)p0(t) = α̂RLBF(t|R)

+
1

1− β(t)
S−1(t)ψ(t, 0)ψH(t, 0)α̂RLBF(t|R)

− 1

1− β(t)
S−1(t)ψ(t, 0)y∗(t)

= α̂RLBF(t|R)− 1

1− β(t)
S−1(t)ψ(t, 0)ε∗(t|R)

where the last transition follows from the fact that

ψH(t, 0)α̂RLBF(t|R) =

[
[α̂RLBF(t|R)]Hψ(t, 0)

]∗
=

[
[θ̂RLBF(t|R)]Hϕ(t)

]∗
.

Since

ε∗0(t|R) =

[
y(t)− [θ̂RLBF

0 (t|R)]Hϕ(t)

]∗
= y∗(t)−ψH(t, 0)α̂RLBF

0 (t|R)

one finally obtains

ε∗0(t|R) = ε∗(t|R) +
β(t)

1− β(t)
ε∗(t|R) =

ε∗(t|R)

1− β(t)

which is nothing but (26).
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