Postprint of: Xing X., Zhao X., Li Z., Du L., Wang C., Feng D., Geng D., Bogdanowicz R., Yang D., Oxygen vacancy-enriched V₂O₅·nH₂O nanofibers ink for universal substrates-tolerant and multi means-integratable NH₃ sensing, CHEMICAL ENGINEERING JOURNAL, Vol. 478 (2023), 147233, DOI: 10.1016/j.cej.2023.147233 © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ ## Journal Pre-proofs Oxygen vacancy-enriched V₂O₅·nH₂O nanofibers ink for universal substratestolerant and multi means-integratable NH₃ sensing Xiaxia Xing, Xinhua Zhao, Zhenxu Li, Lingling Du, Chen Wang, Dongliang Feng, Dongsheng Geng, Robert Bogdanowicz, Dachi Yang PII: S1385-8947(23)05964-8 DOI: https://doi.org/10.1016/j.cej.2023.147233 Reference: CEJ 147233 To appear in: Chemical Engineering Journal Received Date: 16 July 2023 Revised Date: 22 September 2023 Accepted Date: 7 November 2023 Please cite this article as: X. Xing, X. Zhao, Z. Li, L. Du, C. Wang, D. Feng, D. Geng, R. Bogdanowicz, D. Yang, Oxygen vacancy-enriched V₂O₅·nH₂O nanofibers ink for universal substrates-tolerant and multi means-integratable NH₃ sensing, *Chemical Engineering Journal* (2023), doi: https://doi.org/10.1016/j.cej.2023.147233 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2023 Elsevier B.V. All rights reserved. #### Oxygen Vacancy-enriched V₂O₅·nH₂O Nanofibers Ink for Universal 1 #### Substrates-tolerant and Multi Means-integratable NH₃ Sensing 2 - Xiaxia Xing ^a, Xinhua Zhao ^a, Zhenxu Li ^a, Lingling Du ^a, Chen Wang ^a, Dongliang Feng ^a, 3 - 4 Dongsheng Geng b, Robert Bogdanowicz c, Dachi Yang a,* 5 - 6 ^a Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, - Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of 7 - 8 Education and Department of Electronics, College of Electronic Information and Optical - 9 Engineering, Nankai University, Tianjin 300350, P. R. China - 10 E-mail: yangdachi@nankai.edu.cn - School of Materials Science and Engineering, University of Science and Technology 11 - 12 Beijing, Beijing, 100083, P. R. China - 13 Department of Metrology and Optoelectronics, Faculty of Electronics, - 14 Telecommunications and Informatics, Gdansk University of Technology, 11/12G. - Narutowicza St., 80-233 Gdansk, Poland 15 16 - 17 **Abstract**: Universal substrates-tolerant and multi means-integratable ammonia (NH₃) - 18 sensing is highly desired in future Internet of Things in environmental monitoring, food security - 19 and early diagnosis of human diseases, however, is still less than satisfactory. Here, an oxygen - 20 vacancy-governed NH₃ sensing has been developed with V₂O₅·nH₂O nanofibers (NFs) ink, via - combined thermal decomposition of ammonium metavanadate and dilution. As-obtained NH₃ 21 - sensing ink takes on red colloids, in which the V₂O₅·nH₂O NFs around 14 nm in diameter are 22 - 23 interconnected. Beneficially, the fabric fiber decorated with V₂O₅·nH₂O NFs ink displays - 24 excellent selectivity and ppb-concentration detection limit. Remarkably, V₂O₅·nH₂O NFs ink - 25 is integrated over "hard" and "flexible" substrates such as glass, wood, paper, leaf and fabric - with excellent tolerance by multi-integratable means such as writing, dipping and sewing. 26 - Theoretically, such NH₃ sensing is interpreted that the bonding between V₂O₅ NFs and H₂O 27 - 28 modulates oxygen vacancy and thus adsorption sites, and the incorporation between crystal - water and free one contributes to stable ink. Practically, A sensing device built with 29 - V₂O₅·3.1H₂O NFs ink has been simulated to communicate with a smartphone with reliable NH₃ 30 - 31 sensing. - Keywords: Oxygen vacancy; V2O5·nH2O nanofibers sensing ink; Universal substrates-32 - tolerant; Multi means-integratable; Ammonia sensing 33 34 35 #### 1. Introduction Ammonia (NH₃), as a promising energy carrier [1, 2], may damage human organs if the longterm exposure to NH₃ is larger than 25 ppm due to its corrosive and toxic nature [3, 4]. Instead, NH₃ may serve as a tracer of food spoilage [5] and an exhaled biomarker of impaired kidney [6] and liver function. As such, NH₃ sensing is potentially utilized in intelligent environmental monitoring, food security and early diagnosis of human diseases, which is simultaneously required with excellent selectivity and stability, and ppb-level detection limit. Generally, a universal substrates-tolerant and multi means-integratable NH₃ sensing may contribute to intelligent monitoring in the upcoming Internet of Things, although great progress has been made, it needs further exploring. Actually, an NH₃ sensing material with modulated sensing performance plays a crucial role in the compatible integration over universal substrates by available means. As the NH₃ sensing materials, semiconducting metal oxides (SMOs) have been widely investigated [7-9], however, their challenging issues may limit their future applications. Firstly, oxygen vacancy may contribute to gas sensing of SMOs materials. Theoretically, the reaction between reducing gas such as NH₃ and ionized oxygen species would be boosted due to the enhanced adsorption of O2 on oxygen vacancy [10, 11]. Accordingly, the means that can generate more oxygen vacancies such as H₂ plasma treatment [12], doping [13] and annealing [10, 11] have been utilized to improve the sensing performance, however, the strategies needs further developing. Secondly, the nano/micro-structured NH₃ sensing SMOs are usually endowed with powder form, and their suspension in an aqueous solution may agglomerate and peel off the utilized substrate [14, 15]. Even being temporarily integrated, further mechanical manipulation may also cause similar peeling off [16]. Thirdly, the tolerance of the sensing materials to universal substrates by facially integrating means is still less than satisfactory. Conductive polymers (CPs) as NH₃ sensing materials have been integrated over "hard" substrates such as glass [17] and ceramic [18] and "flexible" substrates such as polyethylene terephthalate (PET) [19] and paper [20]. Nevertheless, the substrates are still limited and their available integratable means require either complicated procedures or proficient technicians [6, 19]. Ideally, a NH₃ sensing material is tolerant to various substrates by multi-integratable means and its sensing performance can be improved by an ingenious strategy, however, little has been reported so far. V₂O₅ as a transition metal oxide presents unique electrical and sensing performance [21], in which vanadium ions (V⁵⁺) with an oxidation state generate the active sites for adsorbing gaseous molecules and catalyze reactions [22]. Compared with crystalline V₂O₅, V₂O₅·nH₂O has been investigated with a low crystallization, which is subjected to less mechanical stress and thus offers more active sites than their crystalline counterparts during reaction [23]. Notably, the presence of crystal water has been reported to boost the electrochemical reaction kinetics [24]. Being inspired, an oxygen vacancy-enriched V₂O₅· nH₂O nanofibers (NFs) ink with a sol form in this study has been developed for universal substrates-tolerant and multi meansintegratable NH₃ sensing at room temperature. As characterized, the V₂O₅·nH₂O NFs of ~14 nm in diameter are interconnected to form red and highly dispersed ink with a zeta potential of ~ 38.8 mV. Beneficially, the response of diluted $V_2O_5 \cdot 3.1H_2O$ NFs fabric to 10 ppm NH₃ have been improved (S = 17.8%) compared with that of pristine one (S = 8.6%). Furthermore, the diluted V₂O₅·3.1H₂O NFs fabric fiber shows 100 ppb detection limit of NH₃ and excellent selectivity. Remarkably, the V₂O₅·nH₂O NFs ink has been integrated on various substrates such as ceramics, glass, wood, paper, fabric and leaf, by which multi-integratable means of writing, dipping and sewing have been applied. Such sensing ink would contribute to the diversification of NH₃ sensors in future intelligent sensing. 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 ### **2. Experimental section** ### 84 **2.1 Synthesis of V₂O₅·2.3H₂O NFs ink** [25] - Firstly, 1 g ammonium metavanadate (NH₄VO₃) was ground with deionized (D.I.) water, and - 86 then the fluid was mixed with 10 mL of 1M HCl under continuous stirring. Secondly, when the - suspension turns red, D.I. water was added to make the total volume of 20 mL, the supernatant - 88 was removed after precipitation. Thirdly, the red precipitate was dispersed into 80-90 °C hot - 89 water to a total volume of 20 mL, the supernatant was removed after stirring and precipitating. - 90 Finally, the dark red V₂O₅·2.3H₂O NFs dispersions were filled with 80-90 °C hot water to a - 91 total volume of 40 mL for the subsequent utilization. ## 92 2.2 Synthesis of sensing fabrics and fabrics fiber integrating V₂O₅·nH₂O NFs ink - 93 Synthesis of V₂O₅·nH₂O NFs fabrics is briefly described as follows. Initially, 0.5 mL, 2 mL - and 5 mL of the above synthesized V₂O₅·2.3H₂O NFs ink were ultrasonically dispersed in 10 - 95 mL D.I. water, respectively. Correspondingly, they are denoted as ink-0.5, ink-2 and ink-5 in - 96 Fig. 3a, respectively. Secondly, the rectangular polyester fabric (2 cm×0.5 cm) and fabric fiber - 97 (Diameter: $\sim 207 \,\mu\text{m}$, Length: $\sim 2 \,\text{cm}$) was immersed in the above
synthesized $V_2O_5 \cdot nH_2O\,NFs$ - dispersion for 1 min. Finally, the V₂O₅·nH₂O NFs fabrics and fabric fiber were dried at room - 99 temperature. In the same way, the sensing ink was integrated over the PET and paper in Fig. 5e. - 100 It should be noted that 2 mL of the pristine V₂O₅·2.3H₂O NFs ultrasonically dispersed in 10 - 101 mL D.I. water was defined as diluted V₂O₅·3.1H₂O NFs ink, which was taken as an example - 102 for deep investigation. #### 2.3 Synthesis of V₂O₅·2.3H₂O NFs aerogel and powder, and V₂O₅ NFs powder - 104 The V₂O₅·2.3H₂O NFs ink was firstly frozen at -18 °C and then lyophilized at -51 °C in a - freeze-drier (FD-1A-50, Henan Brothers Instrument and Equipment Co., Ltd., China) to obtain - 106 V₂O₅·2.3H₂O NFs aerogel. The V₂O₅·2.3H₂O NFs aerogel was grounded using an agate mortar - to obtain V₂O₅·2.3H₂O NFs powder, its resistivity was tested under various pressures (2-30 - MPa) in Fig. S1, in which the resistivity mean is $\sim 7823~\Omega cm$. The V₂O₅·2.3H₂O NFs powder - was annealed in air at 600 °C for 2 h to remove the crystal water, then the V₂O₅ NFs powder - 110 was collected. 103 111 124 #### 2.4 Characterization - The samples were characterized by field emission scanning electron microscopy (FE-SEM, - JSM-7800) with energy dispersive X-ray spectroscopy (EDS, Oxford), transmission electron - microscopy (TEM, JEM-2200FS), X-ray diffraction (XRD, Rigaku Smart Lab 3kW) using Cu - 115 Kα radiation, Raman spectra (SR-500I-A, a wavelength of 532 nm as the excitation), - 116 Ultraviolet-visible diffuse reflectance spectra (Shimadzu UV-3600), Mott-Schottky test - 117 (electrochemistry workstation VersaSTAT 4, AMETEK Princeton), thermogravimetric - analysis (TGA) (Netzsch STA449F5 instrument, temperature range 30-600 °C, heating rate - 119 10 °C/min, in nitrogen atmosphere), Automatic powder resistivity tester (ST2742B), Zeta - potential analyzer (Malvern Zetasizer Nano ZS ZEN3600, UK), electron paramagnetic - resonance (EPR) spectroscopy (Bruker EMXPLUS) and X-ray photoelectron spectroscopy - 122 (XPS, Thermo Scientific ESCALAB 250Xi). The XPS spectra on binding energies of various - elements have been calibrated with C 1s at 284.8 eV. #### 2.5 Gas sensing measurement 139 140 141 142143 144 145146 147 148 149 150151 152 153154 155156 161 162 163 164 165 #### Journal Pre-proofs The gas sensing was tested at room temperature (RT, ~ 25 °C) in air atmosphere. In detail, the 125 two ends of fabric were connected to the Data Acquisition System (KEITHLEY 2701) by two 126 127 gold clamps, which were placed in a homemade test chamber of 18 L with two air fans and a 128 vaporizer. Notably, the NH₃ sensing is *in-situ* detection directly without other electrodes. 129 Additionally, the gaseous and dry NH₃ with high-purity was adopted. The calculation of NH₃ 130 concentration is conducted by the gas distribution formula (equation 1), in which C (ppm) and 131 φ represent the target gas concentration and volume fraction, respectively, and V₁ (mL) and V₂ (mL) are denoted as the volume of target gas and testing chamber ($V_2 = 18 \, L$). The sensing 132 response is expressed by $S = (R_g/R_a-1) *100\%$, of which R_a and R_g are the resistances in the air 133 134 and target gas, respectively. The response/recovery time is defined as the time taken by the 135 sensor to reach 90% of the final steady-state resistance after injecting or switching off the target 136 gas. 137 $$V_1 = \frac{V_2 \times C}{\varphi} \times 10^{-6}$$ (1) ### 3. Results and Discussion #### 3.1. Synthesis and characterization In Fig. 1a, the pristine V₂O₅·nH₂O NFs ink was diluted and integrated over fabrics, and the synthetic details of pristine V₂O₅·nH₂O NFs ink were provided in above experimental section. Meanwhile, the three-dimensional (3D) crystal structure of V₂O₅·nH₂O NFs was simulated by Visualization for Electronic and STructural Analysis (VESTA) [26]. Also, the X-ray diffractions (XRD) of pristine and diluted V₂O₅·nH₂O NFs were conducted (Fig. S2a) with the diffractive peak of V₂O₅·nH₂O at ~ 10° [27]. Meanwhile, the crystal water was removed by annealing the pristine V₂O₅·nH₂O NFs, and was then confirmed as the V₂O₅ (PDF#89-0612) in Fig. S2b. Further, Raman spectra of pristine V₂O₅·nH₂O NFs (Fig. S2c) show the V-O Raman scattering peaks with the orthorhombic crystalline [28]. Remarkably, the thermogravimetric analysis (TGA) was carried out to determine the "n" value in V₂O₅·nH₂O NFs. In Fig. 1b, weight loss of 23.4% and 18.6% occur at 100 - 600 °C, which is attributed to the loss of crystal water, and the "n" values corresponding to diluted and pristine V₂O₅·nH₂O NFs are 3.1 and 2.3, respectively. Specifically, the detailed calculation of "n" value in V₂O₅·nH₂O is described as follows. M, m_p and m_d represent relative molecular mass, mass of pristine V₂O₅·nH₂O NFs and mass of diluted one, respectively. Therefore, the "n" values corresponding to the diluted and pristine ones are calculated by the bellow proportional formula of the chemical equation. | 15/ | | $V_2O_5 \cdot nH_2O \rightarrow$ | V ₂ O ₅ | |-----|------------------|----------------------------------|-------------------------------| | 158 | M: | 181.88 + n*18 | 181.88 | | 159 | m _p : | 4.198 g | 4.198 g*(1-18.6%) | | 160 | m_d : | 3.933 g | 3.933 g*(1-23.4%) | In Fig. 1c, $V_2O_5 \cdot 3.1H_2O$ NFs ink is observed dense and overlapped in a lower magnification with scanning electron microscopy (SEM). While in a closer observation under transmission electron microscopy (TEM), the diameter of $V_2O_5 \cdot nH_2O$ NFs in Fig. 1d is measured ~ 14 nm (Fig. S3). Moreover, the high-resolution TEM (HR-TEM) image and selected area electron diffraction (SAED) pattern in Fig. 1f and Fig. S4 show the (102) plane of - 166 V₂O₅ (PDF#89-0612). Further, the elemental mappings under TEM (Fig. S5) verified the - existence of V and O elements, and the diameter of the fabric fiber integrated with diluted - $V_2O_5 \cdot 3.1H_2O$ NFs ink was measured ~ 207 μm in Fig. 1g₁. By comparing with the shape of - pristine fabric fiber in Fig. 1h₁, the flake shape in Fig. 1g₂ reveals that the V₂O₅·3.1H₂O NFs - ink has been integrated over fabrics. Interestingly, the Tyndall effects of pristine and various - diluted ink were compared in Fig. S6, the dispersibility of pristine V₂O₅·2.3H₂O NFs ink can - be improved via dilution. 173 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200201 202 203 204 205 206 207 208 209 210 #### 3.2. The stable V₂O₅·nH₂O NFs ink for dilution-modulated NH₃ sensing - To get insight into the role of water in V_2O_5 nH₂O NFs ink, the free water was initially removed - by freezing and drying V₂O₅·2.3H₂O NFs ink, and then the lyophilized ones were annealed to - 176 remove crystal water and obtain V₂O₅ for subsequent comparison. In Fig. S7, the color of - 177 V₂O₅·2.3H₂O NFs powder changed from its pristine dark red to orange after annealing. The - 178 V₂O₅ and V₂O₅·2.3H₂O NFs powder were ultrasonically dispersed into D.I. water and pure - ethanol, respectively. Correspondingly, various dispersions were dripped over interdigital - electrodes in Fig. 2d for comparing their NH₃ sensing performance, and the real-time resistance - curves were shown in Fig. 2a. In Fig. 2b-c, the $V_2O_5 \cdot 2.3H_2O$ NFs exhibit a higher response to 10 ppm NH₃ than that of V_2O_5 NFs in both water and pure ethanol solvent, revealing the crystal water-boosted NH₃ sensing. Actually, water solvent may contribute to lower baseline resistance in both V_2O_5 and $V_2O_5 \cdot nH_2O$ NFs (Fig. 2c). Further, free water is required in preparing $V_2O_5 \cdot nH_2O$ NFs ink in Fig. 2e. Otherwise, uneven and unstable dispersion can be obtained. Meanwhile, the $V_2O_5 \cdot 2.3H_2O$ NFs ink and ethanol dispersion were dipped over fabric in Fig. 2d₁. In Fig. S8, the resistance value of $V_2O_5 \cdot 2.3H_2O$ NFs ink fabric is ~ 0.49 M Ω , however, the one with ethanol dispersion is larger than 20 M Ω , which reveals that the uniform and stable $V_2O_5 \cdot 2.3H_2O$ NFs ink contribute to integrating conductive fabric. Notably, if one deliberately removed the crystal water in $V_2O_5 \cdot 2.3H_2O$ NFs or replaced the dispersion medium from water to pure ethanol, the dispersed phase is obviously separated from dispersion medium (Fig. 2e), rather than obtaining stable ink. As such, the incorporation of crystal water bonded by V_2O_5 with free water in the dispersion medium plays a pivotal role in the formation of sensing ink. The diluted $V_2O_5 \cdot 3.1H_2O$ and pristine $V_2O_5 \cdot 2.3H_2O$ NFs inks were observed with the variation of Tyndall effect in Fig. 2f and g, in which the light path penetrates after diluting with high dispersibility of colloid [29]. Meanwhile, the simulated 3D crystalline structures with various oxygen vacancies of diluted and pristine V₂O₅·nH₂O NFs are shown in Fig. 2f₁ and g₁, respectively. With the pristine $V_2O_5 \cdot 2.3H_2O$ NFs ink for comparisons, the diluted $V_2O_5 \cdot 3.1H_2O$ NFs ink was integrated over the fabric (2 cm \times 0.5 cm) and the fabric fiber (Diameter: \sim 207 μ m, Length: ~ 2 cm), respectively. In the photographs of Fig. 2f and g, the color of diluted V₂O₅·3.1H₂O NFs fabrics was seen lighter than that of pristine V₂O₅·2.3H₂O ones. To further gain insight into the role of dilution, the NH₃ sensing performance of the above integrated various pristine V₂O₅·2.3H₂O and diluted V₂O₅·3.1H₂O NFs fabric were investigated with comparison. In Fig. 2h, the recovery speed of pristine V₂O₅·2.3H₂O NFs fabric is improved by both diluting and adopting the fabric fiber. Meanwhile, the responses toward 5 ppm and 25 ppm NH₃ were summarized in Fig. 2i, and show that the sensing responses of diluted V₂O₅·3.1H₂O NFs ink onto both fabric and fabric fiber are higher than those of pristine ones. Moreover, the real-time responses to 1-50 ppm NH₃ were evaluated in Fig. 2j, which further reveals
the dilution improved NH₃ sensing performance. #### 211 3.3. Evaluation of the NH₃ sensing performance 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 212 The content of V₂O₅·nH₂O NFs in the sensing ink governs the NH₃ sensing. In Fig. 3a, the responses of pristine and various diluted V₂O₅·nH₂O NFs fabric to 10 ppm NH₃ were evaluated, 213 214 and the V_2O_5 nH₂O-2 mL NFs fabric manifested the highest response (S = 17.8%) compared 215 with pristine ones (S = 8.6%), and was thus chosen for subsequent evaluation and renamed by 216 $V_2O_5 \cdot 3.1H_2O$ NFs fabric. The response and recovery time were evaluated to ~ 75 s and 36 s 217 toward 1 ppm NH₃ in Fig. S9, respectively. Remarkably, the flexibility of V₂O₅·nH₂O NFs 218 fabric was investigated by testing their responses to 1 ppm and 10 ppm NH₃ upon the bending 219 angle at 0°, 45°, 90° and 360°, respectively. Excitedly, little difference was observed in Fig. 3b, 220 indicating excellent flexibility. The stability and selectivity are crucial parameters for NH₃ sensing. Remarkably, the sensing evaluation to 5 ppm NH₃ is repeated for 126 days' durations in Fig. 3c with good stability. Furthermore, the responses of various interfering gases and 10 ppm target NH₃ were compared in Fig. 3d, revealing excellent selectivity. Meanwhile, the NH₃ sensing of three V₂O₅·2.3H₂O NFs fabrics in Fig. S10 is compared, which shows a slight variation in response to the same concentration NH₃ and takes a good consistency. Additionally, the diluted V₂O₅· 3.1H₂O NFs ink was integrated over the fabric fiber in Fig. 3e, and its low detection limit is around 100 ppb NH₃. Towards a low NH₃ concentration (e.g., 100 ppb-1 ppm), the responses show an excellent linear relationship in Fig. 3f. While towards a high one (e.g., 1-50 ppm), excellent repeatability is observed in Fig. 3g. As a result, the V₂O₅·nH₂O NFs fabric simultaneously present ppb-level detection, high selectivity and stability, excellent flexibility and low working temperature. Compared with other SMOs NH₃ sensing materials in Table 1, a gel-stated and stable ink of V₂O₅·nH₂O NFs is prepared, which can be integrated over various "hard" and "flexible" substrates by multi-integratable means. In our experiments, both temperature and humidity can influence the NH₃ sensing. In Fig. S11, the temperature-dependent sensing responses were observed to 20 ppm NH₃ at ~ 26-140 °C, and the highest one takes place at room temperature (~ 26 °C). Meanwhile, the baseline resistance and the sensing response of V₂O₅·3.1H₂O NFs fabric toward 5 ppm NH₃ decrease with humidity (Fig. S12), similar to previous SMOs [30] and to other humidity sensors [31]. Such a decrease in the sensing response might be interpreted that H₂O molecules occupy adsorption sites, which weakens the reaction between NH₃ and adsorbed oxygen onto the surface of V₂O₅·3.1H₂O NFs [32], as may be addressed by covering filter membrane [33]. #### 3.4. The oxygen vacancy governed NH₃ sensing mechanism We experimentally investigated the chemisorbed oxygen to understand the dilution-boosted NH₃ sensing mechanism, and three characterizations on oxygen vacancy (V₀) of diluted V₂O₅·3.1H₂O NFs were performed with pristine V₂O₅·2.3H₂O ones as comparison. Firstly, the O 1s X-ray photoelectron spectroscopy (XPS) in Fig. 4a spectra were deconvoluted into three oxygen species of $O_{\rm I}$, $O_{\rm II}$ and $O_{\rm III}$, which are associated with oxygen atoms bound to metals, defect sites with low oxygen coordination and hydroxy species, respectively. Remarkably, the integral-area ratios of O_{II} increase from 20% of pristine V₂O₅·2.3H₂O NFs to 52% of diluted V₂O₅·3.1H₂O ones, indicating that the diluted V₂O₅·3.1H₂O one possesses more oxygen vacancies [34]. Meanwhile, the V 2p spectra in Fig. 4b correspond to the characteristics of V⁵⁺, the discrepancy in binding energy (0.3 eV) indicates distinct electronic environments of V ions in the pristine and diluted V₂O₅·nH₂O NFs, which might be interpreted as increased oxygen vacancy in the diluted V₂O₅·3.1H₂O ones [10]. Secondly, the presence of oxygen vacancy was further studied by electron paramagnetic resonance (EPR) spectroscopic measurements in Fig. 4c and symmetrical EPR signals (g = 1.9612) are assigned to the unpaired electrons in the oxygen vacancy sites [10, 35]. The ESR intensity of diluted V₂O₅·3.1H₂O NFs is higher than 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 259 that of pristine V₂O₅·2.3H₂O ones, indicating dilution governed the oxygen vacancy, which result in more chemisorbed oxygen for gas sensing. Thirdly, such result is also evidenced by 260 261 the narrower optical bandgaps (E_g) of diluted V₂O₅·3.1H₂O NFs (1.87 eV) than that of pristine 262 $V_2O_5 \cdot 2.3H_2O$ (2.19 eV) in Fig. 4d. The energy-band variation of V₂O₅·nH₂O NFs was investigated for understanding the NH₃ sensing mechanism. Specifically, the valence band maximum (E_v) of the V₂O₅·3.1H₂O NFs is determined to ~ 2.4 eV (Fig. S14). Accordingly, the conduction band minimum (E_c) of $V_2O_5 \cdot 3.1H_2O$ is calculated to ~ 0.53 eV according to Equation (2). Usually, V_2O_5 is reported as a n-type semiconductor [36]. However, p-type sensing characteristic with increased resistance was observed in this study (Fig. 2a and h), which is explained as follows. The V₂O₅·3.1H₂O NFs contain abundant oxygen vacancy, which will improve chemisorption of O₂ and H₂O molecule [11, 37], capture more electrons from the conduction band of V₂O₅⋅nH₂O NFs and thus bend upward band causing an inversion layer, therefore, the Fermi level (E_F) located below the intrinsic level (E_i) in Fig. 4e [38]. In the surface inversion layer, holes usually serve as the major carriers with p-type feature, which was confirmed by Mott-Schottky with a negative slope in Fig. 4e₁. $$E_c = E_v - E_g \tag{2}$$ To understand the p-type sensing mechanism, the NH₃ sensing evaluations under various working temperatures were investigated in Fig. S11, the V₂O₅·3.1H₂O NFs show increased sensing resistance to 20 ppm NH₃ at ~ 26-80 °C and decreased ones at ~ 100-140 °C. Such phenomenon is explained as follows. At lower temperatures, the strong adsorption of O₂ and H₂O molecules contribute to the formation of an inversion layer on the surface of V₂O₅·3.1H₂O NFs, exhibiting p-type semiconductor properties [39]. With the elevating of temperature, an inversion layer would be destroyed without sufficient O₂ and H₂O molecules, n-type sensing behavior would be seen. Further, we conducted additional comparative experiments on NH₃ sensing under insufficient oxygen conditions and air atmosphere in Fig. S15, the significantly decreased response in Fig. S15a indicates that the sufficient surface adsorption of oxygen contributes to NH₃ sensing of V₂O₅·3.1H₂O NFs. Accordingly, the NH₃ sensing mechanism of V₂O₅·nH₂O NFs fabrics is interpreted as follows. In Fig. 4f, when the pristine p-type V₂O₅·2.3H₂O ones are exposed to NH₃, the preadsorbed oxygen species (O₂-) and hydroxy species (-OH) react with NH₃ and release electrons [40, 41], reducing the hole concentration and thus elevating the resistance. Similarly, the diluted V₂O₅·3.1H₂O NFs show NH₃ sensing mechanism in Fig. 4f₁. However, the content of their oxygen vacancy is significantly increased thus improved chemisorbed oxygen, and finally present boosted NH₃ sensing. ### 3.5. V₂O₅·nH₂O NFs ink for universal substrates-tolerant and multi means-integratable NH₃ sensing and the simulation detection of NH₃ The universal-substrates tolerance and multi-means integration of V₂O₅·2.3H₂O NFs ink were investigated. The tolerance has been widely examined on hard substrates such as ceramics, stainless steel, glass and wood, and flexible ones such as Chinese "Xuan" paper, leaf, Al foil, plastic wrap and A4 size paper in Fig. 5a. Meanwhile, the adhesive performance of the V₂O₅·2.3H₂O NFs ink over the above substrate has been investigated in Fig. S16, one can see that the adhesive properties depend on the substrates and the sensing ink shows a weaker adhesion than that of commercial one on A4 paper (Fig. S17). As for the integratable means, our V₂O₅·2.3H₂O NFs ink can be dipped with a paintbrush to draw the school badge and the motto of Nankai University in Fig. 5a and other "dipping-drying" approach in Fig. 5b. Impressively, the V_2O_5 ·3.1 H_2O NFs ink can also serve as a colouring agent with color variation from white of pristine fabric fiber to orange, which can be integrated over the fabric fiber (Fig. 5c), and can even be sewed on the clothes with the "NKU" pattern. Particularly, by freezing and drying, the V_2O_5 ·3.1 H_2O NFs ink can be transformed into lightweight aerogel, and can even stand on the tip of the reed (Fig. S18). In this case, even being storing 365 days (Fig. 5d) and 608 days (Fig. S19a), the V_2O_5 ·3.1 H_2O NFs ink remains excellent dispersibility and stability, which is verified by characterizing the zeta potential of V_2O_5 ·3.1 H_2O NFs ink to ~ 38.8 mV after storing 608 days (Fig. S19b). As examples, the PET, Chinese "Xuan" paper and fabric integrated with V₂O₅·3.1H₂O NFs ink were examined for their NH₃ sensing performance in Fig. 5e, showing substratesdependent NH₃ sensing, which may be explained that these bare and insulated substrates serve as support and don't participate electron transport. Although previous investigations (Table 1) have made great progress, our V₂O₅·nH₂O NFs ink is the one that can be simultaneously utilized for universal substrates-tolerant and multi means-integratable NH₃ sensing. Practically, such NH₃ sensing ink enable to be integrated into the feasible substrates such as smocks, mask and food packaging bag for environmental monitoring, exhaled diagnosis of human diseases and inspection of food
safety. Herein, we elaborately integrated the V₂O₅·3.1H₂O NFs ink onto the polyethylene sample bag (4 cm×6 cm) as an example, to simulate detection of NH₃, which was read by a smartphone (Fig. 5f). Specifically, the microcontroller NodeMCU (ESP8266, 5.8 cm×3.1 cm) with Wireless Fidelity (Wi-Fi) module communicate with the smartphone and perform the NH₃ sensing and alarming of the device. In the supplemental video, when 10 ppm NH₃ was injected and the sensing voltage is lower than the alarm threshold (0.5 V), the smartphone read "AlARMING!" (Fig. 5g). Conversely, the NH₃ being released with the one higher than 0.5 V, and "Monitoring" in smartphone is seen. Also, the detailed historical information can be read and recorded in Fig. 5h, which is great potential for inspection of food safety. 331 332 333 334 335 336337 338 339 340 341342 343 344345 346 347 348349 305 306 307 308 309 310 311 312 313 314 315 316317 318 319 320 321 322 323 324325 326 327 328329 330 #### 4. Conclusion To summarize, an oxygen vacancy-enriched V₂O₅·nH₂O NFs ink has been developed by combining the thermal decomposition of ammonium metavanadate with subsequent dilution, for universal substrates-tolerant and multi means-integratable NH₃ sensing at room temperature. Experimentally, the V_2O_5 nH₂O NFs of ~ 14 nm in diameter were observed to be interconnected, forming red colloids in an aqueous solution with high dispersibility. Theoretically, the bonding between V₂O₅ NFs and H₂O governs the oxygen vacancy with improved the adsorption sites of NH₃, and the incorporation between crystal water and free water contributes to stable ink. Beneficially, the diluted V₂O₅·3.1H₂O NFs fabrics show an increased response to 10 ppm NH₃ (S = 17.8%) compared with the pristine ones (S = 8.6%). Also, the $V_2O_5 \cdot nH_2O$ NFs ink fabric fiber displays excellent selectivity and ppb-level detection limit to NH₃. Remarkably, V₂O₅·nH₂O NFs ink has been integrated over various substrates such as ceramics, glass, wood, paper, fabric and leaf with universal substrates-tolerance. Meanwhile, multiple strategies of writing, dipping and sewing have been adopted for integration. As an example of application, the developed oxygen vacancy-enriched V₂O₅·3.1H₂O NFs ink has been integrated into a sensing device and communicates with a smartphone with reliable monitoring and alarming, which is potential in future intelligent sensing of Internet of Things. Future investigations are expected to be conducted on theoretical calculations and humidity-dependent NH₃ sensing. ### **Declaration of Competing Interest** - 352 The authors declare that they have no known competing financial interests or personal - 353 relationships that could have appeared to influence the work reported in this paper. 354 355 351 ### Data availability 356 Data will be made available on request. 357 358 ### Acknowledgements - 359 This work was financially supported by the National Natural Science Foundation of China - 360 (Grant No. 52072184) and Tianjin Research Innovation Project for Postgraduate Students - (General Project, Grant No. 2022BKY035). 361 362 363 ### References - 364 W. Gao, J. Guo, P. Wang, Q. Wang, F. Chang, Q. Pei, W. Zhang, L. Liu, P. Chen, - Production of ammonia via a chemical looping process based on metal imides as nitrogen 365 - 366 carriers, Nat. Energy 3 (2018) 1067-1075. - K. Nakajima, H. Toda, K. Sakata, Y. Nishibayashi, Ruthenium-catalysed oxidative 367 [2] - 368 conversion of ammonia into dinitrogen, Nat. Chem. 11 (2019) 702-709. - M. Van Damme, L. Clarisse, S. Whitburn, J. Hadji-Lazaro, D. Hurtmans, C. Clerbaux, 369 - 370 P.-F. Coheur, Industrial and agricultural ammonia point sources exposed, Nature 564 - 371 (2018) 99-103. - 372 [4] A.T. Güntner, M. Wied, N.J. Pineau, S.E. Pratsinis, Rapid and Selective NH₃ Sensing by - Porous CuBr, Adv. Sci. 7 (2020) 1903390. 373 - Z. Ma, P. Chen, W. Cheng, K. Yan, L. Pan, Y. Shi, G. Yu, Highly Sensitive, Printable 374 - 375 Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection, Nano - 376 Lett. 18 (2018) 4570-4575. - [6] H.-Y. Li, C.-S. Lee, D.H. Kim, J.-H. Lee, Flexible Room-Temperature NH₃ Sensor for 377 - 378 Ultrasensitive, Selective, and Humidity-Independent Gas Detection, ACS Appl. Mater. - 379 Interfaces 10 (2018) 27858-27867. - 380 [7] B. Yang, X. Li, W. Yuan, Z. Li, N. Lu, S. Wang, Y. Wu, S. Fan, Z. Hua, Efficient NH₃ - 381 Detection Based on MOS Sensors Coupled with Catalytic Conversion, ACS Sens. 5 - 382 (2020) 1838-1848. - S. Kumar, A. Singh, R. Singh, S. Singh, P. Kumar, R. Kumar, Facile h-MoO₃ synthesis 383 - 384 for NH₃ gas sensing application at moderate operating temperature, Sens. Actuator B - 385 Chem. 325 (2020) 128974. - Y.-Y. Li, J.-L. Chen, F.-L. Gong, G.-X. Jin, K.-F. Xie, X.-Y. Yang, Y.-H. Zhang, Dual 386 387 functionalized Ni substitution in shuttle-like In₂O₃ enabling high sensitivity NH₃ 388 detection, Appl. Surf. Sci. 600 (2022) 154158. - 389 [10] H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu, J. Fang, C. Tang, X. Yan, H. Cai, 390 Y. Gu, S.J. Pennycook, J. Tao, D. Zhao, ZnO Nanosheets Abundant in Oxygen Vacancies 391 Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing, Adv. Mater. 31 392 (2019) 1807161. - 393 [11] G. Li, H. Zhang, L. Meng, Z. Sun, Z. Chen, X. Huang, Y. Qin, Adjustment of oxygen 394 vacancy states in ZnO and its application in ppb-level NO₂ gas sensor, Sci. Bull. 65 (2020) 395 1650-1658. - 396 [12] Z. Geng, X. Kong, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang, J. Zeng, Oxygen Vacancies 397 in ZnO Nanosheets Enhance CO₂ Electrochemical Reduction to CO, Angew. Chem. Int. 398 Ed. 57 (2018) 6054-6059. - 399 [13] X. Wang, T. Wang, G. Si, Y. Li, S. Zhang, X. Deng, X. Xu, Oxygen vacancy defects 400 engineering on Ce-doped α-Fe₂O₃ gas sensor for reducing gases, Sens. Actuator B Chem. 401 302 (2020) 127165. - 402 [14] J.H. Kim, J.H. Han, Y.C. Jung, Y.A. Kim, Mussel adhesive protein-coated titanium oxide 403 nanoparticles for effective NO removal from versatile substrates, Chem. Eng. J. 378 404 (2019) 122164. - 405 [15] M.S. Azmina, R. Md Nor, H.A. Rafaie, N.S.A. Razak, S.F.A. Sani, Z. Osman, Enhanced 406 photocatalytic activity of ZnO nanoparticles grown on porous silica microparticles, Appl. 407 Nanosci. 7 (2017) 885-892. - [16] H.-R. Lim, H.S. Kim, R. Qazi, Y.-T. Kwon, J.-W. Jeong, W.-H. Yeo, Advanced Soft 408 409 Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics 410 in Healthcare, Energy, and Environment, Adv. Mater. 32 (2020) 1901924. - 411 [17] C.-T. Lee, Y.-S. Wang, High-performance room temperature NH₃ gas sensors based on 412 polyaniline-reduced graphene oxide nanocomposite sensitive membrane, J. Alloys. 413 Compd. 789 (2019) 693-696. - 414 [18] C. Liu, H. Tai, P. Zhang, Z. Ye, Y. Su, Y. Jiang, Enhanced ammonia-sensing properties 415 of PANI-TiO₂-Au ternary self-assembly nanocomposite thin film at room temperature, 416 Sens. Actuator B Chem. 246 (2017) 85-95. - 417 [19] N. Tang, C. Zhou, L. Xu, Y. Jiang, H. Qu, X. Duan, A Fully Integrated Wireless Flexible 418 Ammonia Sensor Fabricated by Soft Nano-Lithography, ACS Sens. 4 (2019) 726-732. - 419 [20] L. Du, D. Feng, X. Xing, C. Wang, Y. Gao, S. Sun, G. Meng, D. Yang, Nanocomposite-420 Decorated Filter Paper as a Twistable and Water-Tolerant Sensor for Selective Detection 421 of 5 ppb-60 v/v% Ammonia, ACS Sens. 7 (2022) 874-883. - 422 [21] X. Sun, R. Gao, Y. Wu, X. Zhang, X. Cheng, S. Gao, Y. Xu, L. Huo, Novel in-situ 423 deposited V₂O₅ nanorods array film sensor with enhanced gas sensing performance to n-424 butylamine, Chem. Eng. J. 459 (2023) 141505. - 425 [22] N. Panahi, M. Shirazi, M.T. Hosseinnejad, Fabrication, characterization and hydrogen - gas sensing performance of nanostructured V₂O₅ thin films prepared by plasma focus method, J. Mater. Sci. Mater. El. 29 (2018) 13345-13353. - 428 [23] A. Moretti, S. Passerini, Bilayered Nanostructured V₂O₅·nH₂O for Metal Batteries, Adv. 429 Energy Mater. 6 (2016) 1600868. - 430 [24] Q. Sun, H. Cheng, Y. Yuan, Y. Liu, W. Nie, K. Zhao, K. Wang, W. Yao, X. Lu, J. Lu, 431 Uncovering the Fundamental Role of Interlayer Water in Charge Storage for Bilayered 432 V₂O₅ · nH₂O Xerogel Cathode Materials, Adv. Energy Mater. 13 (2023) 2202515. - 433 [25] K. Zhou, Y. He, Q. Xu, Q.e. Zhang, A.a. Zhou, Z. Lu, L.-K. Yang, Y. Jiang, D. Ge, X.Y. Liu, H. Bai, A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application, ACS Nano 12 (2018) 5888-5894. - 436 [26] K. Momma, F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44 (2011) 1272-1276. - 438 [27] C. Xiong, A.E. Aliev, B. Gnade, K.J. Balkus, Fabrication of Silver Vanadium Oxide and V₂O₅ Nanowires for Electrochromics, ACS Nano 2 (2008) 293-301. - 440 [28] H. Zhang, X. Han, R. Gan, Z. Guo, Y. Ni, L. Zhang, A facile biotemplate-assisted 441 synthesis of mesoporous V₂O₅ microtubules for high performance asymmetric 442 supercapacitors, Appl. Surf. Sci. 511 (2020) 145527. - [29] Z. Zhao, X. Wang, X. Jing, Y. Zhao, K. Lan, W. Zhang, L. Duan, D. Guo, C. Wang, L. Peng, X. Zhang, Z. An, W. Li, Z. Nie, C. Fan, D. Zhao, General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles, Adv. Mater. 33 (2021) 2100820. - [30] F. Qu, S. Zhang, C. Huang, X. Guo, Y. Zhu, T. Thomas, H. Guo, J.P. Attfield, M. Yang, Surface Functionalized Sensors for Humidity-Independent Gas Detection, Angew. Chem. Int. Ed. 60 (2021) 6561-6566. - 450 [31] P. Guo, B. Tian, J. Liang, X. Yang, G. Tang, Q. Li, Q. Liu, K. Zheng, X. Chen, W. Wu, 451 An All-Printed, Fast-Response Flexible Humidity Sensor Based on Hexagonal-WO₃ 452 Nanowires for Multifunctional Applications, Adv. Mater. (2023) 2304420. - 453 [32] K. Suematsu, M. Sasaki, N. Ma, M. Yuasa, K. Shimanoe, Antimony-Doped Tin Dioxide 454 Gas Sensors Exhibiting High Stability in the Sensitivity to Humidity Changes, ACS Sens. 455
1 (2016) 913-920. - 456 [33] D. Feng, L. Du, X. Xing, C. Wang, J. Chen, Z. Zhu, Y. Tian, D. Yang, Highly Sensitive 457 and Selective NiO/WO₃ Composite Nanoparticles in Detecting H₂S Biomarker of 458 Halitosis, ACS Sens. 6 (2021) 733-741. - 459 [34] B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO₄ Photoanodes for Efficient Water Oxidation, Angew. Chem. Int. Ed. 57 (2018) 2248-2252. - [35] B. Tong, Z. Deng, B. Xu, G. Meng, J. Shao, H. Liu, T. Dai, X. Shan, W. Dong, S. Wang, S. Zhou, R. Tao, X. Fang, Oxygen Vacancy Defects Boosted High Performance p-Type Delafossite CuCrO₂ Gas Sensors, ACS Appl. Mater. Interfaces 10 (2018) 34727-34734. - [36] K. Schneider, M. Lubecka, A. Czapla, V₂O₅ thin films for gas sensor applications, Sens. 465 Actuator B Chem. 236 (2016) 970-977. 466 - 467 [37] D. Yao, C. Dong, Q. Bing, Y. Liu, F. Qu, M. Yang, B. Liu, B. Yang, H. Zhang, Oxygen-468 Defective Ultrathin BiVO₄ Nanosheets for Enhanced Gas Sensing, ACS Appl. Mater. 469 Interfaces 11 (2019) 23495-23502. - 470 [38] X. Xing, L. Du, D. Feng, C. Wang, M. Yao, X. Huang, S. Zhang, D. Yang, Individual gas 471 sensor detecting dual exhaled biomarkers via a temperature modulated n/p 472 semiconducting transition, J. Mater. Chem. A 8 (2020) 26004-26012. - 473 [39] L. Xu, C. Wang, X. Zhang, D. Guo, Q. Pan, G. Zhang, S. Wang, NOx sensitivity of 474 conductometric In(OH)₃ sensors operated at room temperature and transition from p- to 475 n- type conduction, Sens. Actuator B Chem. 245 (2017) 533-540. - 476 [40] H. Wu, J. Yu, G. Yao, Z. Li, W. Zou, X. Li, H. Zhu, Z. Huang, Z. Tang, Room temperature 477 NH₃ sensing properties and humidity influence of Ti₃C₂T_x and Ag-Ti₃C₂T_x in an oxygenfree environment, Sens. Actuator B Chem. 369 (2022) 132195. 478 - 479 [41] D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang, L. Yu, Multifunctional 480 Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered 481 Organ-like MXene/Metal-Organic Framework-Derived CuO Nanohybrid Ammonia 482 Sensor, ACS Nano 15 (2021) 2911-2919. - 483 [42] Y. Liu, H. Ji, Z. Yuan, H. Zhu, L. Kong, H. Gao, F. Meng, Hollow urchin Co-Fe₂O₃ with 484 outstanding selectivity and fast responding for ppb level NH₃ sensing via Lewis acid-base 485 effect, Chem. Eng. J. 474 (2023) 145620. - 486 [43] K.-P. Yuan, L.-Y. Zhu, J.-H. Yang, C.-Z. Hang, J.-J. Tao, H.-P. Ma, A.-Q. Jiang, D.W. 487 Zhang, H.-L. Lu, Precise preparation of WO₃@SnO₂ core shell nanosheets for efficient 488 NH₃ gas sensing, J. Colloid Interf. Sci. 568 (2020) 81-88. - 489 [44] F. Ranjbar, S. Hajati, M. Ghaedi, K. Dashtian, H. Naderi, J. Toth, Highly selective 490 MXene/V₂O₅/CuWO₄-based ultra-sensitive room temperature ammonia sensor, J. Hazard. 491 Mater. 416 (2021) 126196. - [45] D. Maity, R.T.R. Kumar, Polyaniline Anchored MWCNTs on Fabric for High 492 493 Performance Wearable Ammonia Sensor, ACS Sens. 3 (2018) 1822-1830. - 494 [46] D. Lv, W. Shen, W. Chen, R. Tan, L. Xu, W. Song, PSS-PANI/PVDF composite based 495 flexible NH₃ sensors with sub-ppm detection at room temperature, Sens. Actuator B 496 Chem. 328 (2021) 129085. - 497 [47] D. Zhang, Y. Yang, Z. Xu, D. Wang, C. Du, An eco-friendly gelatin based triboelectric 498 nanogenerator for a self-powered PANI nanorod/NiCo₂O₄ nanosphere ammonia gas 499 sensor, J. Mater. Chem. A 10 (2022) 10935-10949. - 500 [48] X. Wang, D. Zhang, H. Zhang, L. Gong, Y. Yang, W. Zhao, S. Yu, Y. Yin, D. Sun, In situ polymerized polyaniline/MXene (V₂C) as building blocks of supercapacitor and 501 502 ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator, Nano 503 Energy 88 (2021) 106242. - 504 [49] Y. Fu, T. Wang, X. Wang, X. Li, Y. Zhao, F. Li, G. Zhao, X. Xu, Investigation of p-n sensing transition and related highly sensitive NH_3 gas sensing behavior of SnPx/rGO composites, Chem. Eng. J. 471 (2023) 144499. Fig. 1. The synthesis and characterization of V₂O₅·nH₂O NFs. (a) The schematic diagram of diluting and integrating V₂O₅·nH₂O NFs ink, and the simulated crystal structure of V₂O₅·nH₂O NFs. (b) The TGA curves of pristine and diluted V₂O₅·nH₂O NFs. (c) The SEM, (d-e) TEM and (f) HRTEM images of pristine V₂O₅·2.3H₂O NFs. (g) The schematic diagram and (g₁-g₂) SEM images of fabric fiber integrated with V₂O₅·nH₂O NFs ink. (h) The schematic diagram and (h₁) the SEM image of bare fabric fiber. 509 510 511 512 513 #### Journal Pre-proofs **Fig. 2.** The NH₃ sensing comparison between freeze-dried and annealed $V_2O_5 \cdot 2.3H_2O$ NFs powder being dispersed in D.I. water and pure ethanol, respectively. (a) The real-time resistance and (b) sensing curves to 10 ppm NH₃, and corresponding (c) histogram of baseline resistance and response value. (e) The photograph of above four dispersions and (d) integrated interdigital electrode. (d₁) The freeze-dried $V_2O_5 \cdot 2.3H_2O$ NFs dispersed in D.I. water and pure ethanol were integrated onto the fabric, respectively. The scale bars in (d₁) are 0.5 cm. The photographs and structures of (f-f₁) diluted and (g-g₁) pristine $V_2O_5 \cdot nH_2O$ NFs inks. The "Tyndall effect" of diluted $V_2O_5 \cdot 3.1H_2O$ NFs ink irradiated by red light ($\lambda = 638$ nm). The comparison on NH₃ sensing performance between diluted and pristine $V_2O_5 \cdot nH_2O$ NFs inks integrated on fabric and the fabric fiber, respectively. (h) The real-time resistance curves and (i) the summarized responses. (j) The response curves to various NH₃ concentration. The RH of (a-b, h-j) is at ~ 22%. 529 530 531 532 533 534 535 **Fig. 3.** The systematic NH₃ sensing evaluation of V₂O₅·nH₂O NFs ink integrated over fabrics: (a) The dilution-dependent sensing response of V₂O₅·nH₂O NFs ink, (b) the V₂O₅·3.1H₂O NFs fabric under various bending angle and their corresponding sensing responses, (c) the long-term stability and (d) selectivity of diluted V₂O₅·3.1H₂O NFs fabric. The NH₃ sensing evaluation of V₂O₅·3.1H₂O NFs fabric fiber: (e) The response curve to 0.1-1 ppm NH₃, (f) the relationship between sensing responses and NH₃ concentrations, (g) the response curve to various NH₃ concentrations. The scale bars in (c) and (e) are 0.5 cm. The RH of (a-b, d, e-g) is at ~ 19% and RH of (c) is at $\sim 19\%-57\%$. **Fig. 4.** The various characterizations on oxygen vacancy of pristine $V_2O_5 \cdot 2.3H_2O$ NFs and diluted $V_2O_5 \cdot 3.1H_2O$ NFs. High-resolution XPS spectra are related to (a) O 1s and (b) V 2p, (c) EPR spectra and (d) plots of $(ahv)^2$ vs photon energy (hv). The schematic energy-band variation of $V_2O_5 \cdot nH_2O$ NFs. (e) An inversion layer marked with red rectangle and p-type surface conductivity. (e₁) The Mott-Schottky plot of $V_2O_5 \cdot 3.1H_2O$ NFs. The NH₃ sensing mechanism diagrams of (f) pristine $V_2O_5 \cdot 2.3H_2O$ NFs and (f₁) diluted $V_2O_5 \cdot 3.1H_2O$ NFs. NH₃ V₂O₅•3.1H₂O NFs e⁻ -OH V₂O₅•2.3H₂O NFs O_2 Oxygen vacancy 543 544 537 538 539 540541 545 547 548 549 550 551 552 553 554 555 Fig. 5. The universal substrates-tolerant and multi means-integratable NH₃ sensing. (a) The V₂O₅·2.3H₂O NFs ink for drawing the school badge and the motto of Nankai University onto hard and flexible substrates. (b) The pristine V₂O₅·2.3H₂O ink was evenly integrated onto various flexible substrates as examples. (c) The diluted V₂O₅·3.1H₂O NFs ink integrated fabric fiber for sewing patterns into clothes. (d) The photographs of V₂O₅·3.1H₂O NFs ink after storing 365 days. (e) The NH₃ sensing of diluted V₂O₅·3.1H₂O NFs ink integrated on flexible substrates with PET, Chinese "Xuan" paper and fabric as examples, and "Con." in the ordinate represents concentration. The scale bars in (a, b, c) are all 1 cm. (f) Simulated detection of NH₃ were conducted by intergrating the V₂O₅·3.1H₂O NFs ink onto sample bag and communicating with a smartphone. (g) Smartphone reading the real-time sensing parameters and the records of alarming to 10 ppm NH₃ and (h) the historical measurements. The RH of (e) is at ~ 22%. Table 1. Comparison of various NH_3 sensing materials in both presenting forms and NH_3 sensing. | Materia
l type | Materials | Presentin
g forms | Substrates | Mechanic
al
flexibility | Integrating means | W
T ^{a)} | Response@Con | T_{res}/T_{rec} time (s) @ Con. $^{\circ}$ | LOD h) (ppm) | Refs. | |---|--|----------------------|--|-------------------------------|---|------------------------------------|----------------------------------|--|-----------------------------------|------------------| | | Co-Fe ₂ O ₃ | powder | ceramic tube | No | spin-coating
combined
with
calcination | 27
5
°C | 275% ^{d)} @10
ppm | 7.2/5.4@1
0 ppm | 0.01 ⁱ⁾ | [42] | | | MoO ₃ nanorods | powder | glass | No | spin-coating
by mixing
with solvent | 20
0
°C | 36% ^{d)} @5 ppm | 230/267@
5 ppm | ~5 ⁱ⁾ | [8] | | SMOs based NH3 sensing material s | WO ₃ @SnO ₂ Core shell nanosheet | thin film | MEMS | No | dripping-
coating by
mixing with
solvent | 20
0
°C | 1.5 °)@15 ppm | 62/42@15
ppm | 5 ^{î)} | [43] | | | Ni-doped In ₂ O ₃
nanostructure | powder | ceramic tube | No | coating by mixing with solvent | 14
0
°C | 2732 ^{e)} @50
ppm | 23/10@50
ppm | ~1 ⁱ⁾ | [9] | | | MXene/CuO composite. | solution | epoxy | Yes | spraying | RT | 24.8 ^{f)} @100 ppm | 43/26@10
0 ppm | ~1 ⁱ⁾ | [41] | | | MXene/V ₂ O ₅ /CuW
O ₄ | precipitat
e | alumina
sheet with
interdigitated
gold
electrode | No | coating | RT | 53.5 [†] @ 51 ppm | 1.6/4@51
ppm | 1 ⁱ⁾ 0.3 ^{j)} | [44] | | | V ₂ O ₅ ·nH ₂ O NFs | ink | ceramics,
stainless
steel, glass,
wood,
paper, leaf,
Al
foil,
plastic
wrap, fabric
and
polyurethan
e | Yes | dripping,
writing,
dipping and
sewing | RT
b) | ~4.2% g)@1
ppm | 75/36@1
ppm | ~ 0.1 ⁱ⁾ | This
wor
k | | Carbon
based
NH ₃
sensing | PANI/MWCNTs | - | polypropylen
e fabric | Yes | spray-coating
and chemical
polymerizatio
n | RT | 61.54% ^{g)} @ 20
ppm | 9/30@20
ppm | 0.2 ^{j)} | [45] | | | | 30 | allal I | re-proors | | | | | | |---------------------------------------|---------------------------|------------------------------|---------|--------------------------------------|----|--------------------------------|--------------------|--------------------------|----| | PEDOT:PSS
nanowires | aqueous
suspensio
n | PET | Yes | spin-coating | RT | ~2.2% ^{g)} @6
ppm | 96/318@6
ppm | 0.1 ^{j)} | [: | | PSS-PANI/PVDF | - | PVDF
membrane | Yes | in-situ
polymerizatio
n | RT | 70% ^{g)} @1 ppm | 160/400@
1 ppm | ~ 0.1 ⁱ⁾ | [4 | | Pt-NDs/PPy-
nanolayer@CNTs | powder | filter paper | Yes | coating by
mixing with
solvent | RT | ~40% ^{g)} @50
ppm | 2/~10@2
v/v% | ~0.00
5 i) | [2 | | PANI/NiCo ₂ O ₄ | powder | gelatin film | Yes | spin-coating | RT | 4.67 ^{f)} @20 ppm | 22/62@20
ppm | ~ 0.5 ⁱ⁾ | [- | | PANI/MXene | solution | ероху | Yes | dripping | RT | 27% g)@ 5 ppm | 27/5@5
ppm | ~ 0.3 ⁱ⁾ | [4 | | SnPx/rGO | powder | interdigitated
electrodes | No | dripping | RT | 117.5% ^{d)} to 40 ppm | 126/306@
10 ppm | 0.043
6 ^{j)} | [4 | a) Working temperature, b) Room temperature, c) Concentration, d) Calculated by $(R_a/R_g-1)*100\%$, e) Calculated by R_a/R_g , f) Calculated by R_g/R_a , g) Calculated by $(R_g/R_a-1)*100\%$, h) Limit of Detection, i) Experimental measurements, j) Theoretical calculation, k) References. #### **Declaration of interests** ⊠ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: # **Graphical Abstracts** 1. The excellent dispersed and stable $V_2O_5 \cdot 3.1H_2O$ nanofibers ink has been developed. **Highlights** - 582 2. The ink toward universal substrates-tolerant and multi means-integratable NH₃ sensing. - 3. The oxygen vacancy governed NH₃ sensing mechanism is rationally interpreted. - 4. Simulation on detecting NH₃ is conducted with reliable sensing response.