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Abstract— The aim of this work was to examine the potential 

of thermal imaging as a cost-effective tool for convenient, non-

intrusive remote monitoring of elderly people in different 

possible head orientations, without imposing specific behavior 

on users, e.g. looking toward the camera. Illumination and pose 

invariant head tracking is important for many medical 

applications as it can provide information, e.g. about vital signs, 

sensory experiences, injuries, wellbeing. In the performed 

experiments, we investigated the influence of different 

modifications of images (rotation, displacement of facial 

features, and displacement of facial quarters) on the prediction 

accuracy. Specifically, two models were tested on the set of 

collected low-resolution thermal images: Inception V3 

Convolutional Neural Network (CNN) and Hinton’s Capsule 

Network. The preliminary results confirm that the prediction 

ability of the model based on capsules can deal with different 

head orientations much better than CNN (for the 45º head 

rotation Capsule Network achieved ~100% accuracy while 

CNN only 9.5%).  

I. INTRODUCTION

In view of rapidly aging societies all over the world [1] 
and the incremental cost of health care as a proportion of the 
change in GNP [2], more and more home-based health care 
solutions have been considered as a new frontier in medical 
practice, e.g. monitoring of physiological parameters with 
computer vision module [3], self-diagnostics with smart 
glasses [4] or a web-based telemedicine system [5]. 
Numerous applications are focused on investigating changes 
that appear within a face, as it is an overly sensitive region 
that exposes a lot of information about vital signs [6], sensory 
experiences [7], injuries [8][9] or wellbeing [10]. Image 
processing help to eliminate the usage of additional sensors. 
Typically, breathing is measured with the means of chest-
belts [11], but it has been proved that thermal imaging can 
support analysis of breathing patterns as well by investigating 
temperature changes in the nostril area for e.g. emotions 
detection [12]. In this work, we would like to extend our 
research on remote respiratory rate evaluation presented in 
[6], by providing accurate algorithm for automatic face 
tracking that will work regardless of camera angle or body 

orientation, as our previous work was limited to manual 
selection of region of interest (ROI).  

Our study can also enable our remote medical diagnostic 
solutions. For example, apart from breathing rate, an 
important vital sign that can be calculated by processing 
images of the facial region is a pulse rate [13]. Face can be 
also analyzed for pain assessment [14] or paralysis grading 
[15]. Locating face coordinates is an important prerequisite to 
make these telemedicine systems fully automatic. Most of the 
existing solutions, though, are based on the assumption that a 
patient is keeping his head straight. Our daily routine requires 
to support other scenarios that do not impose specific 
behaviors on users, e.g. tilting head sideways, lying down, 
also considering poor lightning conditions.  

 Recent methods for face detection were mainly based on 
Convolutional Neural Networks (CNN), as they significantly 
outperform previous approaches mostly based on hand-
crafted features [16]. Li H. et al. [17] aimed at differentiating 
faces from the background by using a cascade architecture 
built on CNNs that evaluate low resolution images first to 
quickly eliminate non-facial regions. The rotational 
invariance was discussed in Deep Dense Face Detector [18]. 
The proposed detector uses CNN network to extract features 
and classify a face in a wide range of orientations. Deep 
models can also be utilized for facial landmark alignments to 
estimate the position of a face and address its variations [19]. 
Although the implementation of more advanced systems that 
make use of a computer vision became feasible due to 
advantages in deep learning, pose and poor lighting is still a 
standing problem for CNN [20] (see Fig. 1). Obviously, there 
are various pose estimation methods [21] but it increases 
computational complexity and usually additional sensors are 
required for high accuracy, e.g. RGB-D Sensor [22]. 
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Figure 1. Row 1st and 2nd: examples of cases that should be supported in 

telemedicine systems; row 3rd: examples of IR images corresponding to above 
scenarios chosen from the test set; accuracy for the proposed approach a) 

100%; b) 78%; c) 99%; CNN a) 9%; b) 20%; c) 84% 
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In our solution, we want to preserve a minimal cost of the 
system and make it as imperceptible as possible to provide a 
non-intrusive way for remote monitoring of people. 
Therefore, we propose to use a low-cost thermal camera 
module for thermal face detection and tracking to capture in a 
compact way the variability of vital signs (respiratory rate 
[6].) visible in the facial area. Thermal imaging proposed for 
this use case allows for eliminating lighting and privacy 
concerns. Because of the small camera size, it could be 
potentially embedded in a smart home infrastructure or 
wearable devices, e.g. eGlasses platform [23]. To be able to 
run our solution on resource-constrained devices, we want to 
make it as simple as possible and do not apply other image 
processing techniques for e.g. pose estimation, what will 
increase the requirement for memory footprint and 
computational resources.  

Our second contribution lays in the use of Capsule 
Networks [24] to reduce the influence of pose changes on the 
system accuracy. As discussed in [25] the lack of rotational 
invariance in CNN can cause the model to produce incorrect 
predictions. In our previous studies, we showed that detection 
can be performed by removing the final pooling operations 
and modifying the CNN network architecture during the 
inference [26]. However, in our previous work we assumed 
strictly defined conditions of data acquisition, where person 
is looking towards the camera. To deal with real life 
scenarios, the designed algorithm should be not sensitive to 
face orientations, what we want to address in this paper. The 
concept of Capsules proposed by Hinton et al. [24] uses 
dynamic routing to make the model rotationally invariant and 
spatially aware. This architecture has already been successful 
on RGB data (e.g. MNIST, CIFAR10 [25]), yet it has not 
been applied to thermal IR images.  

Additionally, we compare the reliability of the proposed 
approach with the core architecture used for classification –
Inception v3 [27]. Specifically, we test if a face can be 
accurately classified using CNN and Capsule Network from 
low-resolution thermal images in uncontrolled face detection 
problems, where face rotations can lead to significant 
changes in visual appearance and therefore degrade the 
robustness of the classificator.  

The rest of the paper is organized as follows: Section II 
demonstrates technical details of the proposed method 
applied on thermal images. Next, we summarize the 
experimental results in Section III. Finally, we discuss and 
compare of our new approach against existing solutions in 
Section IV and conclude the paper in Section V.  

II. METHODOLOGY

In this section, we present details of the algorithm and 
training process of the proposed thermal face classificator 
based on the Capsule Network architecture [24]. 
Additionally, we compare our approach with another network 
architecture (Inception [27]) that has been a core model used 
for the classification over past few years.  

In our experiment, we trained two models: Inception v3 
and Capsule Network on images with the face placed straight 
to ease the data collection process. Various modifications 
(face rotation and facial features displacement) were 
introduced later to test the accuracy of both solutions in 
different possible scenarios of telemedicine examinations. 

For data collection, the FLIR Lepton thermal camera 
module characterized by 14-bits dynamic range, size <1cm2 
and spatial resolution of 80x60 was used. Sequences of 
frames were captured for 26 healthy volunteers (age: 
26.8±8.1) in a laboratory room at an ambient temperature 23–
27 °C during 60s period (sampling frequency fs=12Hz) at a 
distance ~0.4-1m. From the acquired recordings, we 
extracted 3256 images of a face. Additionally, we collected 
thermal images of objects present in the laboratory room and 
other body parts, creating another 5 categories (mouse – 2855 
images, projector - 2968, keyboard - 3086, back of a head - 
3083, hand – 3083; see Fig. 2). Analyzing the collected set of 
faces images, we realized that a contrast of facial features 
was much lower than in the visible light images what made 
the interpretability of thermal images difficult. Therefore, we 
applied a pre-processing technique based on fitting the 
Gaussian distributions to histogram data and scaling pixels’ 
values representing the face area to the range of 0-255, as 
described in [26]. As a result, usable data previously 
represented by close values gained a higher contrast and it 
was easier for models to learn features, as their architecture is 
based on extracting high frequency components (edges, 
corners, etc.). The examples were divided into train, 
validation and tests sets (0.8:0.1:0.1).  

We started by training the Capsule Network with the 
collected dataset. This architecture was described in detail in 
[24]. Generally, it is based on the idea of dividing each layer 
in a model into ‘capsules’ that are small groups of neurons, 
where the input and output of the capsule is represented by a 
vector, not a scalar as in traditional neural networks. Initially, 
the output of the capsule i in layer n ( ) is sent to all 

capsules in layer n+1 ( ), where m represents number 
of capsules. For each of  the prediction vector ( ) 

is calculated by multiplying the output of  by the weight 

matrix. The  that produces the largest scalar product with 
the output of  is chosen ( ) and the top-down 
feedback is applied to increase the coupling coefficient ( ) 
for this capsule . It has been already demonstrated 
[24] that this mechanism known as iterative routing-by-
agreement is more effective than max-pooling used in CNN,
which takes into account only the most active feature. The
probability that the entity is present in the input is represented
by a length of output vector of capsule i ( ) defined as:

(1) 

where  is the total input to capsule i in layer n+1, 

defined as a sum over all  weighted by . As 
suggested in [24] =0.9, =0.1 and regularization 

parameter =0.5 was used for calculating a loss for class k: 

(1-  (2) 

where =1 if class k is present in an image and  is the 

output vector of capsule for class k in top layer t. The 

Figure 2. Examples of images from the collected dataset; from the left: face, 

keyboard, mouse, hand, projector, back of a head 
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network was trained using 1, 3, 4 and 7 routing iterations in 
each case for 50 epochs. 

With the same dataset, we trained Inception v3 network, 
which architecture is explained in details in [27] using 
transfer learning technique as described in [26] for 20000 
steps with learning rate set to 0.01. To examine and compare 
the tolerance of both networks for possible uncontrolled face 
detection problems, we introduced 5 modifications (Fig. 3) 
using 159 images for each case: M1: random displacement of 
facial features; M2: random displacement of image quarters; 
M3: rotation 90°; M4:  rotation 180°; M5: rotation 45°. The 
flow of the experiment procedure is presented in Fig. 4. 

III. RESULTS 

After training, the final accuracy of models was 
calculated on the test set (Table I). Then, 159 random images 
from the face class were selected and modified. Table II 
presents the percentage of images classified as a face in a 
given case. For each image classified to the face class in each 
scenario the probability that this image belongs to the ‘face’ 
category was also computed. Average of all calculated 
probabilities (± standard deviation) is presented in the bottom 
half of cells in the Table II. In each row of Table II we 
highlighted cells that correspond to the best results (the 
darker the better). Baseline (B) represents results for selected 
159 images of a face without modifications. Modification 1, 
2 are ‘negative’ cases: faces were distorted, so the number of 
samples classified as ‘face’ should be the smallest. 
Modification 3, 4, 5 are ‘positive’ cases: introduced rotations 
should not impact the number of proper predictions (number 
of samples classified as a face should be the highest).  

TABLE I.  ACCURACY OF THE TEST SET [%] 

Inception 
Capsule Network  

iter. rout. 1 iter. rout. 3 iter. rout. 4 iter. rout. 7 

98.91 99.92 99.85 99.88 99.66 

TABLE II.  PERCENTAGE OF IMAGES CLASSIFIED AS ‘FACE’ [%] AND 

THE AVG. PROBABILITY [%] OF BELONGING TO THIS CLASS (AVG ± STDEV) 

 Inception 
Capsule Network 

iter. rout. 1 iter. rout. 3 iter. rout. 4 iter. rout. 7 

B 
94.68 

96.04±7.79 

100 

91.20±1.35 
100 79.4±3.36 

100 

65.47±4.73 

100 

58.93±5.60 

M1 
87.34 

92.87±7.66 

99.28 

89.94±2.63 

99.36 

74.5±5.54 

99.36 

62.00±5.87 

100 

54.44±6.8 

M2 
48.10 

77.66±19.20 

54.43 

79.1±8.23 

46.84 

59.00±11.53 

48.03 

45.43±11.14 

56.32 

39.32±10.58 

M3 
20.25 

69.37±14.78 

78.48 

76.64±7.89 

67.72 

57.27±9.87 

 70.88 

42.92±12.08 

82.91 

38.55±9.66 

M4 
83.54  
85.79±14.32 

99.36 
86.80±4.10 

96.83 
67.92±7.90 

96.83 
54.64±9.29 

98.73 
47.97±9.86 

M5 
9.49 

63.25±9.41 

100 

83.42±3.35 

99.36 

56.67±6.82 

91.14 

43.08±7.44 

99.36 

45.71±6.76 

 

IV. DISCUSSION 

In our experiments, at first, we measured the performance 
achieved by the CNN and the Capsule Network in all tested 
configurations on a test set. Results show that both models 
achieve high classification accuracy for images where a 

person is looking towards the camera. It was also confirmed 
that the more iterations in the dynamic routing mechanism, 
the more probable that the network will overfit to the training 
set. We observed that with more iterations, the accuracy was 
decreasing.  

The goal of our study was to determine if a face can be 
accurately classified using CNN and Capsule Network from 
low-resolution thermal images in uncontrolled daily 
scenarios, where face rotations can lead to significant 
changes in visual appearance and therefore degrade the 
robustness of the classificator. As presented in Table II (M3, 
M4, and M5) the Capsule Network can deal with different 
face orientations much better than CNN. For all rotations, 
architecture based on capsules properly classified a face in 
much more images than deep neural network. For rotation 
90° the best results were achieved for the network trained 
using 7 iterations; for rotation 180° and 45° 1 iteration. CNN 
was able to distinguish a face in less than 10% of images 
rotated by 45° and ~20% of images rotated by 90°. 
Considering rotation invariance problems, the CNN 
performance could be potentially improved by training the 
network with augmented data using rotated images, what we 
want to explore in the future. Yet, taking into account the 
target platform, which include smart home devices, the setup 
time (e.g. training the model to recognize specific person) 
should be minimal, while bigger dataset would significantly 
increase the training time.  

In case, when a face was distorted (M1, M2) both 
networks produced average results. In modification based on 
facial features displacement (M1), images were classified as 
a face in more than 87% examples for CNN and 99% for 
Capsule Network. However, we should consider the low 
resolution of the collected images, what causes the features to 
be significantly blurred. In most cases, it was impossible to 
distinguish specific part of a face even by a human. This 
could have led to improper predictions. On the other hand, 
for modification based on displacement of image quarters, 
Capsule Network was slightly better than the CNN. 

    
  Figure 3. Introduced modifications; from the left: M1, M2, M3, M4, M5 

Figure 4. The flow of the experiment procedure 
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Over the past few years, CNNs have revolutionized many 
computer problems, increasing accuracy of image 
classification models beyond human capabilities. In our 
experiments, we compared the popular deep neural model 
with the Capsule Network. As already mentioned, reliable 
face tracking in various real-life scenarios enables many 
remote healthcare systems that can improve the quality of 
elderly people life and, more importantly, detect emergency 
situations, e.g. remote prediction of cardiovascular disease by 
analysis of thermal images of a face [8].  

V. CONCLUSION 

This work was focused on improving remote respiratory 
rate estimation study [6] by providing automatic, rotation 
invariant algorithm for face detection. The proposed method 
was analyzed on a variety of thermal face images modified to 
simulate possible real-life applications of telemedicine 
systems. According to preliminary results, the proposed 
capsule-based thermal face classification is able to handle the 
tested scenarios and accurately detect a face regardless of its 
orientation, what outperforms our previous thermal face 
solution based on CNN [26], where we assumed the strictly 
defined head pose during data acquisition. In addition, we 
proved that the examined model can be adapted to thermal 
imagery and achieve a high classification accuracy (99.92%). 
By providing single network for face classification in 
different scenarios, we eliminated the need for additional 
compensation techniques using landmarks or position 
annotations, what makes the proposed approach suitable for 
resource-constrained smart home devices. In future work, we 
want to perform more tests in a variety of experimental 
conditions to collect more diverse data. Also, we want to 
train models with augmented data including image rotations, 
to examine if it helps to improve CNN accuracy. 
 

 
REFERENCES 

[1] Kamiyama S., “The Super Aged Society Japan's Kaiteki Institute 

Studies How to Keep the Elderly Healthy and Active”, IEEE EMBS 

Pulse, 03/04 2014. 
[2] Villa, A., Bellomo, D. “Performance Evaluation of Local Healthcare 

Systems by Applying Industrial Management Methods” In Health 

Care Management (WHCM), IEEE Workshop 2010, pp. 1-5. 
[3] Mubarakov A., Zhengis Y., Kho Y. H., “Assistive Healthcare Home 

Monitoring System for Elderly People” IEEE 10th International 
Conference on Application of Information and Communication 

Technologies (AICT), Baku, 2016, pp. 1-5. 

[4] Bujnowski A., Ruminski J., Przystup P., Czuszynski K., Kocejko T., 
“Self-Diagnostics Using Smart Glasses - Preliminary Study” 9th 

International Conference on Human System Interactions (HSI), 

Portsmouth, 2016, pp. 511-517. 
[5] Lee S.J., Kim M. H., “KoMIPS: A Web-Based Medical Image 

Processing System for Telemedicine Applications” TENCON '02. 

Proc. IEEE Region 10 Conference on Computers, Communications, 
Control and Power Engineering, 2002, pp. 569-572 vol.1. 

[6] Ruminski J., Kwasniewska A., “Evaluation of Respiration Rate Using 

Thermal Imaging in Mobile Conditions” Application of Infrared to 
Biomedical Sciences, pp. 311-346. Springer Singapore 2017. 

[7] Etehadtavakol M., Ng E. Y., 2017. “Potential of Thermography in 

Pain Diagnosing and Treatment Monitoring” In Application of 
Infrared to Biomedical Sciences, pp. 19-32. Springer, Singapore. 

[8] Thiruvengadam J, Anburajan M, Menaka M, Venkatraman B. 

“Potential of Thermal Imaging as a Tool for Prediction of 

 

 
Cardiovascular Disease”, Journal of Medical Physics/Association of 
Medical Physicists of India. 2014 Apr;39(2):98. 

[9] Lee Y, Paeng S, Farhadi H, Lee W, Kim S, Lee K, “The Effectiveness 

of Infrared Thermography in Patients with Whiplash Injury” Journal 
of Korean Neurosurgical Society, 57(4), pp.283-288, 2015. 

[10] Prendergast P.M. “Anatomy of the Face and Neck” Shiffman M., Di 

Giuseppe A.(eds) Cosmetic Surgery Springer, Berlin Heidelberg, 2013  
[11] Dong B., Biswas S., “Swallow Monitoring Through Apnea Detection 

in Breathing Signal” Annual International Conference of the IEEE 

EMBS, San Diego, CA, 2012, pp. 6341-6344. 
[12] Cho, Y., Bianchi-Berthouze, N., Julier, S.J., “DeepBreath: Deep 

Learning of Breathing Patterns for Automatic Stress Recognition 

using Low-Cost Thermal Imaging in Unconstrained Settings”, arXiv 
preprint arXiv:1708.06026. 

[13] Lewandowska, M., Rumiński, J., Kocejko, T. Nowak, J., “Measuring 

Pulse Rate with A Webcam a Non-Contact Method for Evaluating 
Cardiac Activity” In Computer Science and Information Systems 

(FedCSIS), 2011 Federated Conference on pp. 405-410. IEEE. 

[14] Bellantonio M., Haque M., Rodriguez P., Nasrollahi K., Telve T., 
Escalera S., Gonzalez J., Moeslund T., Rasti P., Anbarjafari G., 

“Spatio-temporal Pain Recognition in CNN-Based Super-Resolved 

Facial Images” in: Nasrollahi K. et al. (eds) Video Analytics. Face and 
Facial Expression Recognition and Audience Measurement. FFER 

2016, VAAM 2016. Lecture Notes in Computer Science, vol. 10165. 

Springer, Cham, 2017. 
[15] He S., Soraghan J.J., O'Reilly B.F., “Objective Grading of Facial 

Paralysis Using Local Binary Patterns in Video Processing” in:  30th 

Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, Vancouver, BC, pp. 4805-4808.  

[16] Viola, P., Jones, M., “Rapid Object Detection Using a Boosted 
Cascade of Simple Features.” In Computer Vision and Pattern 

Recognition, CVPR 2001. Proceedings of the 2001 IEEE Computer 

Society Conference on vol. 1, pp. I-I. IEEE. 
[17] Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G., “A Convolutional Neural 

Network Cascade for Face Detection” In Proc.of the IEEE Conference 

on Computer Vision and Pattern Recognition pp. 5325-5334 
[18] Farfade, S.S., Saberian, M.J., Li, L.J., “Multi-View Face Detection 

Using Deep Convolutional Neural Networks”, In Proceedings of the 

5th ACM on International Conference on Multimedia Retrieval pp. 
643-650, ACM, 2015. 

[19] Sun, Y., Wang, X., Tang, X., “Deep Convolutional Network Cascade 

for Facial Point Detection” in Computer Vision and Pattern 
Recognition (CVPR), 2013 IEEE Conference on pp. 3476-3483. 

[20] Cheng G., Zhou P., Han J., “Learning Rotation-Invariant 

Convolutional Neural Networks for Object Detection in VHR Optical 
Remote Sensing Images” in IEEE Transactions on Geoscience and 

Remote Sensing, Dec. 2016, vol. 54, no. 12, pp. 7405-7415. 

[21] Breitenstein M. D., Kuettel D., Weise T., Van Gool L., Pfister H. 
“Real-Time Face Pose Estimation from Single Range 

Images” Computer Vision and Pattern Recognition, CVPR 2008. 

IEEE Conference on. IEEE, 2008. 
[22] Ghiass, R. S., Arandjelović, O., Laurendeau, D., “Highly Accurate 

and Fully Automatic Head Pose Estimation from A Low-Quality 

Consumer-Level RGB-D Sensor” in Proceedings of the 2nd 
Workshop on Computational Models of Social Interactions: Human-

Computer-Media Communication, 2015, pp. 25-34 
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