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Propagation in the Open Cylindrical Guide of Arbitrary Cross Section with the

Use of Field Matching Method
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Abstract—A simple solution to propagation problem in open
waveguides and dielectric fibers of arbitrary convex cross section
is presented. The idea of the analysis is based on the direct field
matching technique involving the usage of the field projection
at the boundary on a fixed set of orthogonal basis functions. A
complex root tracing algorithm is utilized to find the propagation
coefficients of the investigated guides. Different convex shapes of
the guides are analyzed and the obtained results are compared
with the alternative solutions to verify the validity of the proposed
method.

Index Terms—Cylindrical guides, Dielectric fibers, Field
matching, Propagation, Root finding.

I. INTRODUCTION

The problems of electromagnetic wave propagation in open

waveguides and dielectric fibers are important and complex

issues in microwave and optical engineering. Especially the

analysis of leaky and complex modes, radiated from the guide,

is the most problematic, which arises from the accuracy of

modeling of free space. Nowadays, the discrete methods are

the most common techniques of the electromagnetic structure

analysis, and are willingly implemented in commercial soft-

ware, due to their flexibility. In these methods, open space

modeling is usually realized by the utilization of absorbing

boundary conditions (introduction of the perfectly matched

layer at the boundary of computational domain [1]). Such an

approach in frequency domain leads to the occurrence of a

number of spurious modes (artificial solutions), which are dif-

ficult to distinguish from the proper ones [2]. In time domain,

the analysis requires three-dimensional modeling and a large

number of iterations, so it is time and memory consuming

[3]. Obviously, for simple structures the analytical expressions

for modeling electromagnetic wave propagation can be found.

For more complex structures it is more efficient to utilize the

integral equation method [4], [5], and techniques based on

multipole expansions [6]. However, from the numerical point

of view, the use of Green’s function can also be complicated,

due to the singular points in the computational domain [7].
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Fig. 1. The geometry of an investigated structure: (a) General view, (b) The
definition of angle α.

In this communication, we present a simple and intuitive

solution to the propagation problems in open waveguides of

arbitrary convex cross section. The method of analysis is

adopted from the radiation modeling with finite-difference

method [8] and scattering problem with field matching method

[9] and is based on the decomposition of the fields in the

area of the guide into Fourier-Bessel series with unknown

coefficients. The fields are matched at the boundary using

their projection on a fixed set of orthogonal basis functions.

Such an approach is flexible since it requires only to define

the contour representing the waveguide boundary. It does not

require the discretization of the domain or the utilization of

Green’s function (no electric and magnetic currents), there-

fore its computation and implementation are significantly less

complex.

In the proposed approach, the problem boils down to finding

the roots, representing propagation coefficients, of simple

determinant. For the guided modes in lossless waveguides

the problem simplifies to real domain and many standard

numerical methods can be applied, such as bisection, secant or

Newton’s methods. However, for complex or leaky modes and

guided modes in lossy medium such methods are ineffective

as the solution is a complex number. In the proposed approach

to find the guide propagation coefficients we utilize two novel

complex root finding algorithms [10], [11]. In the case of

roots located at the brunch cut a simple technique involving

a pointwise product of all the Riemann sheets can be applied

[12].

Several guide geometries and a few guided and leaky modes

are considered and the results are discussed. The obtained

results are verified by comparison with analytical solution or

simulations performed using commercial software employing

a finite element-based method [13].
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II. FORMULATION OF THE PROBLEM

The investigated structure is a cylindrical waveguide of

arbitrary convex cross section as illustrated in Fig. 1. Here,

we consider the problem of electromagnetic wave propagation

and the aim of the analysis is to determine the propagation

coefficients of guided, leaky and/or complex modes. As the

method itself was described in details in [9], here we will

only indicate the differences and the required modifications

made to adjust this technique for the considered problem.

Two regions of investigation can be distinguished in the

structure: region I, located inside the waveguide, and region

II, outside. The z components of the electric and magnetic

fields in both regions have the following form (suppressing

ejωt time dependence):

F I
z =

M
∑

m=−M

AF
mJm(κIρ)e

jmφe−γz (1)

F II
z =

M
∑

m=−M

BF
mH(2)

m (κIIρ)e
jmφe−γz (2)

where F = {E,H}, κ2
i = ω2µiεi + γ2 for i = {I, II}, ω

is the angular frequency, γ is the mode propagation coeffi-

cient, Jm(·) and H
(2)
m (·) are Bessel and Hankel functions,

respectively, of order m and AF
m and BF

m are unknown

field coefficients. The utilization of the Hankel function of

the second kind satisfies Sommerfeld’s radiation condition

(representing the outward-traveling wave). Due to the assumed

field representation in (1) and (2), only convex shapes of the

waveguide can be analyzed. The other components of the

electric and magnetic fields (Eφ, Eρ, Hφ and Hρ) can be

derived from Maxwell’s equations, as in [14].

In order to determine the mode propagation coefficients we

need to satisfy the continuity conditions for the tangential

field components on the guide surface. Describing the surface

of the guide by functions ρ = ̺(s) and φ = ϕ(s), where

s is the curvilinear coordinate that follows the surface, the

continuity conditions for tangential components can be written

as follows:

F I
z(̺(s), ϕ(s), z) = F II

z (̺(s), ϕ(s), z) (3)

F I
t (̺(s), ϕ(s), z) = F II

t (̺(s), ϕ(s), z) (4)

where F
(·)
t (·) = (sinϕ cosα − cosϕ sinα)F

(·)
ρ (·) +

(cosϕ cosα + sinϕ sinα)F
(·)
φ (·) and α = α(s) is an angle

between the x-axis and the normal outgoing vector ~N to the

cylinder surface (see Fig. 1).

Similarly, as for scattering problem [9], a projection on the

orthogonal set of the functions wn(s) = exp (j2πns/S) /
√
S

for (n = −M . . .M ) can be applied in the meaning of the

inner product:

〈g|wn〉 =
S
∫

0

g(s)wn(s)
∗ ds (5)

The continuity conditions can then be rewritten in the form of

the following matrix equation:
[

M
E,I −M

E,II

M
H,I −M

H,II

] [

A

B

]

= 0 (6)

where A = [AE ,AH ]T , with A
F = [AF

−M , . . . , AF
M ]T ,

(vector B is defined similarly) and matrices M
F,i have the

form:

M
E,i =

[

M
E,i
z 0

M
E,i
t1 M

E,i
t2

]

, M
H,i =

[

M
H,i
t1 M

H,i
t2

0 M
H,i
z

]

(7)

where the elements of submatrices M
F,i

(·) have the following

form:

{MF,i
z }m,n =

〈

Zi
m

∣

∣wn

〉

(8)

{ME,i
t1 }m,n =

〈

Cρ

γ

κi

Z ′i
m + Cφ

jγm

κ2
i ρ

Zi
m

∣

∣wn

〉

(9)

{ME,i
t2 }m,n =

〈

Cρ

ωµim

κ2
i ρ

Zi
m + Cφ

jωµi

κi

Z ′i
m

∣

∣wn

〉

(10)

{MH,i
t1 }m,n =

〈

Cρ

−ωεim

κ2
i ρ

Zi
m + Cφ

−jωεi
κi

Z ′i
m

∣

∣wn

〉

(11)

{MH,i
t2 }m,n =

〈

Cρ

γ

κi

Z ′i
m + Cφ

jγm

κ2
i ρ

Zi
m

∣

∣wn

〉

(12)

where Zi
m = Zm(κi̺)ejmϕ, with Zm = {Jm, H

(2)
m }, prime

denotes derivative of the function, Cρ = sinϕ cosα −
cosϕ sinα and Cφ = cosϕ cosα+ sinϕ sinα.

Nontrivial solutions of the homogenous system (6) exist if

its determinant vanishes. The roots of this determinant rep-

resent complex propagation coefficients for particular modes.

The complex root finding algorithms [10], [11] are utilized to

find the solution to the described problem.

It is worth noting that for a fiber of a circular cross section

the submatrices (8)-(12) become diagonal and are composed

of appropriate Bessel or Hankel functions, or their derivatives

with proper coefficients. In this case the procedure boils down

to the regular mode matching method and the numerical

integration (5) is unnecessary. It is also worth noting that the

procedure can be applied for multilayered structures, for which

the resultant homogeneous system (described by a matrix

equation like the one in (6)) will take more complicated form.

However, the efficiency of the proposed procedure decreases

in such cases.

III. RESULTS

In order to support the validity of the proposed method

several guided and leaky modes in fibers with various cross

sections are investigated. For each structure, we start from

cylindrical fiber with circular cross section and transform its

shape, maintaining constant area of the guide cross section, to

obtain different fiber geometries: oval, square and triangle. We

consider three different types of waves: transversal magnetic,

transversal electric and hybrid modes. In the calculations,

we picked the TE01, TM01 and HE11, which propagation

coefficients for the case of circular fiber are given in Table I.

All the numerical results presented here are obtained with

the use of root finding/tracing algorithms [10], [11]. For

the guided modes the values of normalized phase coeffi-

cients are located in the range determined by the lowest

and the highest permittivity of the dielectrics in the structure

βn ∈
[

min
i
{√εr,i},max

i
{√εr,i}

]

. The attenuation coefficient
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TABLE I
PROPAGATION COEFFICIENTS OF THE INVESTIGATED WAVES IN CIRCULAR

DIELECTRIC FIBER OF RADIUS 0.5 µM WITH εr1 = 8.41 AND

εr2 = 2.4025 AT FREQUENCY f = 1014 HZ [8].

mode normalized propagation coefficient color in figures

TE01 j1.6255 red

TM01 j1.5708 yellow

HE11 0.395 + j1.2214 green(blue)

er1

er2

2a

2b

Fig. 2. The geometry of the elliptical fiber cross section.
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Fig. 3. The propagation coefficients for the elliptical fiber in function of
major/minor axis ratio with parameters from Table I. Solid line – normalized
phase coefficients; dashed line – normalized attenuation coefficients; circles
and diamonds – analytical results.

TABLE II
CONVERGENCE OF THE METHOD FOR THE EXAMPLE FROM FIG. 2

(VALUES OF PROPAGATION COEFFICIENTS OF TM01 MODE FOR

MAJOR/MINOR AXIS RATIO EQUALS 3). PERCENTAGE ERROR IN BRACKETS

WITH RESPECT TO ANALYTICAL SOLUTION.

M P = 90 P = 180 P = 360 P = 720

5 1.7411 (0.97) 1.7417 (0.94) 1.7418 (0.93) 1.7418 (0.93)

6 1.7521 (0.36) 1.7496 (0.50) 1.7491 (0.53) 1.7490 (0.54)

7 1.7522 (0.35) 1.7496 (0.50) 1.7491 (0.53) 1.7490 (0.54)

8 1.7405 (1.02) 1.7518 (0.38) 1.7526 (0.33) 1.7528 (0.32)

9 – 1.7510 (0.42) 1.7527 (0.33) 1.7527 (0.33)

10 – – 1.7545 (0.22) 1.7562 (0.13)

equals zero for guided modes in lossless structures, however

it can be traced in a function of increasing loses. Similarly,

the propagation coefficients of leaky/complex modes can be

found by tracing them in a function of decreasing frequency

(starting from guided modes).

As a first example, an elliptical optical fiber is analyzed. The

cross section of the guide is shown in Fig. 2. The analytical

solution of such structure is well known and can be found

using Mathieu functions for the field expansions. The change

of propagation coefficients of investigated modes in function

r

a

er1

er2

a

Fig. 4. The geometry of the square fiber cross section with rounded corners.
The material parameters as in Table I.
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Fig. 5. The propagation coefficients for the square fiber in function of corner
curvature. Solid line – normalized phase coefficients; dashed line – normalized
attenuation coefficients; squares – HFSS results; circles and diamonds –
analytical results.

TABLE III
CONVERGENCE OF THE METHOD FOR THE EXAMPLE FROM FIG. 4

(VALUES OF PROPAGATION COEFFICIENTS). PERCENTAGE ERROR IN

BRACKETS WITH RESPECT TO HFSS SOLUTION.

M P = 90 P = 180 P = 360 P = 720

5 1.5763 (0.16) 1.5764 (0.15) 1.5764 (0.15) 1.5765 (0.15)

6 1.5763 (0.16) 1.5765 (0.15) 1.5765 (0.15) 1.5765 (0.15)

7 1.5763 (0.16) 1.5764 (0.15) 1.5764 (0.15) 1.5765(0.15)

8 1.5779 (0.06) 1.5781 (0.04) 1.5781 (0.04) 1.5781 (0.04)

9 1.5779 (0.06) 1.5781 (0.04) 1.5781 (0.04) 1.5781 (0.04)

10 1.5779 (0.06) 1.5781 (0.04) 1.5781 (0.04) 1.5781 (0.04)

of fiber ellipticity (major/minor axis ratios) is calculated and

the results are compared with the analytical ones (see Fig. 3).

The calculations were performed using M = 7 expansion

functions, and the integrals in (7) were evaluated from the

trapezoidal rule, with P = 180 points evenly covering the

boundary contour. Such a choice results from convergence

analysis, which is presented in Table II. Theoretically, the

higher values of M should improve the accuracy of the results

as it should better describe the field in the analyzed structure.

However, too high values of M results in the increase of

calculation time and moreover could lead to the appearance

of numerical errors. The value of M is directly connected

to number of points P evenly covering the boundary of the

structure. The selection of too small number of discretization

points P results in ill-conditioning of homogeneous system

equation (6) and leads to the increase of the numerical error

for higher values of M .

As can be observed, there is a satisfactory agreement

between the results obtained from both methods. The analysis
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r
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Fig. 6. The geometry of the triangular fiber cross section with rounded
corners.
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Fig. 7. The propagation coefficients for the triangular fiber in function of
corner curvatures. Solid line – normalized phase coefficients; dashed line
– normalized attenuation coefficients; squares – HFSS results; circles and
diamonds – analytical results.

also shows that the more deformed the structure is (higher

major/minor axis ratio) the more expansion functions need to

be selected. For the considered case, it was sufficient to use

M = 7 for ellipse with major/minor axis ratio equals 3. It is

also worth noting that the hybrid mode HE11 separates into

two different waves, due to lack of axial symmetry in elliptical

structure.

The second structure is a dielectric fiber with square cross

section (rounded corners) with the same material parameters

as in the previous example. The analysis is performed in

function of corner curvature coefficient (r/a) as illustrated in

Fig. 4. The calculated propagation coefficients for different

corner curvatures are presented in Fig. 5. The calculations

were performed for M = 10 and P = 360. The convergence

analysis is presented in Table III.

Also in this case the obtained results agree with the simula-

tions performed in commercial software HFSS [13]. However,

due to the unreliability of modal analysis in discrete methods

for leaky modes (modeling of boundary conditions) only the

TABLE IV
CONVERGENCE OF THE METHOD FOR THE EXAMPLE FROM FIG. 6

(VALUES OF PROPAGATION COEFFICIENTS). PERCENTAGE ERROR IN

BRACKETS WITH RESPECT TO HFSS SOLUTION.

M P = 90 P = 180 P = 360 P = 720

5 1.5907 (0.61) 1.5910 (0.60) 1.5910 (0.60) 1.5910 (0.60)

6 1.5959 (0.29) 1.5963 (0.26) 1.5963 (0.26) 1.5963 (0.26)

7 1.5959 (0.29) 1.5963 (0.26) 1.5963 (0.26) 1.5963 (0.26)

8 1.5959 (0.29) 1.5963 (0.26) 1.5963 (0.26) 1.5963 (0.26)

9 1.5983 (0.14) 1.5987 (0.12) 1.5987 (0.12) 1.5987 (0.12)

10 1.5983 (0.14) 1.5987 (0.12) 1.5987 (0.12) 1.5987 (0.12)
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Fig. 8. The propagation coefficients for the elliptical fiber with major/minor
axis ratio equals 2 in function of losses lc. Solid line – normalized phase
coefficients; dashed line – normalized attenuation coefficients; circles and
diamonds – analytical results.

guided modes are compared.

The third example considers the triangular fiber with

rounded corners depicted in Fig. 6. The calculated propagation

coefficients for different corner curvatures is presented in

Fig. 7. The calculations were performed for M = 10 and

P = 360. The convergence analysis is presented in Table IV.

As in the previous example a good agreement between the

calculated results and the commercial software simulations is

achieved.

The proposed method can also be utilized to investigate

structures with high losses. Therefore, as a last example we

consider the elliptical guide with major/minor axis ratio equals

2 and calculate propagation coefficients in function of losses. It

was assumed that the inner dielectric is lossy with permittivity

εr1 = 8.41(1− jlc) (the lc is a loss coefficient). The obtained

results from the proposed method compared with analytical

approach are presented in Fig. 8.

IV. CONCLUSION

The approach presented in this communication utilizing

field matching technique is simple and effective. The technique

can be successfully used to examine both leaky and guided

modes and can be applied for high lossy media. The obtained

results are in good agreement with those obtained from analyt-

ical approach and a finite element-based method (commercial

software). The method does not require the utilization of

Green’s function, discretization of the computational domain

and implementation of absorbing boundary conditions.
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