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Particle shape is a key to the space-filling and strength properties of granular matter. We consider
a shape parameter η describing the degree of distortion from a perfectly spherical shape. Encom-
passing most specific shape characteristics such as elongation, angularity and nonconvexity, η is
a low-order but generic parameter that we used in a numerical benchmark test for a systematic
investigation of shape-dependence in sheared granular packings composed of particles of different
shapes. We find that the shear strength is an increasing function of η with nearly the same trend for
all shapes, the differences appearing thus to be of second order compared to η. We also observe a
nontrivial behavior of packing fraction which, for all our simulated shapes, increases with η from the
random close packing fraction for disks, reaches a peak considerably higher than that for disks, and
subsequently declines as η is further increased. These findings suggest that a low-order description
of particle shape accounts for the principal trends of packing fraction and shear strength. Hence,
the effect of second-order shape parameters may be investigated by considering different shapes at
the same level of η.

PACS numbers: 45.70.-n, 81.05.Rm, 61.43.Hv

The hard-sphere packing is at the heart of various mod-
els for the rheology and (thermo)dynamical properties
of amorphous states of matter including liquids, glasses
and granular materials [1, 2]. Such models reflect both
the purely geometrical properties of sphere packings, e.g.
the order-disorder transition with finite volume change
[3], and emergent properties arising from collective par-
ticle interactions, e.g. force chains and arching in static
piles [4]. As to non-spherical particle packings, few stud-
ies have been reported, and rather recent results suggest
that such packings exhibit higher shear strength than
sphere packings [5? ? ? –9], and may approach unusu-
ally high packing fractions [2, 10–12]. However, a system-
atic and quantitative investigation of shape-dependence
is still largely elusive since particle shape characteristics
such as elongation, angularity, slenderness and noncon-
vexity are described by distinct groups of parameters,
and the effect of each parameter is not easy to isolate
experimentally.

In order to evaluate the shape-dependence of gen-
eral granular properties such as packing fraction, shear
strength and internal structure for particles of different
shapes, we designed a numerical benchmark test that was
simulated and analyzed by the members of a collabora-
tive group. The idea of this test is that various non-
spherical or non-circular shapes can be characterized by
their degree of distortion from a perfectly spherical or
circular shape. Let us consider an arbitrary 2D shape as
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sketched in Fig. 1. The border of the particle is fully
enclosed between two concentric circles: a circumscrib-
ing circle of radius R and an inscribed circle of radius
R − ∆R. We define the η-set as the set of all shapes
with borders enclosed between a pair of concentric cir-
cles (spheres in 3D), touching both circles and having
the same ratio η = ∆R/R. Four different particle shapes
belonging to the same η-set are shown in Fig. 2. A non-
zero value of η corresponds to non-convexity for A-shape,
elongation for B-shape, angularity for C-shape, and a
combination of angularity and elongation for D-shape.
The parameter η is obviously a rough low-order shape

parameter. But, encompassing most specific shape pa-
rameters, it provides a general framework in which shape-
dependence may be analyzed among particles of very dif-
ferent shapes. Within an η-set, each specific shape may
further be characterized by higher-order parameters. The
issue that we address in this Letter is to what extent the
packing fraction and shear strength are controlled by η
and in which respects the behavior depends on higher-
order shape parameters .
The benchmark test is based on the four shapes of Fig.

2. The A-shape (trimer) is composed of three overlap-
ping disks touching the circumscribing circle and with
their intersection points lying on the inscribed circle; the
B-shape (rounded-cap rectangle) is a rectangle touching
the inscribed circle and juxtaposed with two half-disks
touching the circumscribing circle; the C-shape (trun-
cated triangle) is a hexagon with three sides constrained
to touch the inscribed circle and all corners on the cir-
cumscribing circle; and the D-shape (elongated hexagon)
is an irregular hexagon with two sides constrained to
touch the inscribed circle and two corners lie on the cir-
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FIG. 1: An arbitrary particle shape represented by a concen-
tric pair of circumscribing and inscribed circles.

A B C D

FIG. 2: Four different shapes belonging to the same η-set with
η = 0.4: trimer (A), rounded-cap rectangle (B), truncated
triangle (C), and elongated hexagon (D).

cumscribing circle. The range of geometrically defined
values of η for a given shape (defined by a construction
method) has in general a lower bound η0. For A and B,
the particle shape changes continuously from a disk, so
that η0 = 0 whereas we have η0 = 1−

√
3/2 ≃ 0.13 for C

and D.

Two different discrete element methods (DEM) were
used for the simulations: contact dynamics (CD) and
molecular dynamics (MD). In the CD method, the par-
ticles are treated as perfectly rigid [13] whereas a linear
spring-dashpot model was used in MD simulations with
stiff particles (kn/p0 > 103, where kn is the normal stiff-
ness andp0 refers to the confining pressure) [14]. The
trimers were simulated by both methods for all values of
η. We refer below as A (for CD) and A’ (for MD) to
these simulations. The packing C was simulated by MD
whereas the packings B and D were simulated by CD.

For each shape, several packings of 5000 particles were
prepared with η varying from 0 to 0.5. To avoid long-
range ordering, a size polydispersity was introduced by
taking R in the range [Rmin, Rmax] with Rmax = 3Rmin

and a uniform distribution of particle volumes. A dense
packing composed of disks (η = 0) was first constructed
by means of random deposition in a box [15]. For other
values of η, the same packing was used with each disk
serving as the circumscribing circle. The particle was
inscribed with the desired value of η and random orien-
tation inside the disk. This geometrical step was followed
by isotropic compaction of the packings inside a rectan-
gular frame. The gravity g and friction coefficients be-
tween particles and with the walls were set to 0 during
compaction in order to avoid force gradients. Fig. 3 dis-
plays snapshots of the packings for η = 0.4 at the end of
isotropic compaction.

The isotropic samples were sheared by applying a slow
downward velocity on the top wall with a constant con-
fining stress acting on the lateral walls. During shear,
the friction coefficient µ between particles was set to 0.5
and to 0 with the walls. The shear strength is charac-
terized by the internal angle of friction ϕ which is given

B

C D
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FIG. 3: Snapshots of the simulated packings in the densest
isotropic state for η = 0.4.

FIG. 4: Shear strength sinϕ∗ of packings composed of various
particle shapes (see Fig. 2) as a function of η.

by sinϕ = q/p, where q = (σ1 − σ2)/2 is the stress de-
viator and p = (σ1 + σ2)/2 is the average stress, the
subscripts 1 and 2 referring to the principal stress val-
ues calculated over the whole sample. sinϕ increases
rapidly from zero to a peak value before relaxing to a con-
stant material-dependent value sinϕ∗ defining the shear
strength at large strain with a steady stress state.
Figure 4 shows the dependence of sinϕ∗ with respect to

η for our different shapes. Remarkably, sinϕ∗ increases
with η at the same rate for all shapes. The data nearly
coincide between the A and B shapes, on the one hand,
and between C and D shapes, on the other hand. This
suggests that nonconvex trimers and rounded-cap rectan-
gles, in spite of their very different shapes, belong to the
same family (rounded shapes). This is also true for the
truncated triangles and elongated hexagons, which be-
long to the family of angular particles and exhibit a shear
strength slightly above that of rounded shapes. Note also
that the results are robust with respect to the numerical
approach as the packings A and A’ were simulated by
different discrete element methods.
The increase of shear strength with η may be at-
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FIG. 5: Friction mobilization in the steady state as a function
of η for different particle shapes.

tributed to the increasing frustration of particle rota-
tions as the shape deviates from disk. Since the particles
may interact at two or three contact points (A-shape)
or through side-to-side contacts (shapes B, C and D),
the kinematic constraints increase with η and frustrate
the particle displacements by rolling. The restriction of
rolling leads to enhanced role of friction in the mechan-
ical equilibrium and relative sliding of particles during
deformation [16]. A related static quantity is the mean
friction mobilization defined by M = 〈ft/(µfn)〉, where
ft is the absolute value of the friction force, fn is the nor-
mal force and the average is taken over all force-bearing
contacts in the system. To evaluate the effect of particle
shape, we introduce the shape-induced friction mobiliza-
tion Mη = M(η)/M(0) − 1, where M(0) is the friction
mobilization for circular particles. Fig. 5 shows that
Mη is a globally increasing function of η for all shapes.
Hence, in this respect, the parameter η seems to be rel-
evant also for friction mobilization, and the differences
observed in Fig. 5 among different shapes are rather of
second order.
We now focus on the packing fraction which crucially

depends on particle shape. Fig. 6 shows the packing frac-
tion ρiso in the initial isotropic state as a function of η.
We observe a nontrivial behavior for all particle shapes:
the packing fraction increases with η, passes by a peak de-
pending on each specific shape and subsequently declines.
For the B-shape a sharp decrease of ρiso occurs beyond
η = 0.5 as shown in [? ]. This unmonotonic behavior
of packing fraction was observed by experiments and nu-
merical simulations for spheroids as a function of their
aspect ratio [2, 10, 11, 18–20]. The decrease of the pack-
ing fraction is attributed to the excluded-volume effect
that prevails at large aspect ratios and leads to increas-
ingly larger pores which cannot be filled by the particles
[18]. The observation of this unmonotonic behavior as
a function of η for different shapes indicates that it is a
generic property depending only on deviation from circu-
lar shape. This point suggests that it might be possible
to explain this behavior from general considerations in-
volving η but with variations depending on second-order
parameters related to each specific shape.
A plausible second-order parameter is ν = Vp/(πR

2),

FIG. 6: Packing fraction in the isotropic state as a function
of η for different particle shapes.

where Vp is the particle volume in 2D. Its complement
1− ν is the “self-porosity” of a particle, i.e. the unfilled
volume fraction inside the circumscribing circle. Keeping
the radius R of the circumscribing circle constant, ρiso =
Vp/V varies with η as a result of the relative changes
of Vp and the mean volume V per particle. The free
(pore) volume per particle is Vf = V − Vp. At η = 0,
the free volume Vf is only composed of steric voids, i.e.
voids between three or more particles, and the packing
fraction is given by ρ(0) = πR2/V (0). For η > 0, the
void patterns are more complex but can be described by
considering the generic shape of particles belonging to
a given η-set. The borders of a particle involve “hills”,
which are the parts touching the circumscribing circle,
and “valleys” touching the inscribed circle.
The volume V per particle varies with η by two mech-

anisms. First, the hills of a particle may partially fill the
valleys of a neighboring particle; Fig. 7(a). Secondly, the
steric voids between the hills shrink as η increases due to
the increasing local curvature of the touching particles;
Fig. 7(b). To represent this excess or loss of pore vol-
ume due to the specific jamming configurations induced
by particle shapes, we introduce the function h(η) by set-
ting V (η) = V (η0)−πR2h(η) with h(η0) = 0. With these
assumptions, the packing fraction is expressed as

ρ(η) =
ν(η)ρ(η0)

1− ρ(η0)h(η)
. (1)

The function ν(η) is known for each shape but h(η)
needs to be estimated. A second-order polynomial ap-
proximation h(η) = α(η− η0) + β(η− η0)

2 together with
Eq. 1 allows us to recover the correct trend and to fit
the data as shown in Fig. 8. The error bars represent
the variability at η0 assumed to be the same for all other
values of η. The parameter α ensures the increase of
packing fraction with η at low values of the latter and it
basically reflects the shrinkage of steric pores (Fig. 7(b))
whereas β governs the overlap between circumscribing
circles (Fig. 7(a))) and is responsible for the subsequent
decrease of the packing fraction.
The fitting parameters in Fig. 8 are α ≃ 1.30, 1.29,

1.14, 1.17 and β ≃ 1.23, 1.20, 0.23, 0.20 for C, A, D
and B shapes, respectively with increasing peak value.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4

(a) (b)

FIG. 7: Pore volume reduction by (a) overlap between self-
porosities; (b) steric pores.
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FIG. 8: Normalized packing fractions fitted by Eq. (1).

Note that the values of β are considerably smaller for B
and D that have an elongated aspect and for which the
overlapping of self-porosities prevails as compared to A
and C for which the shrinking of pores is more important.

In summary, our benchmark simulations show that a
low-order shape parameter η, describing deviation with
respect to circular shape, controls to a large extent both
the shear strength and packing fraction of granular me-
dia composed of noncircular particles in 2D. The shear
strength is roughly linear in η and the packing fraction
is an unmonotonic function of η. These findings suggest
that a general jamming model might be applicable to
very different particle shapes. The effect of higher-order
shape parameters may be analyzed also in this frame-
work in terms of differences in packing fraction and shear
strength among various shapes belonging to the same η-
set. Finally, this work can be enriched by considering a
wide variety of 2D and 3D shapes, including several re-
cently published results, and by representing the data as
a function of η.

We acknowledge financial support by the French gov-
ernment through the program PPF CEGEO.
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[8] E. Azéma, F. Radjai, R. Peyroux, and G. Saussine, Phys.
Rev. E 76, 011301 (2007).
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