
Citation: Kononowicz, T.; Czarnul, P.

Performance Assessment of Using

Docker for Selected MPI Applications

in a Parallel Environment Based on

Commodity Hardware. Appl. Sci.

2022, 12, 8305. https://doi.org/

10.3390/app12168305

Academic Editor: Sven Gotovac

Received: 31 May 2022

Accepted: 16 August 2022

Published: 19 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Performance Assessment of Using Docker for Selected MPI
Applications in a Parallel Environment Based on
Commodity Hardware
Tomasz Kononowicz and Paweł Czarnul *

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
11/12 Narutowicza, 80-233 Gdańsk, Poland
* Correspondence: pczarnul@eti.pg.edu.pl; Tel.: +48-58-3471288

Abstract: In the paper, we perform detailed performance analysis of three parallel MPI applications
run in a parallel environment based on commodity hardware, using Docker and bare-metal configu-
rations. The testbed applications are representative of the most typical parallel processing paradigms:
master–slave, geometric Single Program Multiple Data (SPMD) as well as divide-and-conquer and
feature characteristic computational and communication schemes. We perform analysis selecting
best configurations considering various optimization flags for the applications and best execution
times and speed-ups in terms of the number of nodes and overhead of the virtualized environment.
We have concluded that for the configurations giving the shortest execution times the overheads
of Docker versus bare-metal for the applications are as follows: 7.59% for master–slave run using
64 processes (number of physical cores), 15.30% for geometric SPMD run using 128 processes (number
of logical cores) and 13.29% for divide-and-conquer run using 256 processes. Finally, we compare
results obtained using gcc V9 and V7 compiler versions.

Keywords: high performance computing; parallelization; virtualization; Docker; overhead evaluation

1. Introduction

Nowadays, virtualized environments have gained much popularity thanks to ease of
deployment and installation and are being used in various contexts such as: server/cloud de-
ployment of applications provided by various parties possibly taking into account resource
preferences of different applications [1]; IoT systems at various levels, i.e., server/cloud [2],
middleware [3], gateway/fog [4] and sensor/edge [5] and, finally, in high-performance
computing (HPC) systems potentially as a way to deploy applications in the cloud [6].
In the latter, it is of special interest to investigate potential performance impacts as HPC
systems have been developed primarily with performance in mind and both execution
times as well as scalability measured with speed-ups are of key importance. It can be
noticed that virtualized environments can be used to run various workloads in parallel,
from, e.g., multiple Cassandra clusters [7], through multiple DeviceHive IoT middleware
containers [3] to compute intensive HPC applications [8].

Contribution of this work is investigation of performance and overhead of a virtualized
Docker versus native multi-node environment built using commodity hardware (multi-core
CPUs and 1 Gbs network) for running parallel MPI applications that are representative of
most common parallel programming paradigms, such as: dynamic master–slave (Master-
Slave), geometric Single Program Multiple Data (SPMD), as well as divide-and-conquer
(DAC) [9]. We perform detailed analysis of execution times and speed-ups for all 1 to n
tested numbers of processes and our specific contribution is consideration of best configu-
rations taking into account various compilation flags and numbers of processes which turn
out to be different for various applications.

Appl. Sci. 2022, 12, 8305. https://doi.org/10.3390/app12168305 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168305
https://doi.org/10.3390/app12168305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1968-2510
https://orcid.org/0000-0002-4918-9196
https://doi.org/10.3390/app12168305
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168305?type=check_update&version=2

Appl. Sci. 2022, 12, 8305 2 of 35

2. Related Work and Motivation

In the literature, authors of several works have addressed the overheads of container-
ization versus virtual machine solutions.

In paper [10], the authors performed performance comparison of selected high per-
formance computing applications, using bare-metal, Docker (containerization) as well as
virtual machines (VM), for various system configurations. Specifically, they tested bench-
marks such as High Performance Linpack (HPL) and Graph500 using a system with 2 nodes
with Intel Xeon CPU E5- 2670 @ 2.6 GHz and 64 GB of RAM, for a total of 16 logical cores
per node with 1Gbps Ethernet. QEMU 2.4.0.1/KVM and Docker 1.7.1 were used. Tested
configurations included 2, 4, 8, 16 and 32 instances, each with 16, 8, 4, 2 and 1 vCPUs/execu-
tion processes respectively in the case of VM and the same numbers of execution processes
in terms of the Docker configurations. Starting with 2 up to 32 instances, performance
of the VM configuration for both applications was dropping linearly. For Docker and
2–16 instances, performance stayed at pretty similar levels but resulting in highest perfor-
mance for 16 instances which the authors attributed to fairer load distribution within each
container for a larger number of instances. Additionally, a significant drop in performance
for 32 instances was observed for Docker.

In paper [11], the authors compared Docker to KVM for selected benchmarks, using a
machine with 2 Intel Xenon E5-2620 v3 CPUs, 64 GB RAM and Ubuntu 16.04. Finding prime
numbers resulted in execution time of approx. 19 s vs. 37 s for Docker and VM, respectively,
compressing a file using 7-zip gave approx. 8000 MIPS vs. 2000 MIPS, averaged (across
add, copy, scale, triad) RAM speed 18,000 MB/s vs. 6000 MB/s, disk read/write time
approx. 10 s vs. approx. 25 s, Apache’s requests per second 500 vs. almost 200 for Docker
and VM, respectively.

The authors of paper [12] argue that for typical HPC environments, several require-
ments for a container based solution are important: near native performance, compatibility
with parallel file systems, workload managers, Docker’s images and workflow, as well as
security for multi-tenant systems. In this context they mention, as by design more suited
for HPC systems than Docker: Singularity [13,14], Charliecloud, Shifter and present their
solution—Sarus proving very low overhead on a Piz Daint system showing a difference of
only up to 2.7% using 256 nodes compared to a native run for running GROMACS, up to
6.2% using 256 nodes for TensorFlow with Horovod and up to 2.1% for up to 2888 nodes
for running COSMO Atmospheric Model Code. In [15], the author presents container
solutions, by design more suited for pure HPC environments than Docker, i.e., Singularity,
Shifter and UberCloud.

Having said that, Docker is an interesting choice for cloud systems allowing running
parallel applications as well as environments in which some of the aforementioned require-
ments are not crucial. It shall be noted that Docker now supports rootless mode, albeit
with restrictions such as ones related to using low numbered ports. Several works focus
on comparison of Docker and Singularity as containerization solutions in the context of
high-performance computing applications and systems.

In paper [8], the authors investigated Docker versus Singularity performance using
up to 64 nodes of a cluster, each one equipped with 16 GB of RAM and an Intel Xeon X3340
running at 2.53 GHz interconnected with 1 Gbps Ethernet. On the software side, bench-
marks included NAS-EP from the NAS Parallel Benchmarks, Ondes3D for finite-differences
method (FDM) simulation of the propagation of seismic waves in three-dimensional media
and a ping-pong MPI application for bandwidth and latency measurements. The authors
measured the overheads of Docker and Singularity versus bare-metal and concluded that
for 4 nodes/16 ranks and NAS-EP of class B and 1–8 MPI ranks performance of the three
solutions was almost identical and for 16 ranks the overhead of both Singularity and Docker
was at the level of 9% and 8% respectively. For Ondes3D the overhead of Docker and
Singularity is negligible for 1 node/4 ranks, for Singularity increases linearly up to approx.
7% for 16 ranks while for Docker increases dramatically and is at approx. 33% for 8 MPI
ranks and approx. 53% for 16 ranks. Execution times for 16 ranks were in the order of 5–10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 3 of 35

s for these cases. For a large scale simulation using Ondes3D with times of approx. 125 s
and 256 ranks, Singularity overhead was at the level of 1%. The increase of the overhead of
Docker was attributed to the overhead of the communication for the overlay network.

In paper [6], the authors provided an assessment of Docker-based configurations and,
additionally, Singularity for running several HPC applications. Specifically, they discussed
Docker configurations such as:

1. One container per node using the host network and IP of the host node + Infiniband
devices of host mapped to containers;

2. One container per node where containers from various nodes are connected through
Docker Swarm defined overlay network which enables direct communication between
containers. Infiniband devices are available within containers;

3. Multiple containers per host with MPI ranks split among containers—various numbers
of ranks per container are possible. A Docker Swarm overlay network is used.

In terms of applications, the authors used the HPCG benchmark, MiniFE (Finite
element application), Ohio State University Micro Benchmarks, KMI Hash (K-mer matching
interface—measuring integer hashing). The authors compared performance of the various
versions and of Singularity versus bare metal. For HPCG and 72 MPI ranks, the best were
Singularity, versions 2 and 1 with overheads of 0.22%, 0.47% and 0.65%, respectively. For
MiniFE and 96 MPI processes, the best were version 2, version 1 and Singularity with
overheads 0.15%, 0.36% and 1.25%, respectively. For OSU and KMI-Hash benchmarks, all
versions produced very similar performance. The authors also tested Docker and bare metal
versions with Infiniband and Ethernet. For MiniFE and KMI-Hash overhead for Infiniband
with Docker versus bare metal was minimal, i.e., smaller than 0.1% while for Ethernet 8.5%
for KMI-Hash, 0.4% for MiniFE—version 1. For version 3, running 1 container per rank
degraded performance by even 50% but for 2+ ranks per container performance was very
close to the other versions.

In paper [16], the authors investigated the performance impact of using Docker for
common genomic pipelines and concluded that the overhead can be very low for rea-
sonably long running jobs using an HP BL460c Gen8 system with 12 CPUs Intel Xeon
X5670 (2.93 GHz), 96 GB of RAM and Scientific Linux 6.5. Specifically, for a pipeline for
RNA-Seq data analysis, they measured the overhead of only 0.1%, for an assembly-based
variant calling pipeline, part of a “Minimum Information for Reporting Next Generation
Sequencing Genotyping” (MIRING)-compliant genotyping workflow the overhead was
2.4%. Finally, for Piper-NF—a genomic pipeline for detection and mapping of long non-
coding RNAs they measured the overhead was much larger—approximately 65% because
of many short-lived tasks of median execution time of only 5.5 s.

Apart from comparison of solutions such as Docker and Singularity on bare-metal,
in [17], the author considers the context of cloud HPC systems in which containers run in
virtual machines. In this context of nested virtualization, Docker is compared to Singularity
using several benchmarks. Specifically, tests were performed on an Microsoft Azure plat-
form and VM type was DS1 v2 (General Purpose, 1 vCPU, 3.5 GB RAM, SSDs). Singularity
scored better than Docker for the following benchmarks tested: LINPACK (approx. 4% bet-
ter), IOZone disk read (by approx. 15% for sequential read and 25% for random read) and
write (by approx. even 80% for sequential write and by approx. 30% for random write),
and netperf compared to Docker overlay configuration (throughput better by approx. 12%,
latency by approx. 10%) although Docker host using the underlying network returned
virtually the same throughput and latency results. Docker, on the other hand, returned
better results for the STREAM memory bandwidth benchmark (by approx. 2.5%).

In [18], the authors compared performance and assessed suitability of the Rkt container
technology (providing more security than Docker) for HPC environments and compared
it to LXC and Docker when running compute and data intensive applications—HPL and
Graph500, respectively. For HPL running on containers Rkt scored very competitively
(almost native performance) for larger problem sizes, but was much weaker for smaller
sizes for which Docker was better. After analyzing this trend on a single node setup, it was

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 4 of 35

also confirmed for container clusters. For Graph500 all LXC, Docker and Rkt presented
near native performance results.

In paper [19] authors provided a workflow for a container image configuration con-
cerning an all-to-all protein–protein docking application. Container image configurations
can be customized using the HPCCM framework and taking into account considering
specification differences of HPC environments. The HPCCM framework with the proposed
workflow supports both Docker and Singularity and can set container specifications us-
ing parameters and proper values, the same approach is used for versions of dependent
libraries. Tests were performed on ABCI (1088 nodes with 2 Intel Xeon Gold 6148 and
4 NVIDIA Tesla V100 each) as well as on TSUBAME 3.0 system (540 nodes with 2 Intel
Xeon E5-2680 v2 and 4 NVIDIA Tesla P100 each). Singularity, OpenMPI and CUDA were
used for protein–protein of all-to-all pairs—52,900 in total. Strong scaling showed 0.964 on
ABCI and 0.947 on TSUBAME 3.0 systems, when comparing 64 and 2 nodes. For a larger
experiment (1,322,500 pairs) with scaling from 16 to 512 nodes on ABCI strong-scaling was
0.964 and 90 to 180 nodes on TSUBAME 3.0 0.985.

In the context of managing and porting HPC setups and environments, in work [20],
the author proposed how to use Docker and Spack together in order to containerize the
extreme-scale Scientific Software Development Kit (xSDK) and allow easier management
and satisfying required dependencies for HPC environments, especially for non-specialists.

When testing Docker for running an IoT middleware versus a bare metal configura-
tion [3] that might be representative of serving stream of requests from sensors or devices,
the authors determined that even though there was an overhead of around 5–10% under
high load on the server side (in configurations using either all physical CPU cores or all
logical cores on the middleware side), this difference becomes less significant (0–5%) on
the client side when communication times are taken into account in the turnaround time.
Furthermore, it was shown that using several containers for the middleware helps achieve
more throughput at the cost of increased memory usage.

A slightly similar performance investigation of multiple instances of VMWare VMs
and Docker containers running concurrently, albeit in the context of multiple instances of
a Cassandra database running concurrently was presented in paper [7]. Firstly, for one
Cassandra cluster, the authors showed averaged latency of 1.35 ms for Docker vs. 1.9 ms
VMWare and 1.2 non-virtualized for replication factor 1, 1.9 ms, 4.4 ms and 2.1 ms for
replication factor 2 and 2.2 ms, 5.45 ms and 2.1 ms for replication factor 3 for Docker,
VMWare and the non-virtualized environment, respectively. Then, for multiple, i.e., 1, 2 or
4 Cassandra clusters with 3 nodes each, one node on each physical machine. In case of n
Cassandra clusters, there were n Cassandra nodes (belonging to different clusters) on each
physical machine. The authors reported that for read operations, the maximum number of
operations was reduced in case of several concurrent instances, while being increased for
write operations in concurrent settings.

Compared to the aforementioned works, we primarily aimed at assessment of virtual-
ized Docker performance in a parallel LAN-based environment built out of commodity
components such as desktop CPUs and 1Gbps Ethernet. Such environments are common
for: university labs (many are based on several PCs+ Gb Ethernet) and staff/students hav-
ing access to those, selected companies (same as above using infrastructure for speeding up
computations) and even some home environments with 2+ nodes and Gb Ethernet LAN.
We shall emphasize that such a cluster built out of commodity nodes (PCs, workstations) is
an environment really commonly used in the academic environment and is also feasible for
the two other mentioned cases. In line with that, instead of typical aforementioned HPC
benchmarks for clusters with top-of-the-line CPUs and fast interconnects like Infiniband,
we used parallel codes featuring typical parallel processing paradigms (master–slave, ge-
ometric SPMD and divide-and-conquer [9]) that can be used by programmers/users in
their applications, not necessarily being typical complex HPC workloads. These could
be typical end user workloads that can benefit from parallelization in a multi-node en-
vironment with multi-core CPUs that, compared to supercomputing centers, offer some

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 5 of 35

benefits considering that the user base is quite small, e.g., lack of queuing systems that
sometimes require a long waiting phase before computations even start and consequently
the possibility to rerun codes with other parameters quickly. We focused on best versions
obtained with various compilation flags (-O2, -O3, -O3 -march=native) for all 1 to n tested
nodes with assessment of best numbers of processes for particular applications. This is
important because these processing paradigms follow various compute/communication
schemes and the vast majority of parallel applications can be mapped onto these schemese
or a combination thereof. Testing scalability with 2, 4, 8 and 16 nodes allows to assess
the speed-up potential of an application and can be used as a first evaluation whether
the current implementation can be moved to a much larger cluster (i.e., more nodes and
possibly even lower latency interconnect). Using Docker in such an environment allows:

• Easy preparation and testing an application, e.g., in a separate environment and
deploying it on such a commodity cluster (e.g., students can prepare at home and
deploy at the university). At the same time, Docker allows easy deployment of an
application on subsequent computers (with the specific required environment) and
scaling with more nodes;

• Easy separation of tasks on such a cluster, e.g., for several research groups to use
various parts of the cluster at the same time.

3. Testbed Applications Representing Various Parallel Processing Paradigms

As outlined in [9], the majority of parallel application implementations follow a
relatively small number of parallel programming paradigms that can thus be regarded
as parallel programming templates. Specific applications fall into these programming
paradigms with possibly various parameters, specifically ratios of compute to commu-
nication/synchronization times that typically impact speed-ups. In this paper, we test
three of such paradigms on one hand, on the other, we test specific application exam-
ples implemented with these paradigms. Source codes, implemented with C and MPI,
of the latter have been based on examples available as supplemental material to [9] (avail-
able at https://static.routledge.com/9781138305953/K35766_eResource.zip, accessed on
2 November 2020).

3.1. Dynamic Master–Slave—Numerical Integration

The concept of this paradigm is to partition input data into independent data pack-
ets by a master process, parallelize processing of these packets by slave processes and
apply merging by the master process, handling communication using MPI. Partitioning,
processing and merging operations are specific to a given application.

In the case of numerical integration tested in the paper, function f (x) = 1
1+x is to be

integrated over the range [1, 100]. The range is partitioned into a number of subranges
which correspond to data packets and are initially distributed one per each slave process.
Subsequently, each slave process that has finished processing requests a new data packet
from the master having sent a result which is immediately integrated into the final result
(sum operation on the master part). In general, this scheme implements dynamic load
balancing if processing individual data packets takes different amounts of time or these
are processed on CPUs of various performance, provided the number of data packets
is considerably larger than the number of slave processes (typically a few times larger
or more). On the other hand, generating too many data packets decreases the ratio of
compute to communication time (due to communication start-up time) and results in
poorer performance [9].

Other potential applications following this paradigm might include: numerical in-
tegration, block-based matrix multiplication [21], filters applied to a set of images [22],
computations of similarity measures of large vectors [23].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://static.routledge.com/9781138305953/K35766_eResource.zip
http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 6 of 35

3.2. Geometric Single Program Multiple Data—Iterative Stencil Computations

Potential applications implementing this paradigm typically include simulations
using iterative stencil loops such as simulations of physical phenomena in 1, 2 or 3D spaces,
modeled with differential equations and subsequently solved over successive time steps.
Examples include computational fluid dynamics (CFD) codes, weather forecasting [24],
heat distribution, Multidimensional Positive Definite Advection Transport Algorithm—part
of the EULAG geophysical model [25], medical simulations [26].

Actual implementation tested in this paper corresponds to an iterative stencil loop
application in a 3D domain in which a new value for a given cell is computed based on the
values of this very cell and neighboring cells from the previous time step. We performed
tests with various values of a compute coefficient corresponding to how many computations
per cell need to be performed (which may vary depending on the actual application)—one
sample is presented in the main results section, more available at the github link presented
at the end of the paper. The larger the coefficient, the larger the ratio of computational to
communication times and the larger speed-up. Moreover, the implementation optimizes
partitioning of the 3D domain into cuboids in such a way that the number of cells assigned
to each cuboid, assigned to a different process, is balanced as well as the maximum of
the total areas across cuboids is minimized as it corresponds to the number of cells to be
exchanged between processes. Additionally, the implementation uses custom MPI data
types representing boundary walls: in XY, XZ and YZ dimensions. In each time step,
processes update values of the cells of their cuboids and subsequently processes send
values of their boundary cells to the processes handling neighboring cuboids. We tested
simulation within a 3D domain of size 200 × 400× 600 (X × Y × Z) for 300 time steps.

3.3. Divide-and-Conquer—Numerical Integration

The implemented divide-and-conquer paradigm follows computations from the root
towards leaves of a balanced binary tree and then back towards the root. This scheme starts
with a single process and an original and successively generated problems are recursively
partitioned into two subproblems. Upon partitioning, rightmost subproblems are passed
to another process for parallelization. In the leaves of the tree, custom computations can be
performed and results are then merged into a 2-times-smaller number of processes at each
level up to the root and the original process. Actual implementation tested in this work
sorted function f (x) = 1

1+x over range [100, 200] using a parallel merge sort.
Other potential applications following this paradigm might include [9]: recursive

searching for a Region of Interest (ROI) within a large image, minimax, αβ search, etc.

4. Testbed Environments—Physical and Virtualized

The implementation of the experiments required preparation of two environments
which were:

• Physical environment (hereinafter referred to as Host);
• Virtual environment using Docker (hereinafter referred to as Docker)—virtualized at

the operating system level (containerization).

Due to several optimizations during source code compilation, it was necessary to in-
stall the GCC compiler and the OpenMPI library in each of these environments. Computing
clusters were created from both environments. The SSH protocol was used for setting up
communication between the nodes (used public and private keys). During the experiments,
no other calculations were performed within the environments. The test execution times
were measured by the time program. In order for the tests on the Host and Docker to
run in the same hardware configuration, all test runs used the -hostfile parameter of
the mpirun command, which allowed specific (the same) machines to be used to perform
the task.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 7 of 35

4.1. Physical Environment—Host

The Host test environment consisted of 17 (identical hardware specifications) physical
computers connected to LAN via Ethernet with a speed of 1Gbps. Each of these machines
was equipped with an Intel (R) Core (TM) i7-7700 CPU @ 3.60 GHz (4 physical cores,
8 logical threads) and 16 GB of RAM. The operating system installed on these computers
was Linux Ubuntu 20.04.3 LTS. For testing purposes, the GCC 9.3.0 compiler version and
the OpenMPI 3.1.1 library were installed on all computers in the Host environment.

4.2. Virtual Environment—Docker

To use Docker containerization, firstly, we build an image or use an existing one that
contains all the prerequisites needed for the application to work. Docker allows to change
the runtime environment and installed programs very conveniently. This allowed the GCC
compilers in versions 9.3.0 (OpenMPI 3.1.1) and 7.4.0 (OpenMPI 2.1.1) to be compared with
each other. Due to the use of two different versions of the GCC compiler, as in the host
environment, two separate images (Dockerfiles) have been prepared.

Created images were based on the very light Linux version for containerization—
Alpine. The next step was to download and install the GCC compiler and the OpenMPI
library in appropriate versions. It was also necessary to create a new user, configure
its settings, and set up SSH communication, which included server installation, use of
previously generated encryption keys and port forwarding.

The virtual test environment was built using the same, all physical machines as the
Host test environment. The Docker containerization engine has been installed on every
computer. Before running the tests, only one container was running on each computer at a
time. Each container had access to all host hardware resources (CPU and RAM were not
limited in any way). All containers (17) were connected with each other into one computing
cluster using the Docker Swarm [27] tool, creating an Overlay network. Two computing
containers have never run on a physical host at the same time.

5. Experiments
5.1. Test Methodology and Parameters

The main goal of the experiments was to compare the application execution time on
Docker and Host, but in order to make a thorough comparison, many variables need to be
taken into consideration. The course of the tests was influenced by:

Program, Paradigm —described in Section 3:

1. DAC;
2. MasterSlave;
3. SPMD.

Compilation parameters, parameters, flags —options used during compilation:

1. No optimization parameter;
2. O2 (-O2);
3. O3 (-O3);
4. O3_native (-O3 -march=native).

Tests without any optimization parameter will not be described in further analysis
because such execution times were the longest in these cases (several times longer)
and stand out from the rest.

Runtime machine —environment in which the tasks were run:

1. Docker (installed on bare-metal host),
2. Host (bare-metal).

Computing processes —number of processes performing operations: 1–64 with step 4,
plus 128 and 256, but only 1, 2, 4, 8, 16, 32, 64, 128, 256 calculation processes will be

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 8 of 35

presented and 12, 20, 24, 28, 36, 40, 44, 48, 52, 56, 60 calculation processes will be
omitted. The available hardware test platform used HyperThreading in order to run
128 and oversubscribe mode to run 256 processes.

The DAC program requires that the number of calculation processes be always equal
to a power of two, so it uses from 20 to 28 calculation processes. The MasterSlave
program requires one additional master process that collects results from the slave
calculation processes. The number of calculation processes without the master process
will always be given in this publication.

The tests were performed as a combination of the above, and each test was repeated
10 times. Before starting the analysis of the results, all tests were completed. Graphs
and tables containing median times of program execution in particular configurations are
presented in subsequent subsections. Apart from median times, we also present Q1 and Q3
data, interquartile ranges and outliers.

5.2. Results—Execution Times and Speed-Ups

Figures 1–3 show the execution times for the DAC application and a given number
of computing processes, using -O2, -O3 and -O3 -march=native compilation flags, respec-
tively. Median values are given in Table 1. The notation in these and remaining figures is
standard, i.e., middle dashes represent medians while boxplots represent an interquartile
range (IQR) and whiskers max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum)
respectively, and additionally potential outliers. Since variations in results are small, we
have provided detailed plots with selected subranges (using the same scale) in order to
better visualize details.

Table 1. Median execution times for DAC.

Compilation Runtime Median Execution Time for Computing Processes [s]

Parameter Machine 2 4 8 16 32 64 128 256

O2
Docker 267.60 137.01 69.10 34.93 18.18 10.22 10.96 10.73

Host 267.66 137.28 69.18 35.06 18.01 9.56 9.78 9.47

O3
Docker 267.65 137.04 69.13 34.93 18.18 10.23 10.99 10.70

Host 267.79 137.32 69.21 35.04 18.01 9.58 9.80 9.41

O3_native
Docker 305.70 156.49 78.85 39.81 20.62 11.45 9.58 10.91

Host 305.91 156.78 78.93 39.92 20.45 10.79 9.86 9.42

Figures 4–6 show the execution times for the MasterSlave application and a given
number of computing processes, using -O2, -O3 and -O3 -march=native compilation flags
respectively. Median values are given in Table 2.

Figures 7–9 show the execution times for the SPMD application and a given number of
computing processes, using -O2, -O3 and -O3 -march=native compilation flags, respectively.
Median values are given in Table 3.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 9 of 35

 0

 50

 100

 150

 200

 250

 300

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O2 DAC

 266.5

 267

 267.5

 268
Docker

Host

Ex
ec

ut
io

n
tim

e
[s

]

 136.5

 137

 137.5

Ex
ec

ut
io

n
tim

e
[s

]

 69

 69.5

Ex
ec

ut
io

n
tim

e
[s

]

 34.5

 35

 35.5

Ex
ec

ut
io

n
tim

e
[s

]

 17.5

 18

 18.5

Ex
ec

ut
io

n
tim

e
[s

]

 9

 9.5

 10

 10.5

 11

 11.5

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]

Figure 1. Execution times for DAC, -O2 compilation flag; boxplot notation: medians, Q1 and Q3,
max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers (+ for
Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 10 of 35

 0

 50

 100

 150

 200

 250

 300

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O3 DAC

 267.5

 268
Docker

Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 137

 137.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 69

 69.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 34.5

 35

 35.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 18

 18.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 9

 9.5

 10

 10.5

 11

 11.5

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Figure 2. Execution times for DAC, -O3 compilation flag; boxplot notation: medians, Q1 and Q3,
max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers (+ for
Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 11 of 35

 0

 50

 100

 150

 200

 250

 300

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O3_native DAC

 305.5

 306
Docker

Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 156

 156.5

 157

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 78.5

 79

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 39.5

 40

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 20

 20.5

 21

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

Figure 3. Execution times for DAC, -O3 -march=native compilation flag; boxplot notation: medians,
Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers
(+ for Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 12 of 35

 0

 50

 100

 150

 200

 250

 300

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O2 MasterSlave

 288.5
 289

 289.5
 290

 290.5
 291

 291.5
 292

 292.5
 293

 293.5
 294

 294.5
 295

 295.5
Docker

Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 149
 149.5

 150
 150.5

 151
 151.5

 152

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 75
 75.5

 76
 76.5

 77

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 38
 38.5

 39

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 19.5
 20

 20.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 10.5
 11

 11.5
 12

 12.5
 13

 13.5
 14

 14.5
 15

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Figure 4. Execution times for MasterSlave, -O2 compilation flag; boxplot notation: medians, Q1 and
Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers (+ for
Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 13 of 35

 0

 50

 100

 150

 200

 250

 300

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O3 MasterSlave

 288
 288.5

 289
 289.5

 290
 290.5

 291
 291.5

 292
 292.5

 293
 293.5

 294
 294.5

 295
 295.5

Docker
Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 149
 149.5

 150
 150.5

 151
 151.5

 152

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 75
 75.5

 76
 76.5

 77

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 38
 38.5

 39

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 19.5
 20

 20.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 11
 11.5

 12
 12.5

 13
 13.5

 14
 14.5

 15

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

Figure 5. Execution times for MasterSlave, -O3 compilation flag; boxplot notation: medians, Q1 and
Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers (+ for
Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 14 of 35

 0

 50

 100

 150

 200

 250

 300

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O3_native MasterSlave

 280.5

 281
Docker

Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 144

 144.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 72.5

 73

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 36.5

 37

 37.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 19

 19.5

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Figure 6. Execution times for MasterSlave, -O3 -march=native compilation flag; boxplot notation: me-
dians, Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential
outliers (+ for Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 15 of 35

 0

 200

 400

 600

 800

 1000

 1200

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O2 SPMD

 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216

Docker
Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 618
 619
 620
 621
 622

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 318
 319
 320
 321

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 168
 169
 170

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 107
 108
 109
 110
 111
 112
 113

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 86
 87
 88

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 47
 48
 49

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 33
 34
 35
 36
 37
 38
 39
 40

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

Figure 7. Execution times for SPMD, -O2 compilation flag; boxplot notation: medians, Q1 and Q3,
max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers (+ for
Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 16 of 35

 0

 200

 400

 600

 800

 1000

 1200

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O3 SPMD

 1204

 1206

 1208

 1210

 1212

 1214

 1216

 1218
Docker

Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 618

 620

 622

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 316

 318

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 168

 170

 172

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 86

 88

 90

 92

 94

 96

 98

 100

 102

 104

 106

 108

 110

 112

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 46

 48

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 32

 34

 36

 38

 40

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Figure 8. Execution times for SPMD, -O3 compilation flag; boxplot notation: medians, Q1 and Q3,
max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers (+ for
Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 17 of 35

 0

 200

 400

 600

 800

 1000

 1200

2 4 8 16 32 64 128 256

Ex
ec

ut
io

n
tim

e
[s

]

Number of computing processes

Docker
Host

O3_native SPMD

 1204
 1205
 1206
 1207
 1208
 1209
 1210

Docker
Host

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 617
 618

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 316
 317

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 167
 168
 169
 170

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 105
 106
 107
 108
 109
 110
 111
 112

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 86
 87

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 32
 33
 34
 35
 36
 37
 38
 39
 40

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

Figure 9. Execution times for SPMD, -O3 -march=native compilation flag; boxplot notation: medians,
Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers
(+ for Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 18 of 35

Table 2. Median execution times for MasterSlave.

Compilation Runtime Median Execution Time for Computing Processes [s]

Parameter Machine 2 4 8 16 32 64 128 256

O2
Docker 295.36 151.74 76.59 38.82 20.22 11.78 12.30 14.67

Host 288.87 149.46 75.21 38.21 19.97 10.86 11.57 13.09

O3
Docker 295.34 151.74 76.59 38.84 20.21 12.43 12.28 14.61

Host 288.77 149.43 75.27 38.22 19.95 11.47 11.55 13.02

O3_native
Docker 280.92 144.18 72.86 36.95 19.28 11.28 12.04 14.52

Host 280.90 144.22 72.93 36.99 19.15 10.48 11.30 12.83

Table 3. Median execution times for SPMD.

Compilation Runtime Median Execution Time for Computing Processes [s]

Parameter Machine 2 4 8 16 32 64 128 256

O2
Docker 1215.24 621.56 318.22 168.88 86.56 47.16 38.80 108.13

Host 1206.62 618.34 317.70 169.03 86.47 46.72 33.32 108.84

O3
Docker 1207.75 618.21 316.42 168.23 86.35 47.00 37.38 109.46

Host 1205.28 617.70 317.32 168.92 86.40 46.70 34.41 108.41

O3_native
Docker 1206.68 617.46 316.04 167.78 86.04 46.87 38.86 109.30

Host 1204.94 617.45 317.19 168.80 86.38 46.73 33.70 108.84

Function (1) returns median execution time obtained in all experiments for given
arguments.

medianExecutionTime(mach, param, prog, proc)[s] (1)

where

mach is runtime machine,
param is compilation parameter,
prog is program,
proc is computing processes.

Parameter names used in this function will be used later in other equations with the
same meaning. To simplify getting median execution time for Docker and Host, functions (2)
(d like Docker) and (3) (h like Host) have been introduced:

d(param, prog, proc) = medianExecutionTime(Docker, param, prog, proc)[s] (2)

h(param, prog, proc) = medianExecutionTime(Host, param, prog, proc)[s] (3)

5.3. Analysis of the Results

Firstly, the fastest version of each program should be chosen, in terms of optimization
compilation flags. It should not be assumed a priori which version is the fastest especially
because the applications implement various processing paradigms, including various
communication schemes. Table 4 presents median execution results for a given parameter,
program and number of computing processes. The table presents better median execution
times out of Docker and Host versions according to function (4). Figure 10 represents a
box plot of execution times for DAC, Figure 11 represents a box plot of execution times for

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 19 of 35

MasterSlave and Figure 12 represents a box plot of execution times for SPMD, all for better
Docker and host versions.

mediandh(param, prog, proc) ={
d(param, prog, proc), if d(param, prog, proc) < h(param, prog, proc)
h(param, prog, proc), if d(param, prog, proc) > h(param, prog, proc)

(4)

 305.6

 305.8
 306

O2
O3

O3_native

Ex
ec

ut
io

n
tim

e
[s

]

 267.2

 267.4
 267.6

 267.8

Ex
ec

ut
io

n
tim

e
[s

]

 156.4
 156.6

Ex
ec

ut
io

n
tim

e
[s

]

 136.8

 137
 137.2

Ex
ec

ut
io

n
tim

e
[s

]

 78.8

 79

Ex
ec

ut
io

n
tim

e
[s

]

 69
 69.2

Ex
ec

ut
io

n
tim

e
[s

]

 39.6

 39.8
 40

Ex
ec

ut
io

n
tim

e
[s

]

 34.8
 35

Ex
ec

ut
io

n
tim

e
[s

]

 20.2

 20.4

 20.6Ex
ec

ut
io

n
tim

e
[s

]

 17.8

 18

 18.2

Ex
ec

ut
io

n
tim

e
[s

]

 9.2

 9.4

 9.6
 9.8

 10

 10.2

 10.4
 10.6

 10.8

 11

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]

Figure 10. Execution times for DAC, for better of Docker and host versions; boxplot notation: medians,
Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers
(+ for O2, x for O3, * for O3_native).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 20 of 35

Table 4. Median execution time for each parameters, programs and computing processes.

Computing
Program

Median Execution Time [s]

Processes O2 O3 O3_native

1

DAC 522.020 523.520 598.110

MasterSlave 564.610 564.354 548.795

SPMD 2361.605 2358.880 2357.340

2

DAC 267.600 267.650 305.700

MasterSlave 288.874 288.771 280.902

SPMD 1206.615 1205.275 1204.935

4

DAC 137.005 137.040 156.490

MasterSlave 149.458 149.430 144.180

SPMD 618.340 617.695 617.445

8

DAC 69.100 69.130 78.850

MasterSlave 75.213 75.269 72.860

SPMD 317.701 316.415 316.040

16

DAC 34.930 34.930 39.810

MasterSlave 38.211 38.219 36.950

SPMD 168.875 168.230 167.775

32

DAC 18.005 18.010 20.450

MasterSlave 19.971 19.946 19.150

SPMD 86.470 86.345 86.035

64

DAC 9.560 9.580 10.790

MasterSlave 10.862 11.474 10.480

SPMD 46.723 46.702 46.732

128

DAC 9.780 9.797 9.575

MasterSlave 11.570 11.550 11.293

SPMD 33.322 34.412 33.704

256

DAC 9.472 9.408 9.416

MasterSlave 13.094 13.022 12.834

SPMD 108.130 108.406 108.850D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 21 of 35

 288
 288.4
 288.8
 289.2
 289.6

 290
 290.4
 290.8
 291.2
 291.6

 292
 292.4 O2

O3
O3_native

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 280.8
 281.2

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 149.2
 149.6

 150

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 144
 144.4

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 74.8
 75.2
 75.6

 76

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 72.8
 73.2

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 36.8
 37.2
 37.6

 38
 38.4
 38.8Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 18.8
 19.2
 19.6

 20
 20.4

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

 10.4
 10.8
 11.2
 11.6

 12
 12.4
 12.8
 13.2
 13.6

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Figure 11. Execution times for MasterSlave, for better of Docker and host versions; boxplot nota-
tion: medians, Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as
potential outliers (+ for O2, x for O3, * for O3_native).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 22 of 35

 1204
 1206
 1208

O2
O3

O3_native

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]
 616
 618
 620

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 314
 316
 318
 320

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 166
 168
 170
 172

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 84
 86
 88
 90
 92
 94
 96
 98

 100
 102
 104
 106
 108
 110
 112

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 46
 48
 50
 52
 54
 56
 58

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

 32
 34
 36

2 4 8 16 32 64 128 256

Number of computing processes

Ex
ec

ut
io

n
tim

e
[s

]
Ex

ec
ut

io
n

tim
e

[s
]

Ex
ec

ut
io

n
tim

e
[s

]

Figure 12. Execution times for SPMD, for better of Docker and host versions; boxplot notation: medi-
ans, Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential
outliers (+ for O2, x for O3, * for O3_native).

Equation (5) allows to compare two parameters for a specific program. If the result
of function p is greater than 1 (the numerator is greater than the denominator), then the
program is faster for parameter B. This function sums median execution times for a specific
program and given parameter and divides by sum of median execution times for the
same program, but with another parameter. Results of function p for various compilation
optimization options are presented in Table 5.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 23 of 35

p(paramA, paramB, prog) =

∑
proc=1,2,4,8,16,32,64,128,256

mediandh(paramA, prog, proc)

∑
proc=1,2,4,8,16,32,64,128,256

mediandh(paramB, prog, proc)
[s] (5)

Table 5. Execution time factor for parameters (results of p function).

Program paramA=O2
paramB=O3

paramA=O2
paramB=O3_native

paramA=O3
paramB=O3_native

DAC 0.9985 0.8756 0.8769

MasterSlave 0.9998 1.0304 1.0306

SPMD 1.0012 1.0020 1.0008

Table 5 makes it easier to infer which parameter should be used in subsequent parts of
the experiment:

• For DAC:

– O2 is faster than O3,
– O2 is faster than O3_native,

• For MasterSlave:

– O2 is faster than O3,
– O3_native is faster than O2,

• For SPMD:

– O3 is faster than O2,
– O3_native is faster than O2,
– O3_native is faster than O3.

Equation (6) is very similar to function p, but due to the different order of operation
(function p represents dividing of sums, but function p′ represents average of sum of
division), the results of the two equations may be slightly different. In our case, both
functions allow us to deduce the same best compilation parameter.

p′(paramA, paramB, prog) =

∑
proc=1,2,4,8,16,32,64,128,256

(
mindh(paramA, prog, proc)
mindh(paramB, prog, proc)

)
9

[s] (6)

For further research, the compilation optimization options were selected as shown
in Table 6. We shall also note that the best selected flags are also best when considered
individually for either Docker or Host values.

Table 6. The best compilation flag for each program.

Program The Best Compilation Flag

DAC O2

MasterSlave O3_native

SPMD O3_native

In Figure 13 and Table 7 we compare speed-ups of all programs for Docker and Host
with the selected compilation options. Scaling the application for Docker and Host is
very similar. We can note that, the best speed-up for DAC and Host is reached using

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 24 of 35

256 processes (oversubscription) although it is very close to 64 and 128 process configu-
rations, for DAC and Docker it is best for 64 processes; for MasterSlave, using 64 pro-
cesses; and SPMD—128 processes and falling afterwards. Speed-up was calculated using
function (7).

speedup(mach, param, prog, proc) =
medianExecutionTime(mach, param, prog, 1)

medianExecutionTime(mach, param, prog, proc)
(7)

 1

 2
 3
 4
 6
 8

 10

 20
 30
 40
 60

1 2 4 8 16 32 64 128 256

Fa
ct

or
 o

f
sp

ee
du

p

Number of computing processes

Docker
Host

O2 DAC

 1

 2
 3
 4
 6
 8

 10

 20
 30
 40
 60

1 2 4 8 16 32 64 128 256

Fa
ct

or
 o

f
sp

ee
du

p

Number of computing processes

Docker
Host

O3_native MasterSlave

 1

 2
 3
 4
 6
 8

 10

 20
 30
 40
 60

1 2 4 8 16 32 64 128 256

Fa
ct

or
 o

f
sp

ee
du

p

Number of computing processes

Docker
Host

O3_native SPMD

Figure 13. Speed-up execution time of programs for computing processes.

Table 7. Speed-up execution time of programs for computing processes.

Program
Runtime Speedup for Computing Processes [s]

Machine 1 2 4 8 16 32 64 128 256

DAC
Docker 1.00 1.95 3.81 7.55 14.94 28.71 51.08 47.65 48.65

Host 1.00 1.95 3.81 7.56 14.91 29.04 54.69 53.47 55.20

MasterSlave
Docker 1.00 1.95 3.81 7.53 14.85 28.47 48.67 45.60 37.80

Host 1.00 1.95 3.81 7.53 14.84 28.67 52.39 48.62 42.78

SPMD
Docker 1.00 1.96 3.83 7.49 14.11 27.51 50.50 60.91 21.66

Host 1.00 1.96 3.82 7.43 13.97 27.29 50.44 69.94 21.66

We shall note that we generally expect a decrease in execution time with an increasing
number of processes assuming these run on separate physical or logical cores in the system,
in our case 64 and 128 respectively, because such a scenario allows shortening the compu-
tational phase. This is possible, provided that the communication and synchronization

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 25 of 35

time do not generate too much overhead that could make the total execution time larger.
Generally, for the oversubscription scenario, in our case, 256 processes, we expect additional
times due to context switching although in some cases, additional processes (or threads)
could hide communication latency.

In the specific cases of our applications, we shall note various communication schemes
that affect the execution times and scalability. Speed-up numbers will be specific to par-
ticular applications as they depend mainly on the ratio of time spent on computations to
the time of communication. For master–slave, this will depend on the subrange size and
assumed accuracy of its integration, for geometric SPMD—on the number and complexity
of computations performed on a subdomain of a given size, for the divide-and-conquer
application—on the size of the initial vector, number of processes and consequently size
of a subvector assigned to a process in the leaf of the divide-and-conquer tree. On the
other hand, execution times and speed-ups are affected by the communication schemes in
these application paradigms and the possibility of parallel communication between pairs
of processes. It should be noted that generally, for a given input data size and increasing
number of processes, the ratio of computational time to the communication time decreases
because the communication time includes the constant component of start-up time [9].

For the master–slave code, we see the maximum speed-up using physical cores (64)
and because of the star master–slaves communication pattern in this case, the master process
might become a bottleneck for a larger number of processes. For the stencil computations
(geometric SPMD) and the 3D domain, each process communicates with a limited number
of neighbors which allows for parallel inter-process communication and obtaining highest
speed-up for 128 processes using all logical cores. For divide-and-conquer pairs of processes
operating at the same level of the divide-and-conquer tree, they can operate in parallel.
Here, we see similar speed-up values for 64, 128 and 256 processes. We should note that an
MPI implementation can optimize communication between processes running on one node
using shared memory, especially for divide-and-conquer and neighboring processes on the
same node that explains observed results.

Additionally, we observe that for all the applications and highest obtained speed-ups
we see a consistent difference in favor of the host versus Docker versions, i.e., 3.6 for
divide-and-conquer, 3.7 for master–slave and 9 for geometric SPMD.

Now, considering the preferred compilation flags, run times for each program on
Docker and on the Host can be compared. The results are shown in Table 8.

Table 8. Host and Docker comparison of median execution times.

(CP)
DAC MasterSlave SPMD

(A) (B) (C) (Sf) (A) (B) (C) (Sf) (A) (B) (C) (Sf)

1 0.85 D 0.16 1.0000 0.19 D 0.04 0.9996 9.71 H 0.41 1.0041

2 0.06 D 0.02 0.9986 0.01 H 0.00 1.0000 1.74 H 0.14 1.0014

4 0.28 D 0.20 1.0004 0.04 D 0.03 0.9997 0.01 H 0.00 1.0000

8 0.08 D 0.11 0.9995 0.07 D 0.10 0.9990 1.15 D 0.36 0.9964

16 0.13 D 0.37 1.0021 0.04 D 0.10 0.9990 1.03 D 0.61 0.9939

32 0.17 H 0.97 0.9888 0.13 H 0.65 1.0065 0.34 D 0.40 0.9960

64 0.66 H 6.90 0.9339 0.80 H 7.59 1.0759 0.14 H 0.30 1.0030

128 1.18 H 12.02 0.8913 0.74 H 6.58 1.0658 5.16 H 15.30 1.1530

256 1.26 H 13.29 0.8813 1.69 H 13.14 1.1314 0.45 H 0.41 1.0041

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 26 of 35

(CP) Computing processes

Argument param in functions (2) and (3) (d and h) means the best compilation parameter
for program (from Table 6). It is used to explain values in columns (A), (B), (C) and (Sf).

(A) Difference between execution time on Docker and Host with the selected
compilation flag

a(param, prog, proc) = |d(param, prog, proc)− h(param, prog, proc)|[s] (8)

(B) Faster runtime machine (D—Docker, H—Host).

b(param, prog, proc) =

{
D, if d(param, prog, proc) < h(param, prog, proc)
H, if d(param, prog, proc) > h(param, prog, proc)

(9)

(C) Answer to question: “How many percent the Docker is faster (if column (B) equals
D) or slower (if column (B) equals H) than Host”. For example—DAC program and
32 computing processes: Docker (because H is present in column (B)) is 0.97%
slower than Host. Values from this column are presented in Figure 14.

c(param, prog, proc) =
∣∣∣∣1− d(param, prog, proc)

h(param, prog, proc)

∣∣∣∣× 100% (10)

(Sf) Factor of speed-up indicator for Docker and Host.

S f (param, prog, proc) =
speedup(Docker, param, prog, proc)
speedup(Host, param, prog, proc)

(11)

As we can see for all the applications, up to 32 computing processes, it does not
practically matter whether these programs are run on the Host or Docker and differences
between machines ((C) column) are smaller than 1%. Using 64 computing processes
(highlighted) and more, all programs were executing faster on the Host.

For all applications using 64 computing processes and more, the percentage difference
(column (C)) between Docker and Host for DAC and MasterSlave becomes greater than
for a smaller number of processes (except SPMD for 256 computing processes—but this
case is already after a significant drop in performance so is not in the area of interest). We
put in bold the Docker overhead (in percent) for the number of processes for which the
given application obtained the shortest time. For such configurations, we see what we can
consider a Docker overhead of between 7.5% and 15.3%.

It can be noted that in [28], the authors concluded that for a artery CFD code case in a
Lenox cluster (4 nodes with 2× Intel Xeon E5-2697v3 and 1GbE network) and using Docker
for a total of 112 threads, the Docker overhead increased with an increasing number of
MPI ranks, i.e., it was close to bare metal for 8 × 14 (MPI ranks × threads per rank) and
16 × 7, but approximately 10% for 28 × 4 and 56 × 2 and even approximately 40% for the
112 × 1 case.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 27 of 35

 0
 1
 2

DAC MasterSlave SPMD

Va
lu

e
fr

om
 c

ol
um

n
(C

)
in

 T
ab

le
 8

fo

r
sp

ec
ifi

c
pr

og
ra

m
s

[%
]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

1 2 4 8 16 32 64 128 256

Number of computing processes

Va
lu

e
fr

om
 c

ol
um

n
(C

)
in

 T
ab

le
 8

fo

r
sp

ec
ifi

c
pr

og
ra

m
s

[%
]

Figure 14. Host and Docker comparison of execution times; orange points denote the overhead of
Docker while blue points correspond to minimally better Docker execution times.

Due to the possibility of a very easy change of the runtime environment using Docker
(as mentioned in Section 4.2), for the sake of performance evaluation of potential progress
regarding compilers and software development, a comparison of the execution times
using GCC 7.4.0 with OpenMPI 2.1.1 (hereinafter referred to as V7) and GCC 9.3.0 and
OpenMPI 3.1.1 (hereinafter referred to as V9) versions was made. In practical terms, though,
we would typically use newer stable versions of the compiler and software rather than
older ones since such are theoretically improved and maintained better. Table 9 shows
for which version of the compiler the compiled program ran faster, using Docker. If the
program compiled by the V7 compiler version was faster than using version V9 (for a given
configuration), then a respective cell contains V7, otherwise, it contains V9. The value in
parentheses denotes in percent how much faster the faster version of program was. For
example, the SPMD program compiled with the V9 version on Docker with 64 computing
processes performed 0.67% faster than the SPMD program compiled V7 version with the
same configuration (Docker machine with 64 computing processes).

Table 9. Better compiler version using Docker.

Computing Program

Processes DAC MasterSlave SPMD

1 V9 (17.26%) V9 (0.17%) V9 (0.98%)

2 V9 (17.00%) V9 (0.15%) V9 (1.00%)

4 V9 (16.98%) V9 (0.14%) V9 (0.90%)

8 V9 (16.85%) V9 (0.10%) V9 (1.14%)

16 V9 (16.67%) V7 (0.15%) V9 (1.04%)

32 V9 (15.89%) V7 (0.73%) V9 (0.94%)

64 V9 (14.26%) V7 (2.48%) V9 (0.67%)

Percentage differences of program median execution time between V7 and V9 for
MasterSlave and SPMD are very small. For MasterSlave, it is always below one percent
except for 64 computing processes (2.48%) and for SPMD, it is always about one percent
(0.67–1.14%). For the DAC program (-O2 flag compilation selected), percentage difference
between V7 and V9 for 1, 2, 4, 8.16 and 32 computing processes is about 17% in favor of V9.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 28 of 35

For 64 processes, the V9 version is approximately 14% faster. When using the -O3 flag for
the DAC program, differences between a program compiled with compilers of versions V7
and V9 are similar to those shown in Table 9 for MasterSlave and DAC.

6. Analysis Considering Hardware Counters

We have performed several measurements and extended the paper with results of
those and corresponding comments that include measurements of both:

1. Hardware counters referring to the CPU side measured with the perf tool. Se-
lected metrics:

(a) Cache misses—how often data in cache were unavailable or out of date
(prefetch requests included);

(b) Context switches—number of CPU context switches from one process or task
to another;

(c) Instructions—average number of instructions executed for each clock cycle;
(d) Task clock—CPU utilization during program execution.

2. Communication performance. For this test, we included results of the MPI com-
munication benchmark measuring point to point performance with contention, i.e.,
communicating pairs of processes (https://www.mcs.anl.gov/research/projects/
mpi/tutorial/mpiexmpl/src3/pingpong/C/mass/main.html, accessed on 22 July
2022) which we believe very much corresponds to our cases since in SPMD code pairs
of processes of neighboring subdomains exchange data in parallel in respective dimen-
sions, in divide-and-conquer pairs of processes exchange data in successive steps of
the divide-and-conquer tree (various numbers at various levels) and in master–slave,
we deal with master–slave exchanges (one at a time but MPI can buffer messages
from many slaves).

For the hardware counters, we see interesting results with various metrics better either
for the Docker or host cases, for the selected compilation flags. For DAC results presented in
Figure 15, cache misses and context switches are larger for host, task clock is slightly higher
or same for Docker, while instructions per cycle same or larger for host. For the master–
slave application and slave (i.e., performing majority of computations), the results shown
in Figure 16 cache misses are same for 128 processes, but larger for host up to 64 processes,
context switches larger for host, instructions per cycle larger for host for 32–128 processes
and task clock slightly lower for host for 32–128 processes. For SPMD results presented
in Figure 17, cache misses are very similar, marginally better for Docker, context switches
larger for host, instructions per cycle are larger for host for 64–128 processes, task clock very
similar for both cases. In general, we can conclude that instructions per cycle are higher
for host for larger numbers of processes, while cache misses and context switches either
similar or larger for host.

For the communication tests in Figure 18, we present results for various numbers of
processes, from 1 to 128 (without oversubscription) for selected data sizes which corre-
spond to our tested applications. Specifically for master–slave and divide-and-conquer—
processes exchange data corresponding to start and end of range to be integrated or
result—1–2 doubles; for geometric SPMD—processes exchange data of 2D walls with direct
neighbors processing neighboring subdomains. In this case, for instance, for 64 processes
and domain of 200 × 400 × 600 message sizes are 120–160 KB while for 128 processes and
the same domain size message sizes will be 60–120 KB. It should be noted that for the
same domain size and a smaller number of processes, sizes of messages will increase and
will be, e.g., 640–960 KB for four processes. Following these values, we present measured
bandwidths for the following data sizes: 16 B, 16 KB, 32 KB, 64 KB, 128 KB and 1 MB.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src3/pingpong/C/mass/main.html
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src3/pingpong/C/mass/main.html
http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 29 of 35

We have noted in the measurements that for messages of size smaller than 16–64 KB
measured host bandwidths are higher but then for larger message sizes and specifically
smaller number of processes Docker configurations exhibit slightly better values, apparently
due to internal mechanisms. For 16–64 KB messages and 128 processes bandwidths for host
can be better. We shall observe that these trends are in line with our observations, i.e., for
SPMD visibly better execution times for host for 128 processes, very similar for 64 and
marginally, but visibly worse for smaller (i.e., larger messages) and for master–slave and
divide-and-conquer practically same or better results for host (considering measurement
errors—slightly better results for Docker are smaller than 0.4% for O2 DAC and O3_native
master–slave). We should also note that with an increasing number of processes and same
input data size, ratio of communication vs. computational time generally increases and thus
larger observed differences for DAC and master–slave, otherwise showing very similar
results for smaller numbers of processes.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26
Docker

Host

Ca
ch

e
m

is
se

s
[%

]

Cache misses

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

2 4 8 16 32 64 128

Number of computing processes

Ca
ch

e
m

is
se

s
[%

]

2000
4000
6000
8000

10,000
12,000
14,000
16,000
18,000
20,000
22,000
24,000
26,000

Docker
Host

Co
nt

ex
t

sw
itc

he
s

Context switches

2000
4000
6000
8000

10,000
12,000
14,000
16,000
18,000
20,000
22,000
24,000
26,000

2 4 8 16 32 64 128

Number of computing processes

Co
nt

ex
t

sw
itc

he
s

 1

 1.5

 2

 2.5

Docker
Host

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Instructions

 1

 1.5

 2

 2.5

2 4 8 16 32 64 128

Number of computing processes

In
st

ru
ct

io
ns

 p
er

 c
yc

le

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

Docker
Host

Ta
sk

 c
lo

ck
 [

G
H

z]

Task clock

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

2 4 8 16 32 64 128

Number of computing processes

Ta
sk

 c
lo

ck
 [

G
H

z]

Figure 15. Hardware counters for DAC program with -O2 compilation parameter; boxplot nota-
tion: medians, Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as
potential outliers (+ for Docker, x for Host).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 30 of 35

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

Docker
Host

Ca
ch

e
m

is
se

s
[%

]

Cache misses

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

2 4 8 16 32 64 128

Number of computing processes

Ca
ch

e
m

is
se

s
[%

]

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000
Docker

Host

Co
nt

ex
t

sw
itc

he
s

Context switches

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

2 4 8 16 32 64 128

Number of computing processes

Co
nt

ex
t

sw
itc

he
s

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Docker
Host

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Instructions

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

2 4 8 16 32 64 128

Number of computing processes

In
st

ru
ct

io
ns

 p
er

 c
yc

le

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

Docker
Host

Ta
sk

 c
lo

ck
 [

G
H

z]

Task clock

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

2 4 8 16 32 64 128

Number of computing processes

Ta
sk

 c
lo

ck
 [

G
H

z]

Figure 16. Hardware counters for MasterSlave program with -O3 and -march=native compilation
parameters (slave node); boxplot notation: medians, Q1 and Q3, max(Q1−1.5IQR, minimum) and
min(Q3+1.5IQR, maximum) as well as potential outliers (+ for Docker, x for Host).

Communication latency between all nodes (peer-to-peer) was tested as well. Latency
measurement between each two nodes was performed 20 times (both initiated the connec-
tion 10 times) with the ping command and 64 bytes (with ICMP header) of data. The results
of these tests are presented in Figure 19, where the X axis shows latency in milliseconds,
while the Y axis shows how many times that latency occurred in all tests (the numbers
of tests for Docker and Host runtime machines were the same). Docker network latency
is about two times greater and less stable than for Host. The minimum, maximum and
median latency values are presented in Table 10.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 31 of 35

 36

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69
Docker

Host

Ca
ch

e
m

is
se

s
[%

]

Cache misses

 36

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69

2 4 8 16 32 64 128

Number of computing processes

Ca
ch

e
m

is
se

s
[%

]

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000
Docker

Host

Co
nt

ex
t

sw
itc

he
s

Context switches

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

2 4 8 16 32 64 128

Number of computing processes

Co
nt

ex
t

sw
itc

he
s

 0.7

 0.8

 0.9

 1

 1.1

Docker
Host

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Instructions

 0.7

 0.8

 0.9

 1

 1.1

2 4 8 16 32 64 128

Number of computing processes

In
st

ru
ct

io
ns

 p
er

 c
yc

le

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

Docker
Host

Ta
sk

 c
lo

ck
 [

G
H

z]

Task clock

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

2 4 8 16 32 64 128

Number of computing processes

Ta
sk

 c
lo

ck
 [

G
H

z]

Figure 17. Hardware counters for SPMD program with -O3 and -march=native compilation parameters;
boxplot notation: medians, Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as
well as potential outliers (+ for Docker, x for Host).

 0.2

 0.3

 0.4

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Docker
Host

Ba
nd

w
id

th
 [

M
B/

s]

16B

 0.2

 0.3

 0.4

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Number of computing processes
(processes per node)

Ba
nd

w
id

th
 [

M
B/

s]

16B

 10

 20

 30

 40

 50

 60

 70

 80

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Docker
Host

Ba
nd

w
id

th
 [

M
B/

s]

16KB

 10

 20

 30

 40

 50

 60

 70

 80

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Number of computing processes
(processes per node)

Ba
nd

w
id

th
 [

M
B/

s]

16KB

Figure 18. Cont.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 32 of 35

 10

 20

 30

 40

 50

 60

 70

 80

 90

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Docker
Host

Ba
nd

w
id

th
 [

M
B/

s]

32KB

 10

 20

 30

 40

 50

 60

 70

 80

 90

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Number of computing processes
(processes per node)

Ba
nd

w
id

th
 [

M
B/

s]

32KB

 10

 20

 30

 40

 50

 60

 70

 80

 90

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Docker
Host

Ba
nd

w
id

th
 [

M
B/

s]

64KB

 10

 20

 30

 40

 50

 60

 70

 80

 90

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Number of computing processes
(processes per node)

Ba
nd

w
id

th
 [

M
B/

s]

64KB

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Docker
Host

Ba
nd

w
id

th
 [

M
B/

s]

128KB

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Number of computing processes
(processes per node)

Ba
nd

w
id

th
 [

M
B/

s]

128KB

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Docker
Host

Ba
nd

w
id

th
 [

M
B/

s]

1MB

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

2(1) 4(2) 8(4) 16(4) 32(4) 64(4)128(8)

Number of computing processes
(processes per node)

Ba
nd

w
id

th
 [

M
B/

s]

1MB

Figure 18. Network bandwidth between nodes for selected size of data; boxplot notation: medians,
Q1 and Q3, max(Q1−1.5IQR, minimum) and min(Q3+1.5IQR, maximum) as well as potential outliers
(+ for Docker, x for Host).

Table 10. Minimum, maximum and median communication latency between nodes for Docker
and Host.

Runtime Latency [s]

Machine Min Max Median

Docker 0.258 0.656 0.419

Host 0.136 0.361 0.232D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 33 of 35

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
um

be
r

of
 o

cc
ur

re
nc

es

Latency [ms]

Docker
Host

Figure 19. Communication latency between nodes for Docker and Host.

7. Summary and Future Work

As the use of containerization brings many benefits for managing computing envi-
ronments, e.g., isolation, easy preparation and quick change of the runtime environment,
need for assessment of its performance and comparison to a non-virtualized environment
is of considerable importance. While many such comparisons have been performed in
the past, comparing VMs and containers, various container solutions, in this paper, we
investigated three applications representative of master–slave, geometric SPMD and divide-
and-conquer codes, and focused on investigation of impact of compilation optimization
flags and analysis of execution times and speed-ups for particular numbers of processes,
assessment of best configurations and comparison of Docker versus bare-metal times for
such preferred set-ups. We have concluded that the overhead of Docker versus bare-metal
for the aforementioned applications is 7.59%, 13.29% and 15.30%, respectively, and the best
compilation flags were -O3_native, -O3_native and -O2, giving shortest times on 64, 128
and 256 processes for the applications, respectively.

Furthermore, the applications tested in this work can be further tested in their opti-
mized versions, taking into account: multithreading with MPI [29], overlapping communi-
cation and computations for master–slave and geometric SPMD versions, as well as a dy-
namic partitioning scheme for the divide-and-conquer approach [9]. In the latter, dynamic
process spawning [29] can be used to handle imbalanced parts of the computational tree.

The Docker Swarm is one of the many container orchestration tools. The tests per-
formed did not show that it added a significant overhead for communication and computa-
tion time. In the future, it could be worth testing other tools for container orchestration in
the same way, e.g., the most popular Kubernetes.

Considering these small differences between execution time using V7 and V9 for
MasterSlave and SPMD and V9 version advantage for DAC together with the common
recommendations for using newer versions of the software, it may be very interesting to
verify if the GCC compiler and the OpenMPI library in the latest versions will give the
same results.

In our analysis, we considered standard process affinity and a multi-process MPI
application. In the future, it would be interesting to extend the testbed scenario to an
MPI+OpenMP parallel model in which MPI is used for internode communication while
multiple threads run on CPU(s) physical/logical cores.

An additional research topic would be consideration of energy related topic in the
process, specifically, power capping that has already been proven useful for optimizing

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 34 of 35

performance-energy related metrics [30]. In this context, the virtualization overhead could
be considered as well.

Author Contributions: Conceptualization, P.C., T.K.; methodology, P.C.; software, P.C., T.K.; vali-
dation, P.C., T.K.; formal analysis, P.C., T.K.; investigation, T.K.; resources, P.C.; data curation, T.K.;
writing—original draft preparation, P.C., T.K.; writing—review and editing, P.C., T.K.; visualization,
T.K.; supervision, P.C.; project administration, P.C.; funding acquisition, P.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/tomaszkononowicz/HPCDockerMPIPaper, ac-
cessed on 1 April 2022.

Acknowledgments: In this work, we used facilities located at the Dept. of Computer Architecture,
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Poland.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, D.; Peng, J.; Zhang, X.; You, Y.; Ning, B. Application features-based virtual machine deployment strategy in cloud

environment. Concurr. Comput. Pract. Exp. 2022, 34, e6691. [CrossRef]
2. Giallorenzo, S.; Mauro, J.; Poulsen, M.; Siroky, F. Virtualization Costs: Benchmarking Containers and Virtual Machines Against

Bare-Metal. SN Comput. Sci. 2021, 2, 404. [CrossRef]
3. Kałaska, R.; Czarnul, P. Investigation of Performance and Configuration of a Selected IoT System—Middleware Deployment

Benchmarking and Recommendations. Appl. Sci. 2022, 12, 5212. [CrossRef]
4. Aruna, K.; Pradeep, G. Measure The IoT Framework Using Docker With Fog Computing. Int. J. Sci. Technol. Res. 2020,

9, 5677–5682.
5. Ismail, B.I.; Mostajeran Goortani, E.; Ab Karim, M.B.; Ming Tat, W.; Setapa, S.; Luke, J.Y.; Hong Hoe, O. Evaluation of Docker

as Edge computing platform. In Proceedings of the 2015 IEEE Conference on Open Systems (ICOS), Melaka, ML, USA, 24–26
August 2015; pp. 130–135. [CrossRef]

6. Saha, P.; Beltre, A.; Uminski, P.; Govindaraju, M. Evaluation of Docker Containers for Scientific Workloads in the Cloud. In
Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, USA, 22–26 July 2018.

7. Shirinbab, S.; Lundberg, L.; Casalicchio, E. Performance evaluation of containers and virtual machines when running Cassandra
workload concurrently. Concurr. Comput. Pract. Exp. 2020, 32, e5693. [CrossRef]

8. Rezende Alles, G.; Carissimi, A.; Mello Schnorr, L. Assessing the Computation and Communication Overhead of Linux Containers
for HPC Applications. In Proceedings of the 2018 Symposium on High Performance Computing Systems (WSCAD), Sao Paulo,
Brazil, 1–3 October 2018; pp. 116–123. [CrossRef]

9. Czarnul, P. Parallel Programming for Modern High Performance Computing Systems; CRC Press: Boca Raton, FL, USA; Taylor &
Francis: Abingdon, UK, 2018; ISBN 9781138305953.

10. Chung, M.T.; Quang-Hung, N.; Nguyen, M.T.; Thoai, N. Using Docker in high performance computing applications. In
Proceedings of the 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE), Ha Long, Vietnam,
27–29 July 2016; pp. 52–57. [CrossRef]

11. Potdar, A.M.; D G, N.; Kengond, S.; Mulla, M.M. Performance Evaluation of Docker Container and Virtual Machine. Procedia
Comput. Sci. 2020, 171, 1419–1428. [CrossRef]

12. Benedicic, L.; Cruz, F.A.; Madonna, A.; Mariotti, K. Sarus: Highly Scalable Docker Containers for HPC Systems. In High
Performance Computing; Weiland, M., Juckeland, G., Alam, S., Jagode, H., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 46–60.

13. Kurtzer, G.; Sochat, V.; Bauer, M. Singularity: Scientific containers for mobility of compute. PLoS ONE 2017, 12, e0177459.
[CrossRef] [PubMed]

14. Gannon, D.; Sochat, V. Cloud Computing for Science and Engineering; Chapter Singularity: A Container System for HPC Applications;
MIT Press: Cambridge, MA, USA, 2017; ISBN 978-0262037242.

15. Layton, J. Singularity—A Container for HPC. Admin Magazine, 2021. Available online: https://www.admin-magazine.com/
HPC/Articles/Singularity-A-Container-for-HPC (accessed on 1 April 2022).

16. Di Tommaso, P.; Palumbo, E.; Chatzou, M.; Prieto, P.; Heuer, M.; Notredame, C. The impact of Docker containers on the
performance of genomic pipelines. PeerJ 2015, 3, e1273. [CrossRef] [PubMed]

17. Gerber, L. Containerization for HPC in the Cloud: Docker vs. Singularity. A Comparative Performance Benchmark; Umea Univrsitet:
Umea, Sweden, 2018.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://github.com/tomaszkononowicz/HPCDockerMPIPaper
http://doi.org/10.1002/cpe.6691
http://dx.doi.org/10.1007/s42979-021-00781-8
http://dx.doi.org/10.3390/app12105212
http://dx.doi.org/10.1109/ICOS.2015.7377291
http://dx.doi.org/10.1002/cpe.5693
http://dx.doi.org/10.1109/WSCAD.2018.00027
http://dx.doi.org/10.1109/CCE.2016.7562612
http://dx.doi.org/10.1016/j.procs.2020.04.152
http://dx.doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pubmed/28494014
https://www.admin-magazine.com/HPC/Articles/ Singularity-A-Container-for-HPC
https://www.admin-magazine.com/HPC/Articles/ Singularity-A-Container-for-HPC
http://dx.doi.org/10.7717/peerj.1273
http://www.ncbi.nlm.nih.gov/pubmed/26421241
http://mostwiedzy.pl

Appl. Sci. 2022, 12, 8305 35 of 35

18. Martin, J.P.; Kandasamy, A.; Chandrasekaran, K. Exploring the Support for High Performance Applications in the Container
Runtime Environment. Hum.-Centric Comput. Inf. Sci. 2018, 8, 1. [CrossRef]

19. Aoyama, K.; Watanabe, H.; Ohue, M.; Akiyama, Y. Multiple HPC Environments-Aware Container Image Configuration
Workflow for Large-Scale All-to-All Protein–Protein Docking Calculations. In Supercomputing Frontiers; Panda, D.K., Ed.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 23–39.

20. Noecker, C. Making Scientific Applications Portable: Software Containers and Package Managers, 2018. All College Thesis
Program, 2016–2019. Volume 46. Available online: https://digitalcommons.csbsju.edu/honors_thesis/46 (accessed on 1
April 2022).

21. NVIDIA. CUDA C++ Programming Guide. 2022. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html (accessed on 1 April 2022).

22. Czarnul, P.; Rościszewski, P.; Matuszek, M.; Szymański, J. Simulation of parallel similarity measure computations for large data
sets. In Proceedings of the 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, 24–26 June 2015;
pp. 472–477. [CrossRef]

23. Czarnul, P.; Ciereszko, A.; Frązak, M. Towards Efficient Parallel Image Processing on Cluster Grids Using GIMP. In Computational
Science-ICCS 2004; Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 451–458.

24. Singh, G.; Diamantopoulos, D.; Hagleitner, C.; Gómez-Luna, J.; Stuijk, S.; Mutlu, O.; Corporaal, H. NERO: A Near High-
Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling. In Proceedings of the 2020 30th International
Conference on Field-Programmable Logic and Applications, Gothenburg, Sweden, 31 August–4 September 2020.

25. Szustak, L.; Bratek, P. Performance portable parallel programming of heterogeneous stencils across shared-memory platforms
with modern Intel processors. Int. J. High Perform. Comput. Appl. 2019, 33, 534–553. [CrossRef]

26. Czarnul, P.; Grzeda, K. Parallel Simulations of Electrophysiological Phenomena in Myocardium on Large 32 and 64-bit Linux
Clusters. In Recent Advances in Parallel Virtual Machine and Message Passing Interface; Kranzlmüller, D., Kacsuk, P., Dongarra, J.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 234–241.

27. Soppelsa, F.; Kaewkasi, C. Native Docker Clustering with Swarm; Packt Publishing: Birmingham, UK, 2017.
28. Rudyy, O.; Garcia-Gasulla, M.; Mantovani, F.; Santiago, A.; Sirvent, R.; Vázquez, M. Containers in HPC: A Scalability and

Portability Study in Production Biological Simulations. In Proceedings of the 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 567–577. [CrossRef]

29. Gropp, W.; Hoefler, T.; Thakur, R.; Lusk, E. Using Advanced MPI: Modern Features of the Message-Passing Interface; The MIT Press:
Cambridge, MA, USA, 2014.

30. Krzywaniak, A.; Proficz, J.; Czarnul, P. Analyzing energy/performance trade-offs with power capping for parallel applications on
modern multi and many core processors. In Proceedings of the 2018 Federated Conference on Computer Science and Information
Systems, FedCSIS 2018, Poznań, Poland, 9–12 September 2018; Annals of Computer Science and Information Systems; Ganzha,
M., Maciaszek, L.A., Paprzycki, M., Eds.; 2018; Volume 15, pp. 339–346. [CrossRef]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1186/s13673-017-0124-3
https://digitalcommons.csbsju.edu/honors_thesis/46
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://dx.doi.org/10.1109/CYBConf.2015.7175980
http://dx.doi.org/10.1177/1094342019828153
http://dx.doi.org/10.1109/IPDPS.2019.00066
http://dx.doi.org/10.15439/2018F177
http://mostwiedzy.pl

	Introduction
	Related Work and Motivation
	Testbed Applications Representing Various Parallel Processing Paradigms
	Dynamic Master–Slave—Numerical Integration
	Geometric Single Program Multiple Data—Iterative Stencil Computations
	Divide-and-Conquer—Numerical Integration

	Testbed Environments—Physical and Virtualized
	Physical Environment—Host
	Virtual Environment—Docker

	Experiments
	Test Methodology and Parameters
	Results—Execution Times and Speed-Ups
	Analysis of the Results

	Analysis Considering Hardware Counters
	Summary and Future Work
	References

