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Abstract: The Heisenberg spin chain is considered in φ4 model approximation. Quantum corrections to classical
solutions of the one-dimensional φ4 model within the correspondent physics are evaluated with account of
rest d−1 dimensions of a d-dimensional theory. A quantization of the model is considered in terms of space-
time functional integral. The generalized zeta-function formalism is used to renormalize and evaluate the
functional integral and quantum corrections to energy in a quasiclassical approximation. The results are
applied to appropriate conditions of the spin chain model and its dynamics, for which elementary solutions,
energy and the quantum corrections are calculated.
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1. Introduction

There is a wide field of Heisenberg spin chain [1–3] real-izations intensely studied as quantum integrable systems[4] and in the context of its static and dynamic propertiesin an external magnetic field [4, 5]. The original approachof W. Heisenberg is based on localized electrons as aninitial approximation valid for metals with weak conduc-tance. The second approximation accounts for quantumexchange (due to the Pauli principle) between electronsin different places. Starting from Heitler-London formulafor the exchange and Coulomb integrals, one arrives at
∗E-mail: gkwiatkowski@mifgate.pg.gda.pl (Corresponding author)
†E-mail: leble@mifgate.pg.gda.pl

a (Heisenberg) Hamiltonian which, by construction, de-scribes the spin system field of a solid. Investigations ofsymmetry in the first paper of Heisenberg [1–3] gives afundamental approach to magnetics classification, as wellas to the ferromagnetism phenomenon and, for example,its existence only in cubic crystals (eight neighbours ne-cessity). All of this allows one to believe in further devel-opment of the whole model, and its particular cases andapplications.Some results of the known model applications are di-rectly related to experiments in a thermodynamics context,e.g. in [6–8]. Easy-plane ferromagnetism and in-planedomain-wall form factor is theoretically studied in connec-tion with neutron scattering effects in CsNiF3 crystal [9].Let us stress its quantum origin, which apart from well-known linear quasiparticles, provides a way to accountfor nonlinear collective phenomena as kinks, solitons and
887
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cnoidal waves. Generally speaking we have important ap-plications of soliton theory aspects, as, e.g. in [10]. It isrelevant to mention, that while continuum Heisenberg spinchain with both an anisotropy and a transverse magneticfield (4) is non-integrable [11] regardless of the values ofequation parameters (as long as they are non-zero), in theeasy plane limit it can be approximated by an integrableSine-Gordon model [12]. Other option leads to a non-integrable φ4 model, in which the simplest solutions arevery similar. We would note a growing interest in a sec-ondary quantization of such nonlinear quasiparticle fields,that, for example, allows one to obtain so-called quantumcorrections to classical energy of the objects.There is a method that is convenient for evaluation of thecorrections. It is a Feynman integral by trajectories [13](path integral). Quantum corrections are a topic of stableinterest since the seminal paper of R.F. Dashen, B. Has-slacher and A. Neveu [14], see also L. D. Faddeev, L.A.Takhtajan and V. E. Korepin papers [15, 16]. The func-tional integral method becomes a practical tool for eval-uation of quasiclassical corrections to the action from thetime of the V.P. Maslov paper [17, 18].One of principal results of the method is obtained in [19],where the general algorithm of corrections evaluation iselaborated for arbitrary background profiles, expressionsfor ground state energies were derived for a 3+1 dimen-sions theory with a potential dependent on a single vari-able. Generalization for the supersymmetric kink is givenin [20]. Solutions for Sine-Gordon quasiperiodic poten-tials was given in [21].Developing these results to arbitrary dimensions, inves-tigating kink models and periodic solutions we demon-strated details of the Feynman integral construction andgeneralized zeta function evaluation as well as the renor-malization realization [12, 22]. A general algebraic methodof quantum corrections evaluation based on zeta-function[23] is used and the Green function for heat equation withan elliptic potential is constructed (see also [24]).In this paper we continue our investigations of the prob-lem in the spirit of [12] and fix our attention on Heisenbergchain model in a so-called φ4 or Landau–Ginsburg [25] ap-proximation (see also Gross–Pitaevski equation [26, 27]).The merit of the presented paper is the attempt to deriveconditions of possible application to a realistic magneticmedium (Sec. 2). In the next section we describe gen-eral features of the Heisenberg spin chain model and itsreduction in specific conditions of φ4. In Sec. 3 we re-produce formulas resulting from [12] for the reader’s con-venience, namely, the space-time consideration close tothe original Feynman papers [13]. As for terminology, weuse the word renormalization [12] to exclude divergenceterms while in some other papers the term regularisation

is met. The final section is devoted to specific case of so-called zero "mass" m2 = 0 condition, that is specified bya distinguished value of magnetic field, in which the fieldconfiguration drastically changes.
2. The φ4 model of Heisenberg spin
chain

2.1. General equation of motion

According to [5] (with −→S n = (Sxn, Syn , Szn) as unit vectors)the Heisenberg magnetic chain with anisotropy in the di-rection of the chain and external magnetic field perpendic-ular to the chain is described by a classical Hamiltonian
H = −J∑

n

−→
S n ·

−→
S n+1 +D

∑
n

(Szn)2 − gµBB∑
n
Sxn, (1)

with corresponding equation of motion (here in SI units)
h̄∂t
−→
S n = −→S n×(−J(−→S n+1+−→S n−1)+2DSznẑ−gµBBx̂), (2)

where J , D are spin coupling constants and g is the ef-fective electron g-factor, µB is the Bohr magneton, x̂ and
ẑ are unit vectors and B is the magnetic field. After tak-ing the continuum limit (with a as lattice constant) oneobtains

h̄∂tSx = −Ja2(Sy∂2

zSz − Sz∂2
zSy) + 2DSySz

h̄∂tSy = −Ja2(Sz∂2
zSx − Sx∂2

zSz)− 2DSxSz
−gµBBSz

h̄∂tSz = −Ja2(Sx∂2
zSy − Sy∂2

zSx ) + gµBBSy
. (3)

By substituting −→S = (cosθ cosφ, sinθ cosφ, sinφ) onecan reduce equations of motion to
h̄ cosφ∂tθ = Ja2(∂2

zφ + sinφ cosφ(∂zθ)2)
− 2D cosφ sinφ − gµBB sinφ cosθ,

h̄∂tφ = −Ja2(cosφ∂2
zθ − 2 sinφ∂zθ∂zφ)+ gµBB sinθ. (4)

2.2. Model φ4 approximation
Stationary points of the system for D < 0 (easy axisanisotropy) are such pairs (θ, φ) for which θ = 0, φ ∈
{− arccos( gµBB−2D ), 0, arccos( gµBB−2D )} with φ = 0 being unsta-ble. For gµBB close to −2D both stable points are around
φ = 0. In such a situation it is valid to assume φ ≈ 0
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(with φ3 as the highest considered term) and with θ asthe highest considered term.
h̄∂tθ = Ja2∂2

zφ − 2D(φ − 2φ33
)
− gµBB

(
φ − φ36

)
,

h̄∂tφ = −Ja2∂2
zθ + gµBBθ. (5)If we additionally assume |Ja2∂2

zθ| << |gµBBθ|, we ob-tain
h̄∂tθ = Ja2∂2

zφ − 2D(φ − 2φ33
)
− gµBB

(
φ − φ36

)
,

h̄∂tφ = gµBBθ, (6)which leads to
h̄2

gµBB
∂2
tφ = Ja2∂2

zφ − (2D + gµBB)φ
+ 8D + gµBB6 φ3,

θ = h̄
gµBB

∂tφ.

(7)

The result represents the φ4 model with the energy den-sity
H = h̄22agµbB

(
∂φ
∂t

)2 + Ja2
(
∂φ
∂z

)2

+ 2D + gµBB2a φ2 − 8D + gµBB24a φ4.
(8)

After rewriting the equations in dimensionless variables(z = az′, t = T t′ with T as the time scaling parameterin the Feynman integral as in [12]) we obtain

h̄2
T 2gµBB∂2

t′φ = J∂2
z′φ − (2D + gµBB)φ

+8D + gµBB6 φ3

H = h̄22gµbBT 2
(
∂φ
∂t′

)2 + J2
(
∂φ
∂z′

)2

+2D + gµBB2 φ2 − 8D + gµBB24 φ4

. (9)

For simplicity of further calculations we will write

V 2 = 6(2D + gµBB)8D + gµBB

m2 = −2D + gµBB2J
c2 = JgµbBT 2

h̄2

, (10)

where m and V are parameters of the potential and c isa dimensionless propagation speed. Energy density takesthe form
H = J2

( 1
c2
(
∂φ
∂t′

)2 + ( ∂φ∂z′
)2
− 2m2φ2 + m2

V 2φ4) .
(11)

2.3. Static kink of the φ4 model
For the above described system there exists a well knownstatic kink solution

φ = V tanh (mz′) , (12)
which in this case represents a crossection of a flat, uni-form domain wall in direction of its normal vector. Classi-cal energy of the kink is given by integration of the energydensity (8)

Ec = 4√2JmV 23 = 4√−2J(2D + gµBB) 328D + gµBB
. (13)

For a domain wall this represents the energy per singlechain of atoms. It is of note that kink solutions vanishwhen gµBB reaches −2D. There are however static so-lutions, which are still present for gµBB ≥ −2D and anexample will be discussed in section (4).
3. Quasiclassical quantum correc-
tions
3.1. Quantization scheme
For the purpose of this publication we will use a semi-classical quantization procedure explained in detail in [12].For a given classical system described by action integral
S with a static solution φ we derive energy corrections byexpanding the action in path integral formulation of thepropagator

〈φ|e− i
h̄ TH |φ〉 = ∫

C0,T
φ,φ

Dφ(x, t)e i
h̄ S(φ) (14)

in a Taylor series around the classical solution and cuttingit at the first non-trivial term with T as an arbitrary timeperiod. Then the formal expression for quantum correctionto energy is ∆E = − h̄
iT ln (det [L]) , (15)
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where L is the second derivative of the classical La-grangian up to a multiplicative constant arising from theGaussian integrals during the derivation process (see
[17, 18] and [12]). We use zeta-function renormalizationscheme ([12], compare with e.g. [19, 20, 23] ) to deal withemerging infinities

∆E = − h̄
iT lim

s→0+
∂
∂s

1Γ(s)
∫ ∞

0 τs−1 ∫ (gL(τ,−→x ,−→x )− gL0 (τ,−→x ,−→x ))d−→x dτ, (16)

where −→x covers all variables of the classical system, gLis the Green function of the heat equation
(
∂
∂τ + L

)
gL(τ,−→x ,−→x 0) = δ(τ)δ(−→x −−→x 0) (17)

and L0 is an operator analogous to L with a constantpotential (representation of vacuum). Additionally, massscale is used to cut logarithmic divergence in all relevantparameters (see [23] and [12]). Often the intermediatesteps of (16) are defined explicitly as
γ(τ) = ∫ (gL(τ,−→x ,−→x )− gL0 (τ,−→x ,−→x ))d−→x (18)

and
ζ(s) = 1Γ(s)

∫ ∞
0 τs−1γ(τ)dτ. (19)

It was shown in [24], with an important link to generalizedzeta function theory, that if L can be written as a sum ofoperators acting on independent variables L =∑i Li, heatequation Green function for L can be written as a productof Green functions for Li. We are using this property toaccount for arbitrary number of spatial variables of theclassical system.
3.2. Quantum corrections to φ4 kinks
We now proceed to calculate quantum corrections for en-ergy using the above described generalized zeta function

renormalization scheme with following form of operators:
L1 = A

(
∂2
∂z′2 − 4m2 + 6m2sech2(mz′)) , (20)

L2 = − Ac2 ∂2
∂t′2 , (21)

L3 = A
ld−1 ∆d−1, (22)

A = iT J2πh̄r2 , (23)
where d is the total number of spatial dimensions, ∆d−1covers all spatial variables except for z′, l is the rangeof all additional spatial dimensions in multiple of a (dueto the same rescaling as for z) and r is the mass scale.Laplace transform of the Green function diagonal for L1was derived by use of algorithm described in [22]. For L2and L3 spectra continuum approximation was taken. Weobtained following corrections
∆Ed=1 = h̄cm2Tπ

(2 + π√3 − 2 ln(2)− 3 ln(−Am2)) , (24)
∆Ed=2 = − h̄cm2l2Tπ

(3 + 32 arcsin( 1√3
))

, (25)

∆Ed=3 = − h̄cm3l28Tπ2
(
−6 ln(−Am2)− 6 + 29 (−11 + 3√3π + 6 ln(2))) . (26)

Mass scale r is chosen so that any logarithmic contri-butions will vanish (ln(−Am2) = 0) for arbitrary T. En-ergy corrections exhibit a similar dependance on classicequation parameters as those of Sine-Gordon system [12].Physical meaning of those parameters is however differ-

ent. It is of note, that similar results were obtained byKonoplich in [23]. The difference comes from accountingfor ( ∂φ∂t )2 term in classical action. If we however com-pare the results by the total amount of accounted dimen-sions (in our work d counts only spatial variables), the
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results are qualitatively identical. Since Konoplich usedan approximation of the Green function’s diagonal, whilewe built its exact analytical form, there are some minor
quantitative differences. After inserting proper forms of cand m we obtain

∆Ed=1 = √
−gµBB(2D + gµBB)2π

(6− 6 ln(2)− π√3
)
, (27)

∆Ed=2 = √
gµBB(2D + gµBB)l8√Jπ

(3 + 32 arcsin( 1√3
))

, (28)
∆Ed=3 = √

−gµBB(2D + gµBB) 32 l24Jπ2
(18 ln(2)− 18 + π√3

)
. (29)

In this system the difference between one-dimensionalmodel and one accounting for two additional spatial di-mension is especially visible near the gµBB = −2D bor-der case. Since ∆Ed=1 is proportional to (2D + gµBB) 12instead of (2D + gµBB) 32 , it would outweigh the classicalenergy significantly. If we look at the ratio of correctionsto classical energy for d = 3
∆Ed=3
Ec

= √
gµBB(8D + gµBB)16√2π2J 32

(18 ln(2)− 18 + π√3
)

(30)we can see a particularly strong dependance on the Jparameter, which represents interaction strength betweenneighboring electrons. The calculated ratio will be thehighest for gµBB → −2D. In this limit we obtain
∆Ed=3
Ec

∝ −
(
−D
J

) 32
. (31)

It is worth noticing, that due to the way Planck constantenters propagation speed c, an energy correction is in-dependent of its value. Regardless of the number of spa-tial dimensions taken into account, energy corrections stillvanish along with the classical field, when gµBB = −2D(see the next section).
4. The special case of 2D +
gµBB = 0
In this section we will discuss a static solution of φ4 model,which does not vanish, when both stationary points of thepotential coincide. Let us rewrite equation of motion and

Hamiltonian in such case, when m2 = 2D + gµBB = 0.


J
c2 ∂2

t′φ = J∂2
z′φ +Dφ3

H = J2
( 1
c2
(
∂φ
∂t′

)2 + ( ∂φ∂z′
)2
− D2J φ4) . (32)

This system has an interesting traveling wave solution
φ(b(z′ ± vt′)) = b

√2J(c2 − v2)
−Dc2 sn(b(z′ ± vt′); i) (33)

with b as a wavenumber and sn denoting Jacobi SN el-liptic function. The choice of b value is restricted onlyby long-wave approximation b << 1 (compared to latticeconstant, "1" in our units). Real-valued amplitudes existfor v < c due to D < 0. For now we will focus on the
v = 0 case

φ(z′) = b
√ 2J
−Dsn(bz′; i). (34)

It is particularly interesting, since it’s a non-trivial staticsolution in a system with a single stationary point φ = 0.Quantum corrections to the energy of this solution can becalculated through the same procedure as for a φ4 kinkwith
L1 = A

(
∂2
∂z′2 + 6b2sn2(bz′)) , (35)

where A is the same as in (23) and other Li as before. Theoperator (35) belongs to the class of Lame operators (with
n = 2), which have periodic potentials with absolute con-tinuous spectrum with finite number of gaps described bya hyperelliptic curve [28, 29]. The potential enters into thenonlinear equation for the Green function diagonal, thatis studied in [22] and gives the direct link of gaps numberand appropriate curve properties through the n parame-ter. Let us reproduce some formulas from [24]. Laplace
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transform of the Green function diagonal can be obtainedin the same way as for φ4 or Sine-Gordon kinks [22]
G1(p, z) = p2 − 3b2p(1− z) + 9b4(z − 2)z2√(3b2 + p)(3b2 − p)p(p2 − 12b4) . (36)

It is important to note, that for calculation convenience,we use rescaling τ → τ ′
A for the Green function equation(17). The polynomial in the denominator has five simpleroots. We will set the vacuum counterpart to coincide withthe highest one

G0(p, z) = 12√2b2√3− p . (37)

We can now integrate the Green function diagonal overthe period 4K (i)
b , where K is the complete elliptic integralof the first kind

γ̂(p) = ∫ 4K (i)
b

0 (G1(p, cn2(bx))− G0(p, cn2(bx)))dx, (38)

γ̂(p) = 6b4K (i) + 2p2K (i) + 36b4 (K (i)− E (i))− 3b2p (E (i)− 3K (i))
b
√(3b2 + p)(3b2 − p)p(p2 − 12b4) − 2K (i)

b
√2b2√3− p (39)

To properly define the inverse Laplace transform, we needthe γ̂ function to be smooth in a ol < <(p) < op areawith ol < op as constants [30]. Since the γ̂ function hasfive distinct singularities (all on the real axis), we havesix potential inverse Laplace transforms (disregarding thechoice of the sign for the square roots), but only one ofthem fulfills the necessary condition ∀τ<0 γ(τ) = 0 arisingfrom the definition (17) - it occurs, when op → ∞. Thusthe γ function as defined in (18) will take form
γ(τ) = 12πi

∫ o+i∞
o−i∞

epAτ γ̂(p)dp, (40)

where o > 2b2√3. At this point, we add all relevant vari-ables as for φ4 case γ(τ) → γ(τ)γ2(τ)γ3(τ). The energycorrections per wave period are finally obtained by per-forming the Mellin transform and taking the derivative at
s = 0

∆E = − h̄
iT lim

s→0+
∂
∂s

12πiΓ(s)
∫ ∞

0 τs−1γ2(τ)γ3(τ) ∫ o+i∞
o−i∞

epAτ γ̂(p)dpdτ, (41)

Plugging expressions from (39) and relevant forms of γ2and γ3 (see [12]) and inserting p′ = p
b2 for simplification yields

∆E = −
h̄
d2 J 1−d2 √gµBBrdld−1(−2i) d2 T d2 lim

s→0+
∂
∂s

12πiΓ(s)
∫ ∞

0 τs− d2 −1
∫ o+i∞
o−i∞

e
iT Jb2p′τ2πh̄r2

2p′2K (i) + 6 (7K (i)− 6E (i))− 3p′ (E (i)− 3K (i))√(3 + p′)(3− p′)p′(p′2 − 12) − 2K (i)√2√3− p′
dp′dτ

. (42)

There still remains the problem of finding an explicit an-alytic or numeric solution of the shown integrals. Appli- cations of the distinguished condition of the elliptic field
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configuration may be interesting from the point of mea-surements realization. The case may be realized simplyby the magnetic field B value choice. Such configurationmay be more easily noticed (recognized in experiments).
5. Conclusion
Energy corrections for easy axis domain walls would beparticularly interesting in the case of thin ferromagneticfilms, where they should dominate the classical energy.Formally, the results of the last section partially coincidewith the case recently investigated (see e.g. [24], wherethe so-called Nahm model of Yang-Mills theory is studied)but the physical sense is different.The space-time consideration we develop in our publica-tions has obvious intentions to include mutisoliton config-uration into the quantum quasiclassical picture.
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