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Abstract. Pipelined two-operand modular adder (TOMA)
is one of basic components used in digital signal process-
ing (DSP) systems that use the residue number system
(RNS). Such modular adders are used in binary/residue
and residue/binary converters, residue multipliers and
scalers as well as within residue processing channels. The
structure of pipelined TOMAs is usually obtained by in-
serting an appropriate number of pipeline register layers
within a nonpipelined TOMA structure. Hence the area of
pipelined TOMAs is determined by the nonpipelined TOMA
structure and by the total number of pipeline registers. In
this paper we propose a new pipelined TOMA, that has
a considerably smaller area and the attainable pipelining
frequency comparable with other known pipelined TOMA
structures. We perform comparisons of the area and pipe-
lining frequency with TOMAs based on ripple carry adder
(RCA), Hiasat TOMA and parallel-prefix adder (PPA)
using the data from the very large scale of integration
(VLSI) standard cell library.
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1. Introduction

Modular addition plays an important role in the im-
plementation of digital signal processing systems that use
the residue number system [1-4] as well as its derivatives
like the quadratic residue number system (QRNS) [5] and
modified quadratic residue number system (MQRNS) [6]
for processing of complex signals. The RNS is a non-
weighted integer number system that is determined by its
base B={m,, m,, ..., m,} being the set of positive pairwise
prime integers m; , i = 1, 2,.., n. Each integer X € Z,

M= H” m and can be represented as X<>(x|,x,...,X,) =
i=

:(‘X‘m, Jx|o. X\mn) with x; € Z,, . This mapping is the

‘mz

bijection and for X, Y € Z), and for x;,y;, € Z,, , we have
z; = |xi ® J’i|m, ,where ® denotes addition, subtraction or

multiplication.
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The reverse conversion from the RNS to a weighted
system can be performed using the Chinese remainder
theorem (CRT) [1], [2] or the mixed-radix system (MRS)
[1], [2]. The main advantage of the RNS comes from the
fact that addition, subtraction and multiplication are carry-
free and can be performed without carries between indi-
vidual positions of the number. The principal advantage of
the RNS with respect to the high-speed DSP is due to the
replacement of large multipliers that limit the pipelining
frequency, by small multipliers modulo m;. If their binary
size [ = |—(10g2m,-)—|, where [e] denotes rounding off to
an integer, does not exceed six bits, multiplications by
a constant can be performed by look-up with small ROMs
or using combinatorial networks. General multiplications
are also easier to perform because their standard realiza-
tions are small or segmentation of operands can be used for
the combinatorial realization. It is worth mentioning that
moduli with / <7 may provide for the dynamic ranges over
90 bits [7]. The additional advantage of the RNS is the
possibility of reducing power dissipation in CMOS circuits
which is due to the lower switching activity and reduction
of supply voltages [9]. The RNS has found numerous
applications in the DSP, for example, in FIR filters [8-11],
FFT processors [12], digital downconversion [13] and
image processing [14], [15].

Generally TOMAs can be divided into two main
categories determined by the type of the modulus. TOMAs
for moduli akin to 2" represent the first category and those
for generic moduli the other. There are several works in the
literature that consider the TOMA design.

Banerji [16] presented a look-up approach, Agrawal
and Rao [17] proposed a TOMA for moduli of the form
(2"+ 1) based on binary adders. Soderstrand [18] intro-
duced a hybrid approach based on look-up table along with
the binary adder. Bayoumi and Jullien [19] described
TOMAs using the table approach and binary adders ap-
proach. Dugdale [20] demonstrated an implementation of
TOMAs that used binary adders, Piestrak [21] proposed
a TOMA based on the carry-save adder (CSA) and two bi-
nary adders. Zimmermann [22] introduced modulo (2" £ 1)
adders based on parallel prefix-architecture (PPA). Hiasat
[23] proposed a TOMA with the reduced area based on the
carry-look-ahead (CLA) adder. Also a novel delay-power-
area-efficient approach to the TOMA design was given by
Patel et al. [24]. Their TOMA structure was based on the
cascaded connection of the modified carry-save adder
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(CSA) and reduced carry-propagate adder (CPA). The used
CPA designs included ELM [25], Kogge-Stone [26] and
Ladner Fischer [27] PPA.

In this paper we propose a new TOMA based on
a modified CLA adder. This TOMA has the smaller area
than other considered TOMAs and allows to derive a new
pipelined TOMA that is better than other known pipelined
TOMASs in terms of the area and the number of stages of
pipeline registers. We shall show the structure of the new
pipelined TOMA and, for comparison, TOMAs based on
the RCA, PPA in the Brent-Kung form [28] and Hiasat
TOMA [23]. Comparisons are made using the data from
the VLSI standard cell library. We shall compare structures
of individual TOMAs in terms of area, delay and pipelin-
ing frequency with the use of the additive method. The
method uses summation of areas of individual components
expressed in gate equivalents (GE), where 1 GE is the area
of the NAND with the fan-out=1 for the given standard
cell library. The propagation delay of an individual element
is taken as the worst case delay for all possible inputs. The
analysis relies upon the established 130 nm Samsung stan-
dard cell library STDH150 [29]. Calculations of areas and
delays of individual components are practically technology
independent and they can be scaled down for VLSI tech-
nologies such as 28 nm or 22 nm. Therefore we may there-
fore suppose that for comparison of individual digital
structures, the assumed technology will give sufficient and
dependable information. The paper has the following
structure: in Sec. 2 we review the basic TOMA structures,
in Sec.3 we consider the TOMA-RCA, and in Sec. 4
Hiasat TOMA, in Sec. 5 we present the TOMA based on
the PPA adder and finally in Sec. 6 a new TOMA. In each
section we analyze a nonpipelined and pipelined form.

2. Basic TOMA Structures Based on
Binary Adders

In this section we shall shortly describe the basic
known TOMA structures that use exclusively binary adders
in series and which therefore may be the most suitable for
transformation to the pipelined form and not those that use
two parallel adders as in [21]. Two-operand modular addi-
tion for small m, ﬁog m—| <6 can be implemented by using

the ROM (22'(1024’ﬂ x[logm |), but such approach remarka-
bly reduces the attainable pipelining frequency.
The TOMA computes 7, =|X +Y \m , where r,, is the

least nonnegative remainder from the division X + Y by the

modulus m. Assuming Z = 2leml _ iy | the computation

can be also expressed as

e 1 X +Y +Z 220 19)
otherwise

X+Y+2Z
=
X+Y

In Fig. 1 to 3 three basic TOMA structures are shown
Bayoumi-Jullien, Hiasat, and Piestrak.

X Y
A X+ adder |
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carry B

carry
Im = X+Y|m

Fig. 1. Bayoumi-Jullien TOMA [19].
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Fig.2. Hiasat TOMA [23].
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Fig. 3. Piestrak TOMA [21].

We shall shortly analyze the operation of the
Bayoumi- Jullien TOMA (Fig. 1) because this structure
will be the basis for the design of selected TOMAs. The
binary adder in the first stage of this TOMA computes
X + Y, whereas the second adder X+ Y — m. The output of
the TOMA is selected using carry = carry4A V carryB. For
X+Y<m, carry=0 and r,=X+Y, whereas for
X+Y>m,carry=1 andr,=X+Y—m.

3. TOMA-RCA

By way of introduction we shall consider the realiza-
tion of the Bayoumi-Jullien TOMA based on the RCA. In
order to obtain a pipelined structure, layers of pipeline
registers consisting of flip-flops (FFs) have to be inserted
between individual adders as shown in Fig. 5.
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Fig. 4. Bayoumi-Jullien TOMA based on the RCA.
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Fig. 5. Pipelined TOMA based on Bayoumi-Jullien TOMA
and the RCAs.

In the following we shall analyze the area of the
TOMA-RCA expressed in GE, the delay and the maximum
attainable pipelining frequency. The area will be estimated
using the areas of the individual components from
STDH150, the delay for a nonpipelined structure will be
evaluated by using the maximum delays for the individual
components. In order to estimate the pipelining frequency
a structure is divided into balanced layers with respect to
the delay and the maximum pipelining frequency is

obtained as the inverse of the sum of the delay of the
slowest layer and the FF delay.

A. Nonpipelined 5-bit TOMA-RCA area

This area of 5-bit TOMA-RCA can be expressed in
the following manner:

A —

TOMA_RCA™ - HAd2+4'A
+AOR2d1 +AN1D6+5 : AMXZdl .

FAd2+AHAdI+4 : AFAdI

()

The indices of the individual components come from
STDH150. The data of individual components is given in
Appendix A. After inserting these data into (1) we obtain
A =98.68GE . The area given by (1) does not de-

pend upon the form the of the two’s complement system
(TCS) representation of —m, m =(1,...,m,,n,,m,,m,,mm,) -

TOMA RCA

The particular form of this representation allows to reduce
the area for the given modulus. For example, if m;= 0, the
HA reduces to single connection and for m;=1 to one
connection and to one inverter. For the FA and m,;= 0, we
have one XOR gate and a single AND gate, and for m,;= 1
one OR gate and exclusive NOR. For m=29 and
m=(1,..,0,0,0,L1), we obtain 4, .. =81.68GE .

B. Nonpipelined 5-bit TOMA-RCA delay

We shall estimate the delay of the structure of Fig. 4
taking into consideration individual delays of signals inside
individual HAs and FAs.

The delay of the 5-bit TOMA-RCA can be expressed
as

Lroma—rea = max(t&, atsz‘ ,l‘naX(tCS at(,‘s N +toraar +yaar s (2
The delay fors, and cs bits can be calculated as

t, =max(l00 acortiaaz seo) +3 L cico + traaz ciss

le, = maX(tHAdzfAco atHAJaco) +4- traa2_cico-
In order to compute c'5 , we shall first calculate 7

and 7., i=1, 2, 3, 4. We have

i

I, = max(tHAdzfACO’tHAdszCO)’ (3a)

tc,. = tcH + tFAdZ_C]CO »1=2,3,4,5. (3b)
Consequently

l, = max(tHAdziASWtHAdZiBS )"‘ Lhaar_sco? (4a)

tc; = max(tq e as +tFAd27BCO’tC; 1 +tFAd17CICO)’

i=2,3,4,5, (4b)

and ¢, (4¢)

= tc;) Flraa cs-
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Example 1. Computation of 5-bit TOMA-RCA delay
for components from the STDH150.

We shall first compute 7, and 7, as
t,, =max(0.092ns,0.074ns)+3-0.089 ns+0.150ns =
=0.509ns,
t,, =max(0.092ns,0.074ns) +4-0.089ns =0.448ns.

Before we can compute c¢5, we have to determine ¢; ,
i=1,2,3,4. We have

7, =max(0.092 ns,0.074 ns) = 0.092 ns ,

t, =0.181ns,
t, =0.270ns,
t, =0359ns.

Subsequently we obtain
t, =max(0.092ns,0.074ns)+0.055ns = 0.147 ns,

0.092ns+0.102ns+0.152ns,0.147 ns + 0.083ns)
0.346ns,0.230ns) = 0.346ns,

max
(

= max

max (0.181ns+0.102ns+ 0.143ns,0.346 ns + 0.083ns)

=max (0.426ns,0.429 ns) = 0.429 ns,

(
(
t, =max (0.270ns +0.102ns +0.143ns,0.429 ns +0.083ns)
=max (0.515ns,0.512ns) = 0.429ns,

(

t =max(0.359ns+0.102ns +0.143ns,0.515ns + 0.083ns)
= max (0.604 ns,0.598ns) = 0.604 ns,
t, =0.515n8+0.095n8 = 0.601ns.

Finally, we may determine the TOMA-RCA delay as
1M = max(0.509 ns,0.601 ns,0.604 ns +0.065 ns)
+0.078 ns =0.747 ns.

C. The area of pipelined 5-bit TOMA-RCA

In Fig. 5 a pipelined form of the RCA-TOMA is pre-
sented. Six flip-flops stages are used with 66 flip-flops.
The area is the sum of the nonpipelined 5-bit TOMA-RCA
area and the area of pipeline registers. In this case these
registers require n,=66 FFs. Thus the area can be
expressed as

ATOMA_RCA_ p ATOMA_RCA tng Ay - (&)

As Agpp we shall use the area of the flip-flop FD1Q, 4pio
from STDHI150. For the structure from Fig. 5 we receive
ATOMA-RCA[) = 4729 GE

D. Pipelined 5-bit RCA-TOMA pipelining rate

In order to design a pipelined structure of a TOMA,
we have to decompose its nonpipelined structure into

a certain number of layers and place pipeline registers be-
tween them. The decomposition is, to certain extent, arbi-
trary. The lower limit of the number of layers is two and
the upper limit is determined by a delay of the component
that we treat as indivisible. The minimum pipelining rate is
approximately the sum of the delay of the layer with the
maximum delay and the delay of the pipeline register. In
this case we have assumed that after each FA or HA
aregister layer is placed and the OR gate and the MUXs
are in the same layer. Hence we may evaluate the
maximum delay of the layer as

TOMA _RCA

Iip =max( 415 oraan +tMX2dl)+tFDIQ (6

where 7, is the maximum delay of the flip-flop.

Using the data from the STDH150, we may evaluate
a theoretical maximum pipelining frequency as

for s = 1/(max(0.143 ns, 0.065 ns +0.078 ns)
+0.094ns) =1/0.237 ns =4.22 GHz.

4. Hiasat TOMA

In the following we shall examine the results of trans-
forming the Hiasat TOMA which requires the smallest
hardware amount among known TOMAs. This TOMA
consists of the serial connection of five units: the sum-and-
carry (SAC), the carry propagate and generate (CPG), CLA
for coyr, multiplexer (MUX), CLA and Summation
(CLAS). The SAC is composed of HAs and HALs (the
modified HAs in [23]). The SAC performs

5, =x,9y, @z, 7
Cng =X Vi X2+ Y25 ®)

for the individual bits of X + Y, and X + Y — m, with the
assumption that TCS representation of —m without the sign

bit is (2, ;,...,Z,) with n = 5. Regarding that z; = 0 or
z;=1, the HAL is obtained that implements
A,=x®y,, (9a)
A4 =x®y,, (9b)
B, =x-y (9¢)
B, =x+y. (9d)
As (z,_y,...,Z,) may have w bits for which z; = 0 and

n —w bits for which z;= 1. Hence the SAC has w HAs and
n—w HAL cells. The CFG computes the carry generate
and carry propagate vectors as in the standard CLA

P =4®B;, G =4, B and p;=4®B,, g;=4;B;.
This unit has at most 2k — 2 HAs. In the CLAS p; and g;

are used to compute coyr , that controls the selection of
X+ Yor X+ Y- m. Regarding that ¢y= 0, go=0, coyr can
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be computed for the five-bit Hiasat adder as
Cour =Bs+ 8483 Pat8 Py Pyt &Py B-B.(10)
The following stage, MUX selects using coyr the
carry‘s and generate’s p, =p; or p,=F and g,=g; or
g =G;,i=0,1,.,4

The final stage, the five-bit CLA adder computes the
carries

1 =go, (11)
Cr=g1+8&0"P1> (12)
c3=gy+8g1"P2+8&0 P1P2> (13)

C4=g3+82 P3+EI P2 Py Lo PPy p3 (14)
In the next step the sum bits are calculated as
s;=¢;®p;,i=0,1,2,3,4. (15)
First we shall determine the area for components of
the Hiasat five-bit TOMA and then the area for m = 29.
A. 5-bit Hiasat TOMA area

The area of the five-bit Hiasat TOMA can be
computed as follows

= ASACj + ACFGj
+ A + A4

ATOMAiHiasat

(16)

CLAS 5°

+4

CLA_Cout 5 MUX 5

The areas of the individual blocks from (16) can be
expressed as:

ASAQS =2 Ay T Apaar T Apar a7)

with
AHAL = AORZd] +AAND2d1 + AXOR2d1 +A1Vd1 N (18)

In general, the area of the CFG_5 can be expressed as

ACFG; =5- AHAd2 + AHAdl > (19)

ACLA7014t75 = AANDZdl + AAND3d1 +AAND4d1 + (20)

Aorsar T Awipe>
AMUX; =Ayon T Axoar T3 Ayaar- 21

The CLAS block consists of the five-bit Propagate-
Generate Unit (PGU_5), Carry-Generate Unit (CGU _5)
and Summation Unit (SU_5). Its hardware amount can be
estimated as

ACLAS; = ACGU75 + ASU75 > (22)
with the fan-outs 1, 3, 3, 4, 2. We get

Acerr s = Appan + Aogos + 4 +

CGU_5 AND2d1 OR2d1 AND2d2 , (23)
AAND3d1 + A0R3d1
and Agy s =5Ayopoa =150 GE . (24)

Example 2. Area of the five-bit Hiasat TOMA for
m=29.

The TCS representation of (— m) is equal to 100011,
hence w =3, and k—w =2 (the sign bit is excluded). Thus
we obtain

ASAC75 = 2‘AHAdl + AHAdZ + 214HAL
=2 467 GE + 567 GE + 734 GE
= 22350 GE,
Awg s =5+ Aypgs + Apyar =5-5.67GE + 4.67GE
=33.02GE,
Acty cou s =167 GE + 2 GE + 233 GE +
333 GE + 367 GE =13 GE,

Aoy s =3 GE + 333 GE + 3-633 GE=2532 GE,

Ay s =1.67GE+1.67GE+2GE +2GE +
2GE +1.67GE +2GE +2.33GE +3GE
— 18.34GE,

A s =5-3GE=15GE,
Acpss s =1834GE +15GE =3334GE.

In effect we obtain the area of the five-bit Hiasat
TOMA as

Arous s = 2235GE + 3302GE + 13GE +
2532GE + 3334GE =127.03GE.

B. 5-bit Hiasat TOMA delay

The Hiasat five-bit TOMA delay, ty can be expressed
as

Hiasat-TOMA __
tD - tHAL +tHAd2 +tAND4d] +t0R5d1 +tN[D6 +

tMX2d4 +tAND4d1 +t0R2a'l +t0R4dl +tXORdl =

0119ns + 0.092ns + 0.082ns + 0.094ns +
0.054ns + 0.092ns + 0.082ns + 0.090ns +
0.076ns + 0.090ns = 0.871ns,

with
tyar =tyoraar T Lyar = 0.090 ns+ 0.029 ns = 0119 ns -

C. Pipelined 5-bit Hiasat TOMA area

The area of the Hiasat pipelined 5-bit TOMA can be
expressed as

A =4 Ay (25)

TOMA _Hiasat _p TOMA_Hiasat + nh

where n;, is a number of flip-flops used in pipeline
registers. For example, for the structure from Fig. 6 we

obtain
A =127.03GE +64-5.67GE

=48991GE.

TOMA_Hiasat_p
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D. Pipelining frequency of pipelined 5-bit Hiasat TOMA

In Fig. 6, a pipelined form of the Hiasat TOMA is
presented. Five pipeline register stages are used with 58
flip-flops.

In this case we have adopted a decomposition into six
layers that leads to a balanced structure. In order to evalu-
ate the maximum pipelining frequency we shall calculate
delays of the adopted individual layers. The maximum
pipelining frequency will depend on the delay of the layer
with the maximum delay and the delay of the assumed
pipeline register. These layers have the following delays:

layer 1 5" : ¢, , = 0119ns,
layer 2 t5>" : ¢, . = 0.088ns,
layer 3 téiH: Lipsar +topsar = 01761,

layer 4 t5™: ¢, o0 + type =0132ns,

layer 5 t[L)S'H: Livpaar T Lxoraar = 017218 5

layer 6 té&H * Lxoraan +lopaar = 01661 -

L3,H

Using 5" as the maximum layer delay, we may

evaluate the maximum pipelining frequency as

ToMA Hissat _ 1 /(0,176 ns+0.094 ns) =1/0.27ns = 3.7GHz.

PF_max

5. PPA-based TOMA

As the next structure we shall consider the TOMA
based on a PPA. As the PPA the Brent-Kung (BK) [28]
adder has been selected. The Brent-Kung TOMA can be
relatively easy transformed to the pipelined form, moreover
the use of the Brent-Kung PPA allows one to simplify the
adder used in the second stage when one of addends is
a constant. The prefix operator ¢ is defined as

(g.0)=(g,p) o2’ p) (26)
where g=g +gp, (27a)
p=p-p- (27b)

The block that implements (27a-b) will be denoted as BK.
Subsequently we shall analyze the area and delay of the
TOMA based on two BK adders.

The area of the TOMA BK A4y, z can be

expressed as

A =Ag + Ay, (28)

TOMA_BK

where Apg, Apk.., represent the area of the BK adder and the
modified BK-m adder that subtracts m, respectively.

A. The area of BK adder

Apk can be calculated as

y4| |><A y3| |x@ Y2| |X2 y|| |x| Yol |X0

SAC
[Ha|  [HA]  [hA]
5 TA B A Bl |~ 8. AT A, 88 [Adao
[ [ P e J e J e P P e f e J e T
el N
— [Ha]  [na]

CPG

[L][L LL

CLA for Cout

CPA2

Fig. 6. Pipelined TOMA based on Hiasat TOMA.

ABK =4- AHAdZ + AHAdl + ABKO + ABKI +

(29)
Agr + Ay + + Ay + 4 Ayopoar-
The area of the first two terms is
4 : AHAdZ + AHAdl = 2599 GE . (30)

After transforming the logic functions used for the realiza-
tion of individual adders in (29), we receive the following
areas

ABKD = AIle + ANANDZdl + ANAND2d2 + AAND2d2:6 GE’ (3 1a)

ABKl =Ay, t ANANDZdl + ANAND2d1 + AANDZdl = (31b)
=4.67GE,

ABK2 = Ay + Avanprar + Ananprar =3 GE (31¢)

ABK4 = Ay + Avivprar T Avavprar T Aanprar = (31d)
=6 GE,

Apg, = Apy, =3 GE. (3le)

Using (29), (30) and (31a-¢) we obtain
Ay =62.02 GE. (319
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B. The delay of BK adder
The BK adder delay can be expressed as

Loy =lyp t max(tBKU’tBKl )+ (32)

maX(IBKZ , tBK_;) gk, T xoraan

where

Upk, =2lyanprar> tBKI =lyavprar T vanpzaz » tBKZ :tBK, >

[BK3 :[BK1 > bgg, =lpgg, -

Using the data from the STDHI150, we have

lpk,=0.074 ns and 75 =0.068 ns.

Finally we obtain

tpe =0.092 ns +0.074 ns +0.068 ns +0.074 ns +0.09 ns
=0.398 ns.

C. The area of BK-m adder
The form of the first layer of the BK-m adder depends

on the TCS representation of — m, m . We shall analyze the
prefix operator computation for a pair of bits (71, , ;1 ).

(27a-b) can be expressed as

i = Siat Mgy + 81+ (8 @iy), (33a)

Pii = (841 ©@ iy ) (s; iy ). (33b)

For individual combinations of (m;, ;) we get

(M, m,)=(00) gz =0and pg=s;-s;1,
(i, )=(01) &m =S; Siy1 and  pg =s; -5,
(m, m,)=(0) 8z =S5; and pg =s; 541,
(A, ;)= (L1) & =Siy1 +5; -Siyy and pg =5y -5y

The HA’s become reduced, for we have g;=0, and
the XOR gate that computes p;, is reduced to the direct
connection, i.e. p;=s;. For m; =1, g;=s,, the XOR gate that
computes p; .becomes an inverter, i.e. p; =5;. The form of

g and py; influences the form of BKj and BK.

Next we shall analyze the BK-m adder for m =29 in
order to have a comparison with the adder presented by
Hiasat [23]. The TCS representation of m =29 has the
form 100011, then for HA,, go - connection, p, - inversion,
for HA, g, - connection, p, - inversion, for HA, g, = 0,
p>- connection, for HA; g3=0, p; - connection, for HA,4
g4= 0, p4- connection.

Moreover, regarding that m,=1 and m, =1, we may
transform BK,, to obtain BK_,, as

8Bk, = Si+1 TS " Sit1 (34a)

and P sk, = 5i"Sis1 = 8i + S s (34b)
and the A 8K, can be calculated as
Apg, = Awar + Aynprar + Aorzar + Avoraaz = (35)
=634GE
and the delay
e, =tyar T par T lora = 6

=0.05ns+0.105ns+0.111ns = 0.266 ns.

For BK, 7n,=0, ;=0 hence g;=0 and
P =Si " Siyl-
Assuming the direct realization we receive
A, = Aunp2ar (37)
gk, , =lanp2d1- (38)

For other blocks we have
ABKzfm = ABKZ ’ ABstm :ABK3 ’ AB]QFm :ABK4 : (39)
We finally receive for the BK-m adder

ABK—m = 2"41V1r12 +ABK0m +ABK1m +ABK2 +

, (40)
+ Ay + Apies + 44,0000 =32.34GE
and for TOMA for m = 29 based on BK adders
Arova s = Apx + Apgc = 41)

=59.99 GE +31.68 GE =91.67 GE.
The BK-m delay can be calculated as

Lok =i F o +MAX(Lper 0 lpis.,) + (42)

ZLBK4m + ZXORZ(II + tMXZdl'
Hence
t =0.03ns+0.15ns+0.07 ns +

BK-m
0.07 ns +0.09 ns +0.08 ns
=0.49 ns.

Finally we obtain

Lroma sk =1tgx +1px,, =0398 ns+0.490 ns =0.888 ns -

D. The area of the pipelined TOMA BK

This area can be evaluated as
ATOMAfBKﬁp = ABK + ABK m Tk AFF (43)

where npy is the number of flip-flops in pipeline registers.
For the structure from Fig.7 with npgy=51 and
AFF: AFDIQ: 5.67 GE , W€ get ATOMAfBKﬁp =380.84GE.
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Fig. 7. Pipelined TOMA based on Brent-Kung adder.

E. Pipelining frequency of pipelined TOMA BK:
layer 1

155K tiaas + g =0.092 ns +0.068 ns = 0.160 ns,

layer 2

L2,BK .
tD .

Lpks Flpga T lyoroar =

=0.068ns+0.074ns + 0.090 ns =0.232 ns.

layer 3

5%, e, =0.088 15 +0.074 ns = 0.162 ns,

layer 4

4,BK
I U tpes Tlpea =0.152 s,

layer5

L5.BK _ _
Iy =lyoraar tyips T byxoar = 0.222 ns.

Using the tf)z‘BK

as the maximum layer delay, we
receive the maximum pipelining frequency

TOMA_BK

TOMABK 1/ (1575 4 1,,0) = 1/(0.232 ns +0.094 ns)
=1/0.326 ns = 3.06 GHz.
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6. New Five-bit TOMA

In this section we shall show a new TOMA structure
and its pipelined form that requires smaller area than other
TOMA structures. The TOMA is configured as a serial
connection X + Y adder and X + Y —m adder that are de-
signed in such a manner that leads to a substantial simplifi-
cation and thus to a smaller delay or a smaller number of
pipeline levels. Both adders are modifications of the stan-
dard CLA adder. In the first stage of the proposed structure
the propagate's and generate's and transfer functions [30]
t;=a;+ b; are used. The first three carries ¢, ¢, and c; are
computed simultaneously, and c¢; is used to generate cy4
and cs.

Generally, the computation of the carry c¢; can be
expressed, assuming ¢, = 0, as

=g (44a)
c, =g +¢-t, (44b)
C,=g,+C, 1, (44c)
Cy =g +Cy 1y, (444d)
cs=g,+c, t,. (44¢)

In the above formulas instead of p;, the transfer
function #= a;+ b; is used, which is justified as follows

Cin =8 F¢ P> (45)

Cn=8 t¢ pt¢-g; :g1+ci'(gt+pf):g1+C,~‘fia(46)

with ti=a;+ bi, g = a,~b,- andp,- =a; @® b,’.
We may express ¢, and c; as the functions of g; and #

as
G, =g t¢ -1, 47

=818 L+& bl (48)
Consequently, we receive

Cy=8 t+¢t, (49)
and
Cs=8,+ 8l te 0. (50

In the adder realization the above equations are trans-
formed to the NAND form. The sum bits are generated
using s; = p;.1 @ ¢, 1, 2, 3, 4 with sy = p,. The second stage
of the TOMA implements the subtraction of —m making
use of  the TCS representation of -m,
m=(1,my,ms,my,my,ng) -

Regarding that the second operand of the X + Y —m
adder is m , we can write

¢, = Sy - ig (51a)

(51b)

Cy =8, -My + 58-S My +Sy-my-my,

C3:S2'7712 +S1'S2"%1+S0'S1'52"%0+

+S0‘S2'"70‘77”1++S1‘S2'n’7ll‘%2 (SIC)
+ 8o 8y Mg iy + Sg - M - My - 1y
04:S3'n~’i3+03'S3+C3‘%3, (Sld)
C5:S4‘%4+53'S4"%3+C3‘S3‘S4+C3'S4'ﬁ3+
(51e)

+ 8y My My +Cy Sy My +Cy -y - Ty

We may simplify the above equations by substituting
m values of the individual five-bit moduli. The results of
this simplification are given in Tab. 1.

m (4] Cy Cs Cy Cs

17 | 5o | sy+80 | sa+sy+s9 | s3+c3 | s,-(55+¢;)
9]0 s, 5y +5) sytey | s, (s, +¢y)
21 | so | sp+sg | Sy-(s,+8) | s3+es | s, (83 +¢;)
23 | 5o | s1-50 S9 818 sytey | s, (s, +¢)
25 | s | Sp+Sp | Sp+sp+sg §3:C3 C3°84°83"
27 | so | S1-So Sy + 5180 53-C3 C3-54°83"
29 | so | si+so | 8, -(s,+5,) §3-C3 C3+84°83"
31 | so | s1°5¢ Sy 8180 §3-C3 C3°84°83"

Tab. 1. Logical functions for realizations of the carries of
X+ Y —m adder.

In Fig. 8, the TOMA based on the new principle for
m =29 is depicted.

A. 5-bit new TOMA area

We shall analyze the area and delay of the new
TOMA for m=29.The area of the new TOMA can be
computed as

=Ayy + gy (52)

AT OMA _ New

The hardware amount of the X + Y adder can be
expressed as

A, =4 + A,i + ACZ + AE3 + AQ + ACS + A4y, (53)

HA-stage

where A is the area of the input summation stage

HA-stage
(HAs and ORs), 4, are the areas of circuits generating the
individual carries ¢;.

Subsequently we have

A =2 Ay +3 Ay + AApp = 2735 GE,

‘HA_stage

sz = Ay +2- Ayynprar =3 GE,

c

A, = Ay + 2 Ayinprar T Avavosan + Ayanpsa= 967 GE
A, = Ay +2- Ayynpray =3 GE,
Ac5 = Ay + Avinpran + 2Ayunpsa =467 GE,

Agy =5+ Ayopaan =15 GE -
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In effect, we receive
Ay, =5569 GE.
For the X + Y — m adder we have

AX+Y—m = Acz—m + Acrm + Azgrm + A + A

c5—m SU-m ?
where
Ac = 0 (direct connection),
-

A =Aopoy = 167 GE,

]

A, =Anprar =2 GE,

¢

C4

A = Aynp3a1 =2 GE,

05 —m
Asy—m = Aoraar + Anipe +5- Ayyoar = 2034 GE.
We receive Ay, y_,, =27.68 GE .

The total hardware amount is Ay, =110.06GE.

_New

B. 5-bit New TOMA delay
The delay of the new TOMA can be written as

Lroma New =Uxer Tlyiyom> (54)
where
Uiy Tl suge Tl +max(t, 2, )+max(t, ¢, )+ig, and
., i=1,2,.5, denote the individual carry generator
delays
L, = max(tHAdZ_ACO ’tHAdZ_BCO) 4
t, = Max(?ypaar>tvar) + Enanpaar
t, = Max(ly nprarsEvavpsars Lva) T Evanpsar »
L, = Max( yupaar>tvar) + Enanpaan

t, = Max( yupaar> Evavpsars tva) + Evanpsar»

tX+Y = tHAt/Z + tNANDSdl + tNANDSdZ + 2 ' tNANDZdl + tXORZdl 4

ty,y =0.092ns + 0.052ns + 0.044ns + 2-0.037ns + 0.09ns
=0.352ns

and for X + Y — m adder we have

Tyiyom = tcg +mMax(ogogr + e Exoraar) > where

tc; = tORZdl + tANDZdl + tANDSdl >

t =max(l,, .t )>

¢y _Cs

tX+Y—m = tNANDZdl + tNAND3d2 + tAND}dl + tXORZdl + tMXZdl ’

ty.y.n =0.037ns+0.044 ns +0.066 ns +
+0.09ns+0.078 ns =0.315ns,

Lrova new =0.35218+0.315n8=0.667 ns.

D. The area of the pipelined new TOMA

This area is expressed as

ATOMAiNewip =Ayy+ Ay gty A

where ny is the number of flip-flops in pipeline registers.
For the structure from Fig.8 with ny=30 and
AFF:AFD1Q:567GE , W€ get . ATOMA_New =280.82GE

E. Pipelining frequency of the pipelined new TOMA

For the individual layers in the pipelined structure of
the new TOMA, shown in Fig. 8, we have the following
delays:
layer 1:

LILN _ _
tD - tHAdl +2- tNAND}a’l =0.192ns,

layer 2:

DN _
I =2 tynpsar T txogaar = 0-194 18,

layer 3:

L3N _ _
I =lopoar T lanpoar T Lanpzar = 0.185ns,

layer 4:

ZLL)4’N = tyoroar + tups + huxaar = 0222 s

The design of the pipelined structure aimed at the
minimization of the number of pipeline stages while
preserving possibly high pipelining frequency. The
structure allows one to employ only three pipeline register
stages with 30 flip-flops with the maximum pipelining
frequency equal to

s TOMA —1/(0.222 ns +.094 ns) =1/0316 ns = 316 GHz.

In Tab. 2 the summary of the obtained TOMA
parameters is given.

TOMA- | TOMA- | TOMA- New
RCA BK Hiasat | TOMA I

Area [GE] 81.68 | 99.01 | 127.03 | 110.72
(nonpipelined)
Delay[ns] 0.747 0.888 0.886 0.667
Area x delay 61.01 87.64 112.55 73.41
Number of pipeline
layers 6 4 3 3
Number of FFs 66 58 64 30
Area [GE] 47290 | 380.84 | 489.91 | 280.82
(pipelined)
Pipelining frequency
max [GH7] 4.22 3.06 3.7 3.16

Tab. 2. TOMA parameters for m = 29.

It is seen that the area-delay product has the best
values for the TOMA-RCA and the new TOMA, moreover
the new TOMA requires the smallest area for the pipelined
structure but at the cost of the reduced maximum pipelin-
ing frequency. In general the new pipelined TOMA calls
for about 35% less area than the TOMA-BK, the best of
three other considered structures.
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S4=P's S3=P’s S2=P" S1=p’s So=P’o

] ]
wox] fwox] - fwox]  {wox] (o]

Zy 73 z 21 Zo
Fig. 8. New five-bit TOMA for m = 29.

7. Conclusions

The structures of pipelined two-operand modular
adders for five-bit moduli based on ripple carry-adder,
Brent-Kung adder and Hiasat adder have been presented
and analyzed with respect to the area, number of layers and
attainable pipelining frequency. Also a new structure of the
two-operand modular adder based on the modified carry-
look ahead adder has been proposed. It has been shown
that the new pipelined adder has the smallest number of
pipeline layers as well as the area smaller by about 35%
than the best of other considered structures.
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Appendix A
Area [GE] Delay [ns]
Aavpaan = 1.67 Lanp2a1=0.054
Aavprar = 2.00 Lanp2a2=0.055
Aavpzar =2.00 tanpiar = 0.066
Aanpraz =2.67 tavpiaz = 0.068
Aanpsat =2.33 tanpaa1=0.082
Aanpaar =2.67 Lanpaar=0.085
Aran=8.00 tran=0.143
AFAd2:9-00 tFAdZ:O. 150
Apan=4.67 117401=0.088
Aﬂ4d2:5.67 tHAdZ:O-OQZ

Ananpaa=1.00

Inanp2a1=0.037

Ananpra2=2.00

Inanp242=0.031

Ananpzan=1.67

Inanp3a1=0.052

Ananpiaz=3.00

Inanp3az=0.044

Ananpaan=2.00

tnvavpsan=0.067

Ananpsar=3.67

Inanpaaz=0.059

Anoraar =1.33 tnoraar= 0.050
Axorzar =2.00 tnoraaz= 0.040
Aoroar =1.67 toroa1=0.065
Aoroar = 2.00 toroax=0.069
Aorza1 =2.00 torza1=0.090
A0R3d2 =2.67 [()R3,/2:0.090
Aorsar =3.00 torsar=0.076
Aorsar =3.33 torasr=0.082
Aorsa1 =3.33 torsa1=0.094
Aorsar =3.67 torsax=0.105
Axoroai=3.00 txor2a1=0.090
Apya =1 tyar=0.029
Anips =3.67 tnine =0.054
AMXZdl =3.00 [MXZdl:O-078
Ay =3.33 tvar=0.076
AMX2d4 =4.33 Ivixoas = 0.092
Awpaar =6.33 tyraa=0.105
AFDIQ =5.67 tFDlQ SU = 0.094

elements.

Tab. 3. Hardware amount and time delays for STDH150 basic

Half-adder (HA) delays [ns]

Full-adder (FA) delays [ns]

traa_4co=0.054

traar_crco=0.083

tran_pco=0.055

trad1 4co=0.122

traa as= 0.088

traa1 co=0.143

thaa ps= 0.073

traal 45=0.121

traay 4c0=0.057

traat 5s=0.139

trady co=0.058

traa cico=0.089

thaar as= 0.092

traar 4co=0.130

traa ps= 0.074

tras2 8co=0.150

traar 45=0.129

traa 5s=0.150

Tab. 4. Individual delays between input and output nodes for
FAs and HAs (STDH150).
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