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Abstract

Exascale computing has been a dream for ages and is close to becoming a real-

ity that will impact how molecular simulations are being performed, as well as

the quantity and quality of the information derived for them. We review how

the biomolecular simulations field is anticipating these new architectures,

making emphasis on recent work from groups in the BioExcel Center of Excel-

lence for High Performance Computing. We exemplified the power of these

simulation strategies with the work done by the HPC simulation community to

fight Covid-19 pandemics.
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1 | NEW COMPUTER ARCHITECTURES

Biomolecular simulations have been linked to computer power since their origin in the 1960s. Thus, access to the
Golem computer explained (in part) the leadership of Weizmann's institute in the development of the first force-field
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based methods oriented towards the study of biomacromolecules,1,2 and a large computer placed at CECAM headquar-
ters allowed the first molecular dynamics (MD) simulation of a protein by McCammon, Gellin, and Karplus.3 Since the
1970s, continuous improvements in computers have allowed molecular simulations, and in particular MD to be
established in the structural biology and biophysics worlds.

The increase in computer power seemed unstoppable for decades but, unfortunately, current chip technology has
reached a plateau and we cannot expect much more powerful processors to emerge from current computer technology.
Thus, while waiting for quantum computers, hardware developers have tried to maintain the increase in processing
power by three different strategies: (i) to build specific purpose processors, (ii) to take advantage of secondary processors
specialized in basic numerical operations (like the graphical processing units; GPUs) and (iii) to increase the number of
cores in the computers.

MD-specific computers such as Anton4,5 were a major promise for the MD field when first appeared in 2008, but
13 years later, their global impact has been small. On the other hand, GPUs have revolutionized the field allowing small
groups access to significant computing power. Yet, no single GPU can perform massive MD simulations, thus requiring
the combination of a large number of CPUs (and eventually GPUs) in the simulation. Thus, most massive MD simula-
tions are performed in High-Performance Computing (HPC) environments, especially in gigantic supercomputers cre-
ated by the aggregation of a massive number of CPUs or CPU/GPUs. Two excellent examples of Tier-0 supercomputers
are Japanese Fugaku and American Summit. Rikken supercomputer Fugaku has 7.6 million general-purpose cores
A64FX 48C and provides 0.5 ExaFlop of peak power, while American Summit has a hybrid CPU/GPU architecture
based on Power9 and NVIDIA Tesla V100 cards, with 2.4 million cores and 0.2 ExaFlop of peak power. Both are amaz-
ing pieces of engineering and are approaching to the mythical ExaFlop barrier, but we cannot ignore that Fugaku is
only four times faster than the top-of-the line computer five years ago (Chinese Sunway) and has an electrical consump-
tion (close to 30 MW excluding cooling) that raises doubts on the sustainability of a much bigger computer.6

In summary, the biosimulation community has largely benefitted from decades of continuous increase in computer
power, but we cannot expect much faster processors in the next years. Most likely, increases in aggregated computer
power would appear linked to massively parallel architectures. Our community, and in particular the molecular
dynamics (MD) field should redefine its objectives and tools having in mind realistic expectations of how new high-per-
formance computers will be.

2 | TAKING ADVANTAGE OF HIGH PERFORMANCE COMPUTING

The quality of an MD simulation depends mainly on three factors: (i) the accuracy of the Hamiltonian representing
molecular interactions, (ii) the similarity between the simulated system and the physical reality, and (iii) the exhaus-
tiveness of the sampling of the conformational space. Most MD simulation engines use the same type of classical Hamil-
tonian defined in the 1960s by Lifson and coworkers,7 which have been largely refined, reaching a good agreement
with experimental measurements when sufficient convergence is achieved for some macromolecular systems.8–11 It
means that in practice, the quality of MD calculations mainly depends on the ability of the simulated model to repre-
sent the reality, and on the completeness of the sampling of the relevant configurations. As some of the biologically rel-
evant systems may contain millions of atoms, a tendency in the MD field in the last decade has been to simulate very
big systems12–17 which are expected to be more realistic and better fitting with supercomputer architectures. Unfortu-
nately, the larger the system, the longer the simulation generally should be, and the more complex the force evaluation
is. In brief, the reliable treatment of very large systems is limited to a few computational groups with access to massive
computer resources, while in everyday practice the simulation system sizes range from 104 to 105 atoms. The challenge
is how to efficiently use supercomputers on biological problems involving such “small” systems.

2.1 | Strategies for parallelization of a single calculation

Molecular dynamics simulation approaches are based on the idea of sampling phase space, and as such the efficiency of
the method ultimately comes down to the performance of individual simulations. The total throughput of methods rely-
ing, for example, on ensembles is multiplied by the speedup due to parallelization of individual simulations, which in
turn is multiplied by speedups from acceleration and algorithmic advances. Several modern MD implementations such
as Amber,18 NAMD,19 Desmond,20 and GROMACS21 have been accelerated either for GPU hardware—using CUDA,
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OpenCL or SYCL APIs—or single-instruction multiple-data instruction units available on modern CPUs.22 However,
both hardware and software landscapes have become extremely diverse, and while almost all codes can be compiled on
arbitrary systems, it cannot be taken for granted that a code is able to make good use of the hardware available on a
particular system. For large projects, it has become an important decision to select a suitable combination of HPC hard-
ware along with optimally accelerated simulation software already at the planning stage. GPU accelerators have been a
revolution for MD simulations, just as for many other scientific fields, which is effectively due to new algorithms
enabling parallelization of the force evaluation in each timestep over �10 000 functional units in each GPU,23–25

although this is opaque to the user.
On the other end of the spectrum, algorithms to explicitly parallelize simulations by communicating between multi-

ple different nodes have evolved to use advanced load balancing and advanced domain decomposition techniques that
limit communication to the neighboring nodes26 and minimize communication, for example, by allowing an interaction
between atoms present on two specific nodes to be evaluated on a third (“neutral-territory” methods).27,28 While bench-
marks occasionally use gigantic systems to showcase codes, biomolecular applications like Covid-19 are typically
focused on achieving sampling, for example, for a protein by first reducing the system size as much as possible and the
parallelizing the simulation of this given system over as many nodes as possible—so-called “strong scaling”, which is
considerably more difficult. The algorithms above have enabled truly impressive strong scaling where simulations have
been able to make use of 10,000 cores or more,19,29 resulting in long time scale simulations of individual SARS-CoV-2
proteins,30 sampling of their binding site dynamics31, conformational changes,32 modeling of SARS-CoV-2 proteins
whose structure is not yet known,33 and multiscale simulations, for example, of the SARS-CoV-2 spike protein.34

One of the currently most critical bottlenecks is that the particle-mesh Ewald summation35 algorithms used for
long-range electrostatics involve global 3D fast fourier transforms, where the number of communication messages scale
as the square of the number of nodes. Fortunately, there are several promising new algorithms in development based,
for example, on multipole expansion methods36,37 or multi-level summation.38 However, since molecular dynamics is
inherently an iterative stepwise method, high-end parallelism is subject to hard challenges of communication band-
width and latency—it will not help to add more CPU resources to a simulation waiting for communication. These prob-
lems are even more severe when compounded with accelerators. First, some GPU codes do not even support multi-
node parallelism since the random-access nature of indexing atoms to be communicated is not a great fit for accelerator
hardware. Second, it introduces another layer of communication complexity and latency when data must first be sent
between GPUs in each node and between CPU and GPU before it can be communicated to other nodes. Third, since
the force calculation can be an order of magnitude faster on GPUs, the relative impact of network bandwidth and
latency will also become tenfold higher, and thus dominate for much smaller node counts compared with CPU-only
simulations. As an example, for GROMACS the current effective limit to strong scaling is somewhere around 40 atoms
per CPU core, while it is typically not meaningful to go to <3000 atoms per GPU,23 and other major codes have qualita-
tively similar behavior. Notably, this means the relative strong scaling is typically considerably worse for GPU-
accelerated simulations, and somewhat paradoxically they might not improve the absolute performance of the simula-
tions in the limit of high-end parallelism, but they make it possible to reach the same performance with order-of-
magnitude smaller hardware resources. These freed-up resources can then instead be utilized much more efficiently to
parallelize the solution to the scientific problem through combination with ensembles of many accelerated and parallel
simulations.

2.2 | Ensemble simulations

In effect, a direct alternative to escape the technical shortcomings of direct parallelism is based on the use of ensembles
obtained from independent or loosely coupled simulations. The use of replicas is now well established and considered
part of the “good practices” in the field,39,40 especially when one is concerned with simulations of rare events.41 As an
example, in our 2010 study of spontaneous DNA hairpin folding,42 we were lucky to have found a fast “downhill” fold-
ing pathway in our first trajectory (1 μs long). However, to obtain good statistics, we had to collect more than 20 such
trajectories, and yet four of them never reached the folded state (after 4 μs), highlighting the variability in the outcomes
of individual simulations. In fact, thanks to the chaotic nature of MD simulations, even initially correlated replicas rap-
idly lose the memory of their common initial state and can thus be analyzed independently to obtain statistical bounds
on a given MD-derived quantity. Even more interestingly, they can be also combined to create meta-trajectories that
provide ensembles much richer than expected from the length of individual replicas. In this spirit, it was shown that
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the multiple replica approach can be used not only to describe equilibrium properties, but also nonequilibrium transi-
tions, even when their characteristic timescales are much larger than those sampled by the individual replicas.43–45 In
this spirit, Pande, Noe, and others46,47 have demonstrated that short replicas can be combined into a Markov State
Model (MSM) to trace complex kinetic pathways from the transition probabilities between a discrete number of states
in the system, even when no single trajectory samples transitions between all states. In recent years, many generaliza-
tions of this scheme have been developed, including history-augmented MSMs that go beyond the simple theory of
memoryless Markov processes,48 or the transition-based reweighting analysis method (TRAM) that combines data from
multiple ensembles, including explicitly biased ones.49

Indeed, although an unbiased multiple-replica approach is often the most easily interpretable, the use of biasing
schemes usually offers better sampling of the configurational space. This is especially important for the exploration of
slow conformational transitions that are unlikely to happen within currently accessible simulation times. An example
of this approach is Hamitonian or Temperature replica exchange50–53 where either the Hamiltonian or the kinetic energy
is perturbed across replicas to improve sampling efficiency by pushing the systems out of metastable states with long
residence times. An equally popular intermediate approach, called Solute Tempering (REST), combines these two ideas
to perturb the effective temperature of a subsystem of interest.54,55 In Free Energy Perturbation (FEP) or Thermodynamic
Integration (TI), the Hamiltonian is perturbed in discrete steps (FEP, discrete TI) or smoothly (slow growth TI, non-
equilibrium TI) from one state to the other, allowing for the calculation of the associated work—which, depending on
the Hamiltonian at hand, can be coupled to a conformational transition or an alchemical change.56–59 In umbrella sam-
pling or metadynamics,60–64 additional terms are added to the energy function to favor (in a guided or unguided man-
ner) the exploration of a selected collective variable, often in conjunction with the replica exchange scheme.51,65 In the
string method, trajectories are pinned to points forming a path in a low-dimensional subspace, and the displacements
tangent and perpendicular to the path are used to iteratively refine this path, until a lowest-energy pathway is found
between two initially defined states.66–68

Subtler biasing techniques imply the use of information-based biasing as in Maxwell-Demon Dynamics, where after
a certain time only trajectories approaching a given target are extended or cloned,69,70 or adaptive approaches (very pop-
ular in metadynamics or MSMs), which launch new trajectories from regions of the configurational space that have
been undersampled in the original ensemble. As a notable example, the Weighted Ensemble (WE) method provides a
rigorous scheme for evolving large batches of short trajectories to obtain kinetic and thermodynamic data without the
application of external forces.71,72 Recently, machine learning approaches hold promise to enhance sampling efficiency
by learning a refined biasing scheme from the collected trajectories,73,74 by re-optimizing the reaction coordinate that is
being explored on-the-fly,75,76 by learning an approximate structural ensemble from which new uncorrelated seeds can
be drawn,77 or by simplifying the structural description of the system without compromising on its physical accuracy.78

Note that while unbiased replica approaches rely on completely independent trajectories, biased multiple replica
approaches usually imply a loose coupling between trajectories, as decisions on a given trajectory should be made peri-
odically based on the results obtained in the others.

The multiple replica approach fits perfectly into massively parallel computers, as each of the simulations is indepen-
dent (or nearly independent) from the others and as the CPU time required to compute the forces is quite independent
of the specific coordinates, a good processor load balance is expected. In fact, unbiased multiple replica approaches can
be run in distributed platforms, where volunteers provide access to their personal computers to run independent simu-
lations, which are then integrated to obtain the representation of the system. As the first such distributed setup to
achieve Exaflop performance in 2020,79 the Folding@home project80 is a paradigm for this type of initiatives that has
advanced the study of many complex biophysical processes81–85 and provided excellent results in SARS-Cov2 research
(see below).

There are several desirable properties that should characterize a well-scaling ensemble approach fitted to the
Exascale era:

• Direct parallelism should ideally be replaced with “trivial” parallelism, meaning that ideally ensembles should be
generated by a very large number of short, independent trajectory segments.

• The ideal method should be able to keep the number of parallel runs constant to make resource allocation efficient
and predictable.

• Explicit communication between runs should be avoided or minimized, and ideally performed asynchronously as
not all computing units perform equally even within a single machine.
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• Disk space requirements should be minimized, since 1000s of individual runs can easily overwhelm even purpose-
built filesystems.

• Efficient GPU implementations should be considered alongside more trivially paralellized CPU ones to ensure com-
patibility across all types of HPC resources.

• Finally, popular, out-of-the-box parallelization schemes should be used to ensure interoperability across the increas-
ingly diverse computational cluster architectures.

When choosing a method, one should always consider the availability of resources, the existence of “natural” reaction
coordinates, the expected complexity of the free energy landscape, the natural timescale of the process in question, and
the desired levels of detail and accuracy in the final model.

2.3 | Non-equilibrium simulations

Biased replica approaches are typically implemented in the context of equilibrium simulations. For example, in meta-
dynamics, umbrella sampling, or FEP/TI, we expect that the trajectory collected at a given point of the transition (geo-
metrical or alchemical) samples well the neighboring points along the reaction coordinate, and the reversible work
associated with this microscopic change will not change by extending the trajectory, which often requires long simula-
tions. Similarly, producing a well-converged MSM requires that the transition probabilities between any two states
reach local equilibrium, that is, the trajectory samples an equilibrium situation, which requires long aggregated trajec-
tory times. The need to run a limited number of resource-intensive replicas is undesirable for HPC, as it limits the num-
ber of processors that can be allocated to a specific scientific problem.

A potential solution arises from the use of non-equilibrium methods, which allow us to obtain transition free ener-
gies by combining a very large number of “irreversible works” derived from short non-equilibrium simulations starting
from equilibrium start and end states. Non-equilibrium methods have a solid foundation in Jarzynski equation86 and
its later extension, the Crooks fluctuation theorem.87 They provide access to equilibrium properties, for example, free
energy differences.88 and are efficient in an HPC environment, as they allow for a distributed use of processors working
independently. Within the BioExcel consortium,89 De Groot and coworkers have pushed the limits of these non-
equilibrium techniques in the context of alchemical perturbation, developing a full methodology that goes from defin-
ing an optimum pathway for the transition to collecting converged free energy results for the alchemical transition.90,91

This methodology is becoming very successful in exploring relative binding free energies of related drugs or the impact
of mutation in protein interactions88,92 and has been extensively used in the context of Covid19 research (see below).
Note that the technique can also be adapted to biasing schemes related to geometrical rather than Hamiltonian
changes, even though initial attempts exposed a number of specific challenges that need to be addressed if a general
workflow is to be established.93,94

2.4 | Multi-simulation projects and workflows

As already discussed, a typical research project cannot be solved by running a single simulation, but requires combining
many of them. For example, to determine the structural role of sequence variants on a short loop of a protein, at least
20n (with n equal to the length of the loop) independent simulations need to be done. The Folding@home strategy is
well suited for this type of problems as we are referring to completely independent and asynchronous simulations.
There are, however, other cases that require combining different types of simulations that must be arranged using flexi-
ble workflows. For example, before running a free energy calculation on the impact of polymorphism on the binding of
a large series of drugs to a given target, many calculations need to be done: 3D models and topologies of the drugs need
to be generated, force-field parameters have to be determined, and equilibrated structures need to be obtained. In paral-
lel, 3D models of the target protein and its mutants have to be made, optimized, thermalized and equilibrated through
MD simulations of both apo and holo forms of the protein. Finally, all these processes must be repeated for hundreds of
drugs and sequence variants to reach biologically relevant conclusions, and after some analytics on all the results can
be needed. In this context, the cost of running ultra-efficient free energy calculations might have no impact in the
global project, as the limiting step can be the manual setup of chains of calculations. Thus, in order to be efficient, man-
ual interventions need to be reduced to a minimum by using suitable applications95–97 automating all the preparation
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steps. Furthermore, the execution of the different programs has to be coordinated by a workflow manager to guarantee
no lag time between calculations.

Workflows have been very popular in bioinformatics,98–102 but their adoption in the biomolecular simulation fields
has been slower,103,104 mainly due to the powerful computational resources needed and the large amounts of data gen-
erated. The recent advances in the informatics technology, including faster network bandwidths, optimized and distrib-
uted file systems and pre-exascale HPC supercomputers opened the door to biomolecular simulation execution
pipelines. The combination of automated workflows with new optimized codes and HPC supercomputers21,105 allows
an efficient usage of the available resources and the implementation of large studies through task parallelization. We
anticipate that workflows will be at the core of biosimulations projects in a near future.

Execution of workflows is typically controlled by Workflow Management Systems (WFMS): the software that regu-
lates the execution of a defined sequence of tasks, arranges them in the most efficient way, manages intermediate data,
and monitors the whole execution. The list of available WFMS is huge, and is still increasing every year (see the list of
workflow managers compiled and regularly updated by the Common Workflow Language (CWL) team106 at https://
github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems). Some of
these tools also allow for workflow setup by means of Graphical User Interfaces (GUIs).107–113 Very popular in the bio-
informatics field, these drag-and-drop interfaces (KNIME,107 Pipeline-Pilot,108 Taverna109, Galaxy,110 Unipro
UGENE,111 Kepler112) allow for very easy workflow development based on interconnected nodes (building blocks). The
chemoinformatics and MD fields have just recently developed GUI-based WFMS, with some available implementations
in Galaxy,113 KNIME,114–116 Kepler,117 and Pipeline-Pilot,108 the most popular being integrated into commercial soft-
ware. Although most of these WFMS can be used to launch jobs in HPC clusters through integrated remote execution
functionalities, they were not designed to run massive HPC jobs.

For this reason, the biomolecular simulation field should rely on a different type of WFMS adapted to work with
HPC infrastructure, eventually reaching the Exascale regime. BioExcel CoE joined together some of the most important
HPC WFMS around the world in a dedicated workshop (2018), with the goal of identifying specific software gaps and
opportunities for improved workflow practices.118 A representation of the most popular WFMS in the field were present
in the workshop: Parsl119, AdaptiveMD,120 PyCOMPSs,121 BioSimSpace,122 LongBow,123 FireWorks,124 Swift,125

ExTASY,126,127 and RADICAL.128,129 Although sharing many of the most important features (automation, data control
flow, task management, dependency graph), each WFMS has its own design goal, and adoption of one versus another
implies a thorough analysis of the particular research project needs and the WFMS features. Some of the differentiating
elements that were identified are the possibility to run adaptive algorithms (ability to change their behavior in
runtime), fault tolerance (ability to distinguish between critical and non-critical task failures), flexibility (ability to
extend/reduce the number of resources used at runtime), and provenance (ability to store input metadata for reproduc-
ibility purposes). Some of these tools have been designed to cover very specific applications, whereas others are able to
handle broader, more generic workflows. Finally, the installation and configuration overhead is a critical point that
should be carefully considered before choosing a WFMS.

HPC-focused WFMS have demonstrated their power in biomolecular research projects, and Molecular simulation
pipelines are now regularly being used to gain insights into the binding free energy and the residence time of ligands in
drug development studies.130 They paved the way for the classical protein-folding problem before AlphaFold2
appeared131,132 and have been extensively used in recent studies helping the fight against the SARS-CoV-2 virus34,133–
136 (see below). However, despite their obvious impact, HPC workflows are still not widely adopted by the
biosimulation community, mainly due to the difficulty of integrating them with the most common simulation tools.
One step towards such integration is the BioExcel Building Blocks (BioBB) library: a collection of portable wrappers on
top of common biomolecular simulation tools.137 The library is designed to: i) increase the interoperability between the
tools wrapped; ii) facilitate the implementation of biomolecular simulation workflows; and iii) increase the reusability
and reproducibility of the generated workflows. The library is being developed following the FAIR principles for
research software development best practices. The result is a collection of building block modules, classified according
to the functionalities offered (e.g., MD, analysis, chemistry). The BioBB library is compatible with different WFMS,
including both GUIs (Galaxy, KNIME) and HPC-focused (PyCOMPSs). Installation of BioBB workflows controlled by
PyCOMPSs WFMS can be easily done using BioConda packages.138

The community has no doubt that biomolecular simulation workflows will have a clear impact on the future grand
challenges in science,139 and that they will be essential tools for the efficient exploitation of the future Exascale super-
computer generation. However, important aspects linked to the pipeline execution still need further research and dis-
cussion to reach a community agreement. Data provenance, historical record of the data;140,141 workflow metadata,
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important information from the input, output and intermediate data; reproducibility, possibility to generate the same
results using a particular pipeline;142,143 reusability, possibility to use a particular pipeline in different resources;106 and
FAIR computational workflows144 are all crucial points whose treatment is still under debate.

3 | THE PROBLEM OF DATA

As computer power increases, the management of data is becoming the Achilles heel of molecular simulation. As
described in a recent review,145 1 μs of a medium-sized protein system (105 atoms including solvent) generates around
5 Pb of data, and even if only 1‰ of coordinates are stored, a single trajectory would require 5 Tb of disk space. The
common practice in the field has been to store trajectories locally and delete them after some period, which means that
very valuable (and expensive to obtain) information is lost. FAIR (Findable, Accessible, Interoperable and Reusable)
requirements for scientific data146 force the storage of plain trajectories and associated simulation metadata. This gener-
ates a formidable problem that requires at least: (i) efficient metadata to specify the purpose and conditions of the simu-
lation, (ii) efficient ways to store the raw data, (iii) efficient transfer mechanisms, and (iv) flexible analysis portals
including virtual research environments (VRE) for remote programmatic access to the data.147

The BioExcel CoE and the ELIXIR European Initiative have defined a prototype of EDAM ontologies for metadata
of MD simulations.148 This should be extended and refined to be adopted by already existing10,149–155 or new simulation
databases. Some recent databases such as BigNASim already implement an ontology metadata154 which helps to classify
trajectories, favoring then meta-analysis and the detection of artefactual simulations. Defining what should be stored
from a trajectory is a major decision, which is often guided by traditions maintained since times when the throughput
of HPC systems was a fraction of the current one. A significant work has been done by communities such as
ABC151,156,157 to define the maximum acceptable frequency for storing data and the amount of solvent that needs to be
maintained for reanalysis. In parallel, software developers are creating compression approaches and importing methods
used to compress other types of massive data.158 Again, the community should reach a consensus on the type of com-
pression strategy and the amount of data to be stored, otherwise the FAIR requirement will not be fulfilled.

Despite cleaver approaches to improve transfer efficiency (GridFTP, Aspera, and others; see145), current network
limitations are severely hampering transferring raw trajectories. Streaming methods that would allow basic analysis in
remote before downloading the trajectory are going to be useful to avoid unnecessary downloads145. However, it seems
that the most sensible approach is to reduce the movement of MD files, with big data centers placed physically close to
the computer power concentrating the data, mimicking current situation in other fields such as bioinformatics or geno-
mics. The first MD databases were available around 10–15 years ago and aimed to cover all representative structures in
the protein data bank: Dynameomics, MoDEL, or Dynasome10,149–151 are examples of these families of databases. More
recent efforts have been focused on specific families of proteins of special importance, such as GPCRmd that includes
trajectories of G-protein coupled receptors, MemProtMD,156 which contains simulations on 3500 membrane proteins in
realistic membrane environments, or TMB-iBIOMES that includes hundreds of nucleosome trajectories.152 A few data-
bases are focused on small molecules with potential biomedical or biomolecular impact; an example is Cyclo-lib153

which is focused on cyclodextrins, or BCE,155 which contains classical trajectories and quantum structural data on
small drugs. Finally, BigNASim154 is, to our knowledge, the only database focused on nucleic acids simulations, and
contains hundreds of simulations including the latest ones obtained by the ABC consortium.159 Recent efforts to create
repositories and associated databases developed by the BioExcel CoE to help Covid19 research will be commented
below.

Most of these databases are coupled to flexible graphical web interfaces allowing access to key analyses of the trajec-
tories. However, to be really useful, these user interfaces should be flexible and interactive, something made possible
with recent database architectures. For example in the BioExcel-CV19 web server, an associated REST API allows the
user to extract slices of the trajectory as well as fragments of the molecule, which are then shown by the NGL visualizer.
Using these tools, the user can focus their analysis on configurations fulfilling certain criteria, or perform meta-analyses
combining parts of different trajectories. The next step towards gaining interactivity for analysis tools coupled to data-
bases is probably the generalization of virtual research environments (VRE), infrastructures that allow the users to
deploy and share their software to perform customized analyses on databases. These infrastructures make it possible to
perform specific analyses on the computers supporting the databases, eventually only downloading analysis results
instead of the original trajectories.
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Entering the Exascale era, we must not forget the Exabyte problem that will be created by the future generation of
Exaflop computers. Otherwise, massive amounts of resources will be wasted without providing useful information for
the community.

4 | COVID-19: A USE CASE FOR HPC-MD SIMULATIONS

SARS-CoV-2, an enveloped and positive-strand RNA coronavirus, was first identified in the city of Wuhan in December
2019 and rapidly spread worldwide due to a high inter-human transmission rate and a relevant percentage of asymp-
tomatic infections.160–162 As of December 2021, almost 300 million cases and more than 5 million deaths have been reg-
istered worldwide, with dramatic implications for the global economy and human well-being. Since its emergence in
late 2019, both the SARS-CoV-2 virus and the host response—starting at the main receptor, the angiotensin-converting
enzyme 2 (ACE2)—have been extensively studied to understand the disease etiopathogenesis, the structure of the func-
tional viral proteins, and the viral-host interaction pattern to guide a rapid development of both direct-acting antiviral
and host-directed therapeutic agents. In this context, the theoreticians' community, assisted by the constantly increasing
number of X-ray and high-resolution cryogenic electron microscopy (Cryo-EM) structures available, has promptly
reacted and a massive worldwide computational endeavor has been made to unravel the molecular details of the virus'
functioning at a multiscale level, from force-field based all-atom simulations to hybrid quantum-mechanics/molecular-
mechanics approaches. Here, we will summarize selected studies that have provided key information on the function-
ing of the virus obtainable uniquely via scientific HPC simulations.

4.1 | RNA-dependent RNA polymerase

The RNA-dependent RNA polymerase (RdRp) is the core protein of the replication-transcription complex, which is the
machinery in charge of the transcription and replication of SARS CoV-2's viral genome and subgenomic mRNAs.163

The RdRp holoenzyme is composed of four subunits: one core nsp12 and cofactors, two nsp8s and one nsp7. In addition
to RdRp, other important proteins are involved in the replication complex: a helicase (nsp13), an exonuclease that
proofreads the newly synthetized RNA (nsp14), mRNA capping enzymes (nsp14, 16), or a specific endoribonuclease
(nsp15).

Despite the great effort invested in vaccinating the global population, the emergence of immune escape variants par-
tially decreased the protection conferred by the vaccine.164 Moreover, the rapid spread of variants and its possible resis-
tance to current vaccines still make antiviral drugs important means to alleviate the effects of the pandemic and react
swiftly to its future outbursts. Thus, due to its central role in the viral life cycle, the RdRp has been an attractive target
for antiviral drugs. Among them, Remdesivir has gained much attention currently being the first small-molecule drug
approved for the treatment of Covid-19 by FDA in October 2020 (only followed by a Nirmatrelvir/Ritonavir combina-
tion in late 2021). Remdesivir is an adenine nucleotide analog that acts by inhibiting RdRp through a delayed chain ter-
mination mechanism.165 Other inhibition strategies have also been deployed towards protein partners involved in the
replication machinery or by hacking the virus' replication through lethal mutagenesis.166

Although RdRp has been primarily investigated using experimental techniques, theoretical computations have hel-
ped understand different aspects of its inner workings. In order to better understand SARS-CoV-2's RdRp, Shaw and
co-workers made use of Cryo-EM microscopy, RNA-protein cross-linking and unbiased molecular dynamics simula-
tions to unveil RdRp's backtracking mechanism.167 In this study, three structures in which the backtracked RNA was
accommodated by the nucleotide-triphosphate (NTP) entry channel were resolved, a mechanism also found in cellular
RNA polymerases. Starting from the cryo-EM structure that featured two nsp8 cofactors, a nsp7 cofactor, two nsp13
helicase cofactors, an RNA template and a product RNA strand with one mismatched nucleotide at its 30 end, three
independent 5-μs unbiased molecular dynamics simulations were carried out. Although the backtracking process was
not captured in the simulations, these trajectories revealed the spontaneous fraying of the 30 terminal mismatched
nucleotide into the NTP entry channel. This positioning would disfavor the RNA translocation and thus the elongation
process.

Numerous experimental and computational studies have focused on understanding Remdesivir's inhibitory mecha-
nism inside RdRp. However, Remdesivir's mode of action is still debated. A theoretical study investigated the possible
mechanism of action at the molecular level with a total of 34 μs of simulation.168 Absolute free energy calculations were
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performed to obtain binding free energies of Remdesivir and two other nucleotide analogues inside RdRp, followed by
independent short molecular dynamics simulations (100 ns) for each of the systems where Remdesivir had been incor-
porated in the nascent RNA strand. Their results would support inhibition coupled by a delayed chain termination, or
alternatively by destabilizing the protein complex.

In another recent study,169 equilibrium MD totaling 9 μs of simulation, as well as non-equilibrium free energy calcu-
lations, were employed to obtain the free energies of binding of ATP and Remdesivir-TP (RTP) to human and viral
RNA polymerases. The molecular mechanism of action of Remdesivir was also addressed. The study showed that while
SARS-CoV-2 RdRp displays a binding preference towards RTP versus ATP, human RNA Pol II displays the opposite
trend. Moreover, �100 ns of hybrid QM/MM MD simulations making use of the string method were performed to deci-
pher the molecular mechanism and reaction free energy profiles of nucleotide activation and incorporation inside the
RdRp. These results indicate that RdRp makes use of a self-activated mechanism to achieve nucleotide incorporation,
as observed in other polymerases. This highly processive polymerase was found to follow a two-metal ion mechanism
of nucleotide incorporation. While Remdesivir is observed to be incorporated more slowly than its natural counterpart,
adenine, this difference is too small to account for its biological activity. Finally, free energy calculations unveil a stabi-
lizing effect that occurs during Remdesvir elongation along RdRp's exit channel, which would stall RNA polymerization
and explain its antiviral inhibitory effect.

4.2 | Main protease

Proteolytic cleavage of the SARS-CoV-2's virally expressed polyproteins pp1a and pp1ab into its functional proteins is
carried out by two viral proteases: the main protease Mpro (nsp5) that cuts 11 sites, and the papain-like protease PLpro
(nsp3) which cuts three sites.163 This a crucial step that enables the formation of the replication machinery in charge of
transcription and replication of the viral genome inside the host cell. In addition, viral proteases can act on cellular pro-
teins to help escape the virus from immune response.170 Thus, many efforts have been directed towards the inhibition
of viral proteases as an effective antiviral strategy. Moreover, due to its dissimilarity to human proteases, Mpro and
PLpro are promising drug targets. Mpro and PLpro are cysteine proteases composed of three and four domains, respec-
tively. While Mpro is active as a dimer, PLpro acts as a monomer, and as in other cysteine proteases, their active sites
are formed by a Cys-His catalytic dyad.

Joint crystallographic and molecular dynamics studies have analyzed the effects and mode of binding/action of sub-
strates or promising inhibitors inside the Mpro/PLpro enzymes.171 The work by Hummer and co-workers studied
SARS-Cov-2 PLpro by means of biochemical, structural and functional analysis. Through multi-μs MD simulations they
analyzed the interaction between PLpro and two different protein substrates. In addition, 1-μs long MD simulations
were obtained for both SARS-CoV and SARS-CoV-2 PLpros in complex with GRL-0617, a non-covalent inhibitor of
SARS-CoV PLpro that was shown to also act against SARS-CoV-2 PLpro. Kovalevsky et al. crystalized Mpro at room
temperature and performed 1 μs molecular dynamics simulations to analyze the flexibility of some of the protein's
regions.172 Experimental and theoretical approaches were also combined to study Mpro inhibition by myricetin and its
derivatives.173 Two independent �1.5 μs long Gaussian accelerated-MD simulations explained myricetin's dynamic
interactions inside Mpro's active site. In addition to drug-design efforts, quantum mechanics (QM) calculations were
performed on a small active-site QM-cluster model, including implicit solvation. Reaction pathways and transition
states were characterized for myricetin and two other derivatives, explaining the formation of a covalent bond. The cal-
culated activation free energies were obtained through thermal correction. Alternative approaches combining MD-met-
atrajectories, docking experiments and machine learning strategies have been used to explore binding of millions to
billion of chemical compounds as binders of the protease. These massive efforts, which fit into the paradigm of distrib-
uted computing, allowed the community to develop chemical moieties that could then undergo lead optimization proto-
cols.32,174–176

Additionally, fully theoretical studies have helped understand features not accessible to experiments. Atomistic sim-
ulations unveiled the binding preferences of the promising inhibitor ebselen to Mpro through 6 μs of cumulative MD
calculations.177 In another computational study, important insights into structure–function relationships of Mpro were
obtained through continuous constant pH MD simulations178 coupled to replica-exchange enhanced sampling. The
study revealed the impact of the protonation of His172, which causes a conformational change of Mpro resulting in its
deactivation. Based on their results, the authors provide a set of guidelines to design new inhibitors that could bind to
Mpro's residues. Tuñon and co-workers made use of extensive QM/MM-MD simulations to characterize the free energy
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profiles of the reaction mechanism of Mpro with a peptidic substrate.179 Exploration of the reaction free energy land-
scape was performed at the DFT(B3LYP)/MM level making use of the string and umbrella sampling methods, with a
total of 2.4 ns of cumulative sampling. They propose a Mpro reaction mechanism consisting of three steps with four
transition states, with deacylation as the rate-limiting step of the overall reaction. The study unveils the most important
residues involved in catalysis which can help guide drug-design.

4.3 | Spike: The crucial protein for infection

One of the most widely investigated SARS-CoV-2 protein is the viral Spike protein, a transmembrane homotrimeric
class-I fusion glycoprotein which exists in a metastable prefusion architecture and comprises two functional subunits
for binding to the host cell receptor ACE2 (S1 subunit) and for fusion of the viral and host cell membranes
(S2 subunit).180 The Spike protein of SARS-CoV is cleaved by a host-cell protease, the transmembrane protease/serine
subfamily member 2 (TMPRSS2); an alveolar cell serine protease preferentially expressed on epithelial cells of the respi-
ratory tract.181–183 TMPRSS2-mediated cleavage of SARS-CoV Spike protein is propaedeutic to host ACE2 binding,
membrane fusion and cell-entry mechanism; a highly-concerted and regulated step-wise mechanism. Particular atten-
tion has been paid to the highly antigenic S1-based receptor-binding domains (RBD) that by undergoing substantial
hinge-like conformational rearrangements, transiently expose (Up conformation) or hide (closed conformation) the
interface area required for ACE2 receptor binding and subsequent shedding of S1, refolding of S2 for membrane fusion
and virus internalization.184–186 Many aspects of Spike have been subjected to massive simulations.

Among them, glycosylation of both viral and host receptor has been quite a debated topic among theoretical chem-
ists and biochemists. Indeed, it is known that extracellular portion of ACE2 contains at least seven N-glycosylated sites
(i.e., N53, N90, N103, N322, N432, N546, N690) and several O-glycosylation sites (e.g., T730),187,188 with the latter
shown to be crucial in the process of protein–protein recognition and binding mode.185,189,190 To shed light on the role
of glycans in mediating virus internalization and spread, Hummer and coworkers have recently performed extensive
multi-replica approach MD simulations of the fully-glycosylated human ACE2 receptor bound to the RBD of SARS-
CoV-2 Spike and its unbound state.191 Their results have shown that glycosylation at position N90 in human ACE2
structurally hampers virus binding. This explains, at the atomistic level, the experimental data on the augmented sus-
ceptibility to SARS-CoV-2 infection when N90 glycosylation is lost.191 On the other hand, N322 glycan aids infectivity
by hiding a key cryptic epitope known to be the target of CR3022 neutralizing antibody.192 In their work, Hummer and
collaborators have used a classical multi-replica approach of the 11 different glycosylated sites of ACE2. For each of the
11 setups, they carried out three independent MD simulation runs [(1 � 1 μs and 2 � 480 ns) � 11] for a total of
�22 μs trajectory for almost 1 million atoms. The so obtained trajectories were analyzed to dissect protein–protein inter-
actions starting from the Cryo-EM native contacts, which were identified accordingly to the Best et al. approach.193

Glycosylation was also intensively analyzed by Amaro and co-workers that have built a full-length model of the gly-
cosylated SARS-CoV-2 S protein, both in the open and closed states and have performed multiple microsecond-long,
all-atom molecular dynamics simulations. Their efforts have produces key full-atom structural and dynamical insights
on the roles of glycans and their implications on the (i) protein geometry, (ii) the global plasticity of Spike, and (iii) the
shielding role against antibody epitope recognition.194 In general, the numerous glycans found on the whole Spike pro-
tein play diverse roles and contribute differently to the global and local conformational rearrangements in a time-
dependent manner. Indeed, they observed that the two N165 and N234 glycosylation sites play a major role in shifting
the equilibrium ensemble from closed to open RBD conformation. The simulated models pinpoint N165 and N234 posi-
tions as a major modulator of the RBD conformational plasticity with N234 glycan that promotes RBD exposure and
concurrent stabilization. To provide further support for their findings, they performed additional sets of extensive MD
simulations on the N165A/N234A mutant of the SARS-CoV-2 Spike protein, which corroborated the importance of
these glycosylated positions in the infective dynamics of the protein.This result was also confirmed by bilayer interfer-
ometry experiments. From the technical point of view, this work required an enormous computational effort as the
full-length structures were embedded into an equilibrated all-atom membrane bilayer with a composition mimicking
the one where the virus buds. Subsequently, explicit water molecules and ions were added, resulting in two final sys-
tems of �1.7 million atoms each for which multiple replicas were simulated collecting more than 15 μs of the overall
sampling time. Massively paralel computers were used for this study.

Spike conformational transitions and the functional characterization of SARS-CoV-2 rising variants have been an
additional question the scientific community has targeted. As anticipated before, the three-protomeric Spike protein
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can adopt different macrostates prevalently determined by the serial combination of each single RBD arrangement.
Since RBD exposure (i.e., closed-to-open) is propaedeutic to ACE2 binding and virus internalization, and considering
that the vast majority of evolution-selected mutations fall within the RBD domain (contributing to the creation of
higher-infective viral strains), dissecting RBD's opening/closing mechanism and energetics at molecular level is of
utmost importance. In this regard, S. Gnanakaran and co-workers195 have characterized the flexibility and conforma-
tional transition of the Spike protein in a work where MD simulations using an HPC resource have provided a unique
and detailed perspective that other standard biophysical approaches would have not produced. In particular, they have
analyzed the effect of D614G mutation on the Spike protein discovering that the mutation heavily affects the interaction
pattern of RBD, especially when this adopts the open-state conformation. Briefly, they found three contributions to
structural rearrangements associated with the D614G mutation: (i) variation in the inter-protomer contacts,
(ii) alteration in the correlations between the single RBDs, and (iii) variation in the specific inter-protomer hydrogen
bond pattern. As a consequence, the infection-capable one-up state conformation of RBD is favored when D614G muta-
tion occurs. Based on these results, the authors suggest that these three effects can lead to an increase in infectivity
through an increase in the one-up population of the G-form. In this work, mainly unbiased MD simulations were per-
formed, generating five replicas for each of the system analyzed in the study, generating overall �20 μs of trajectories
for �1 million atoms simulated in explicit solvent.

In a similar vein, Ray, Le and Andricioaei studied the long-range allosteric communication within the Spike, using
an enforced closed-to-open transition to study dynamical correlations between individual residues.196 By calculating
correlation scores, mutual information-based cross-correlation metrics and connectivity graph networks from a set of
over 40 short trajectories, they traced allosteric pathways governing the global motions of the RBD to identify residues
that, upon mutation, would most likely disrupt interdomain communications. Their analysis was able to recover the
established effect of the D614G substitution on Spike opening, as well as provide a plausible explanation for the biologi-
cal effects of other observed mutations such as A570D or P681H. However, the authors note that their model does not
yet have predictive power, one that would allow to score new mutations by their potential threat to human health.

Nevertheless, the effect of natural mutations of SARS-CoV-2 on Spike structure, conformation, and antigenicity has
been the leading-topic recently due to the rapidly growing number of virus variants with increased transmissibility,
higher disease severity, resistance to neutralizing antibodies elicited by current vaccines or from previous infection,
reduced efficacy of treatments, or failure of diagnostic methods. For this reason, these variants have been named Vari-
ants of Concern (VoCs). Gobeil et al.197 investigated the Spike VoC involved in transmission between minks and
humans, as well as the B1.1.7 (alpha variant), B.1.351 (beta variant), and P1 (gamma variant) Spike variants. All vari-
ants showed a remarkedly increased ACE2 binding affinity accompanied by a higher propensity of RBDs to stably adopt
the functionally-active up states. While adaptation to mink resulted in Spike destabilization, the B.1.1.7 (UK variant)
Spike balanced stabilizing and destabilizing mutations. A local destabilizing effect of the RBD E484K mutation was
implicated in resistance of the B.1.1.28/P.1 (Brazil Variant) and B.1.351 (South Africa Variant) lineages to neutralizing
antibodies. Also, authors have revealed allosteric effects of mutations and mechanistic differences that may govern zoo-
notic jumps or escaping mechanisms from antibody neutralization. Finally, extensive Adaptive Sampling Molecular
Dynamic Simulations (ASMD) were performed by De Fabritis and co-workers198,199 to explore more under-sampled
regions of the conformational space of Spike, hence overcoming energetic barriers separating free energy wells. In
ASMD, simulations are launched in sequential batches called epochs utilizing knowledge of the conformational space
obtained from all previous epochs. To generate an ensemble of the RBD tip conformations required to start the adaptive
sampling routine, authors have performed 100 distinct 50 ns-long simulations in the NVT ensemble with randomized
initial velocities for each of the WT and mutant systems. Each iteration consisted of 50 to 100 short independent simula-
tions, conformations from which were selected to further sample the most under-sampled conformational space
regions. Time independent component analysis (TICA)200 was performed to identify slowly changing molecular order
parameters and subsequently Markov state models were built. A total of 29 adaptive iterations were performed, yielding
total simulation times of 274.8 and 256.8 μs for the WT and Mut systems.

An out-scaling Folding@home distributed computing project80 involved 1 million people to create a distributed
exascale computer with the aim of simulating �0.1 s of the entire viral proteome. The brilliant idea of Gregory
R. Bowman and collaborators79 has permitted to observe a dramatic opening of the apo Spike complex, far beyond that
seen experimentally, explaining and predicting the existence of “cryptic” epitopes. The project has also highlighted large
conformational changes across the proteome, which reveal over 50 “cryptic” pockets that expand targeting options for
the design of antivirals, thus paving the way towards dozens of alternative drug discovery projects. Important observa-
tions were also made in other aspects of Spike dynamics. The authors, thanks to extensive sampling, successfully
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captured this rare event for both glycosylated and unglycosylated protein and found that glycosylation only slightly
increases the population of the open state, the effect being smaller than that produced by genetic variation in the pro-
tein. The authors also found that opening occurs only for a single RBD at a time and that the scale of spike opening is
often substantially larger than has been observed in experimental snapshots in the absence of binding partners. An
enormous amount of calculating nodes worldwide were created and authors measured an impressive Folding@home
peak performance of 1.01 exaflops. This was achieved at a point when �280,000 GPUs and 4.8 million CPU cores were
performing simulations simultaneously; a performance 5-fold greater than the peak performance of the world's fastest
traditional supercomputer at that time, Summit.6

All the simulations were performed with the Gromacs package21 and the immense computational power of peers
distributed around the globe has permitted to investigate intensively and with the richest sampling ever obtained 36 dis-
tinct proteins associated to SARS-CoV-2 virus. The endeavors have produced (so far) a total outstanding simulated
time-scale of �115 ms (>0,1 s).

4.4 | BioExcel workflows

The combination of BioExcel Building Blocks and the PyCOMPSs workflow manager illustrates how workflows can
help reaching the High Throughput (HT) regime in HPC infrastructures, running hundreds of calculations using hun-
dreds of cores, thus exploiting thousands of cores in one single job. The possibility of running these huge executions will
help the efficient usage of large supercomputers such as the ones that are to become available in the coming years.
Workflows built using these tools have been used in some of the COVID-19 related research presented in this review.
One example is a pipeline for the calculation of binding free energy differences upon protein residue mutations
(Figure 1). The relative changes in binding free energies (ΔΔGs) are computed using a so-called alchemical fast-growth
thermodynamic integration (TI) method that does not require a quasi-equilibrium simulation during the alchemical
transition.201 The workflow starts from two independent equilibrium simulations: WT and mutant. These simulations
need to sufficiently sample the end state ensembles, as the free energy accuracy will depend on the sampling

FIGURE 1 Left: Schematic representation of the nonequilibrium alchemical free energy calculations (taken from Aldeghi, 2019). Right:

Alchemical free energy calculations workflow implemented with BioExcel building blocks.
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convergence. From the generated trajectories snapshots are selected to start fast (picoseconds-long) transitions driving
the system in the forward (WT to mutant) and reverse (mutant to WT) directions. The work values required to perform
these transitions are collected and the Crooks Fluctuation Theorem87 is used to calculate the free energy difference
between the two states.

The whole pipeline was implemented using the BioExcel Building Blocks library, wrapping GROMACS and pmx bio-
molecular tools.90,91 pmx is used to generate hybrid structures and topologies for the mutated residues and GROMACS to
perform molecular dynamics simulations. The PyCOMPSs workflow manager is used to automatically distribute and para-
llelize the high number of transitions between the wild type and mutant states of the protein. As all these integration steps
are completely independent calculations, they can in principle all be run at the same time. The flexibility added by
PyCOMPSs allows a variable number of HPC cores depending on their availability (see use example in Figure 2). Here, a
particular alchemical free energy calculation was performed on a 218,179-atom system, running a total number of short
1000 TI runs using 32 nodes (1536 cores) of the MareNostrum supercomputer in a single job. This particular execution
took 4 h, using 100% of the CPUs available during most of this time. The number of nodes/cores to be used in the pipeline
is completely flexible as PyCOMPSs is taking care of distributing the independent simulations across the number of avail-
able cores (see examples of pre-exascale workflows built within the BioExcel CoE including the one described in this
section in the BioExcel GitHub repository: https://github.com/bioexcel/biobb_hpc_workflows).

These workflows were heavily used to understand the effect of mutations in both virus and host on spike recogni-
tion by ACE2, finding, for example, that most human ACE2 polymorphisms have a negligible effect on the binding
affinity of the RBD, but also that the presence of some rare polymorphisms would protect a small fraction of the popula-
tion from virus infection (see Figure 3).

Similarly, Gapsys & de Groot have explored an effect of ACE2 mutations on the ACE2-RBD binding creating a two-
level screening strategy (Figure 4). Firstly, the residues at the ACE2-RBD interface were exhaustively scanned with
Rosetta Flex ddG202 protocol. This approach provides a good compromise for accuracy and computational efficiency203

allowing to predict changes in binding affinity for a large number of mutations. In the second step, a selection of muta-
tions based on the predictions from the previous step was subjected to the pmx/Gromacs based alchemical free energy
calculation protocol. While these calculations are computationally demanding, they also offer high prediction accu-
racy.204 In addition to estimating changes in the ACE2-RBD binding affinity, relative changes in ACE2 stability upon
amino acid mutation were evaluated as well. All in all, this multi-step strategy allows identifying the residue positions
in ACE2 and their mutations which would have the largest impact on the binding with the viral RBD. This strategy can
be easily adjusted to probe for RBD mutations and their effect on the binding affinity, thus identifying viral variants of
higher potency. Furthermore, by replacing ACE2, as the RBD binding partner, to an antibody or peptide, such mutation
scan can be used to design novel therapeutics by enhancing their binding affinity to the viral RBD.

4.5 | BioExcel COVID-19 hub: Shaping the future of open data

The entire scientific community reacted to the COVID-19 pandemic by redirecting efforts to study the SARS-CoV-2
infection and its mechanisms of action. The biomolecular simulation field contributed since day one with an incredible
number of MD simulations, which in turn produced an enormous amount of data distributed around the different
groups working on them. BioExcel CoE, in collaboration with the Molecular Sciences Software Institute (MolSSI),
developed the COVID-19 Molecular Structure and Therapeutics Hub (https://covid.bioexcel.eu/), a website presented
as a community-driven data repository and curation service for molecular structures, models, therapeutics, and simula-
tions related to COVID-19 computational research. The repository was designed from scratch to share data (including
MD data) from the scientific community, making them completely open to better tackle the COVID-19 global emer-
gency. The Hub has become a reference repository with huge amounts of useful information gathered in one single por-
tal. Renowned groups in the field (e.g., D.E. Shaw, Riken, Folding@home) have contributed to the repository, summing
up to milliseconds of trajectory data. Trajectories stored include different structures involved in the process of virus
infection and virus life cycle, such as the ones previously presented in this review (Spike, Protease, RNA Polymerase).

Today the Hub is an essential repository for the field, a central point where to find and download useful data for
research. The BioExcel-CV19 database and associated web server (Figure 5) expand the power of the Hub, including
interactive graphical representations of the trajectories and analyses performed on them. The main objective of the
BioExcel-CV19 project is to generate a tool for scientists interested in the COVID-19 research to interactively and graph-
ically check key structural and dynamic features stemming from MDs. As these features vary depending on the
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FIGURE 2 High parallelization reached thanks to the PyCOMPSs workflow manager. Example of a single job using 32 nodes (1536

cores) of the Marenostrum supercomputer at the BSC. Each line shows the CPU usage in % of a single MareNostrum node.

FIGURE 3 Impact of human polymorphisms in RBD-hACE2 binding free energy, computed with BioExcel workflows including

GROMACS and pmx. Human ACE2 protein mutations with higher frequency in the population are shown. Positive ΔΔG values indicate

that a mutation reduces binding affinity. The ΔΔG values are in kcal/mol.
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FIGURE 4 A multi-step strategy to predict the effect of ACE2 mutations on the ACE-RBD binding affinity. In the first step, the ACE2

residues at the protein binding interface are scanned by means of the computationally efficient Rosetta flex ddG protocol. In the second step,

a selection of the mutations is probed by the computationally more demanding MD based free energy calculations using pmx and Gromacs

software packages. The calculations allow evaluating the effect of mutations on the protein binding affinity, as well as on the stability of the

ACE2 protein. This strategy can be further adapted to predict the effects of virus mutations, design high affinity antibodies or peptide

therapeutics.
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structure analyzed, specific analyses were performed, uploaded to the database, and represented in the web portal.
These analyses and key features were collected by direct interaction with the authors of the simulations. As an example,
trajectories corresponding to the viral RBD-hACE2 complex include interface observables (e.g., residue distances,
hydrogen bonds), allowing an easy analysis of their behavior along the simulation (see Figure 5).

All the analyses integrated in the web portal are completely interactive. Whenever possible, a direct link from the
analysis to the 3D representation is offered, using NGL viewer tool. The fast extraction of a particular snapshot from
the whole trajectory is possible thanks to the NoSQL Mongo database backend powering the server. The whole set of
trajectories (atomistic 3D coordinates for every atom and every frame of the simulation) and analyses are stored in this
distributed database and efficiently retrieved on the fly from any web portal request. The entire pipeline is automated
and new COVID-19 related trajectories are currently being processed. The set of analyses will be continuously extended,
according to the suggestions of the authors of MD simulations.

5 | THE ROAD AHEAD

MD and, in general, biomolecular simulation tools are no longer marginal techniques used by a small set of groups
to confirm already known facts. Rather, the methods are used by a huge community, helping to understand the

FIGURE 5 Screenshots from the BioExcel-CV19 web server. (a) Trajectory representation (berzosertib, an FDA approved drug molecule

binding to the ectodomain of human ACE2); (b) analysis of the ligand pocket flexibility; (c) Analysis of electrostatic and Van der Waals

interactions between the ligand and the ACE2 receptor; (d) analysis of hydrogen bonding between the ligand and the ACE2 receptor;

(e) electrostatic potential surface in the ligand-binding pocket; (f) insight on the main interaction between the ligand and the ACE2 receptor

involving an aspartic acid. URL: https://bioexcel-cv19.bsc.es/#/browse/MCV1900072
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mechanisms of life, making predictions and guiding experiments. The Covid-19 pandemic has highlighted the
incredible power of MD simulations, either alone or combined with experimental techniques, to reveal atomistic
details of biologically relevant mechanisms. These research projects have also shown how large the computational
requirements of state-of-the-art MD simulations are. It is not only a question of access to massive computer plat-
forms, but also of strategies for how to use them in an efficient manner. While the next-generation supercomputers
will be designed by hardware specialists, and future biological questions will come out of experimental labs, the
bio-simulation community has to provide a robust interface between computer science and biology. Exascale
supercomputing will be soon a reality, while Exascale distributed platforms are already here. If we learn from the
past, computer scientists will soon dream of the YottaFlop computers.205 The computational science community
should escape the futile discussion between capacity and capability of computers and our community should strive
to make the best of whatever new computer technology emerges, and to fully exploit the data derived from
simulations.
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