
ARTICLE

Received 13 Feb 2013 | Accepted 11 Sep 2013 | Published 28 Oct 2013

Quantum mechanical which-way experiment
with an internal degree of freedom
Konrad Banaszek1, Paweł Horodecki2,3, Michał Karpiński1,w & Czesław Radzewicz1

For a particle travelling through an interferometer, the trade-off between the available which-

way information and the interference visibility provides a lucid manifestation of the quantum

mechanical wave–particle duality. Here we analyse this relation for a particle possessing an

internal degree of freedom such as spin. We quantify the trade-off with a general inequality

that paints an unexpectedly intricate picture of wave–particle duality when internal states are

involved. Strikingly, in some instances which-way information becomes erased by introducing

classical uncertainty in the internal degree of freedom. Furthermore, even imperfect inter-

ference visibility measured for a suitable set of spin preparations can be sufficient to infer

absence of which-way information. General results are illustrated with a proof-of-principle

single-photon experiment.
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T
he duality between wave and particle properties of a
microscopic physical system is a founding principle of
quantum mechanics1,2. A canonical illustration is provided

by a single particle travelling through a double slit or a Mach–
Zehnder interferometer: an attempt to gain information about the
path taken by the particle inevitably reduces the visibility of the
interference pattern3–11. The purpose of this work is to analyse
the trade-off between interference visibility and which-way
information for a particle equipped with an internal degree of
freedom, for example, spin. In such a general case, the interaction
with an environment that acquires which-way information can
transform in a non-trivial manner the joint path–spin state of the
particle. This opens up an interesting question of how to infer the
amount of which-way information deposited in the environment
from visibility measurements. Another issue is, to what extent
manipulating the spin subsystem can control the information
about the path taken by the particle.

A common approach to quantify the amount of which-way
information is to use distinguishability D, defined as the
maximum difference between the probabilities of correct and
incorrect identification12 of the path taken by the particle inside
the interferometer, based on the state of the environment. We
assume here that both paths are equiprobable. In the spinless
case, the ability for the particle distributed between two paths to
interfere is characterized by the visibility V, which measures the
modulation depth of interference fringes after the paths are
combined at the interferometer exit. These two quantities are
related by the inequality6

D2 þV2 � 1: ð1Þ
When the particle travelling through the interferometer has an

internal structure, the amount of available which-way informa-
tion depends in principle on the preparation of the spin
subsystem and the specifics of the interaction with the
environment. Here we demonstrate that in this case the strongest
bound on the distinguishability D is obtained by replacing V with
a quantity named generalized visibility that depends on the initial
spin preparation and the effective quantum channel experienced
by the particle resulting from the interaction with the environ-
ment. Further, we present a systematic method to construct
estimates for the generalized visibility based on directly measur-
able quantities, that is, interference visibilities for particular spin
preparations at the input and selections of spin states before
combining the paths at the interferometer exit. This provides an
efficient strategy to find an upper bound on the available which-
way information without performing full quantum process
tomography13–15. We illustrate the general results with a proof-
of-principle single-photon experiment that also demonstrates
how which-way information can be erased by introducing
mixedness in the spin preparation.

Results
The inequality. The quantum mechanical system considered here
is a particle present in one of two distinguishable paths, denoted
respectively as |0SQ and |1SQ. In addition, the particle is
equipped with a d-dimensional internal degree of freedom – spin
– which we will treat as a subsystem S. The complete state of the
particle prepared in the interferometer is characterized by a
certain density operator R̂QS. Both paths are equiprobable, that is,
TrSðQh0 j R̂QS j 0iQÞ ¼ TrSðQh1 j R̂QS j 1iQÞ ¼ 1=2. Inside the
interferometer, the particle interacts with an environment E
producing a joint state R̂0QSE . The interaction is constrained in that
it cannot transfer the particle between the paths. In this setting,
which-way information contained in the environment corre-
sponds to the ability to discriminate between two normalized
density matrices R̂0E

ðiÞ ¼ 2TrSðQhi j R̂0QSE j iiQÞ, i¼ 0, 1. In the

general case of mixed states, distinguishability is given explicitly
by the expression12,16

D ¼ 1
2
jj R̂0Eð0Þ � R̂0E

ð1Þ jj; ð2Þ

where || � || denotes the trace norm. Let us stress here that this
quantity is not conditioned upon any measurement performed
eventually on subsystems QS.

Our aim is to infer an upper bound on D from the properties of
the particle, that is, subsystems QS, after the interaction with the
environment. The state of the particle at this stage can be written
as a result of an action of a certain quantum channel17 K on the
input state R̂QS, with KðR̂QSÞ ¼ TrEðR̂0QSEÞ. Because the particle is
not transferred between interferometer arms, for any spin
operator ŝS, we have

Kðj iiQhj j � ŝSÞ ¼j iiQhj j � KijðŝSÞ; i; j ¼ 0; 1: ð3Þ
Our central result is that D satisfies the inequality:

D2 þV2
G � 1; ð4Þ

where VG, named generalized visibility, reads:

VG ¼d jj ðI � K01Þðð1̂ �
ffiffiffiffiffi
R̂0

p
Þ j Fþ ihFþ j ð1̂ �

ffiffiffiffiffi
R̂1

p
ÞÞ jj :
ð5Þ

Here j Fþ i is a normalized maximally entangled state of two
replicas of the spin subsystem, I is the identity channel, 1̂ is the
identity operator on the spin subsystem and R̂i ¼ 2Qhi j R̂QS j iiQ
are normalized spin states for the particle in either arm of the
interferometer before the interaction with the environment. The
complete proof of the inequality is presented in Methods.

Examples. The inequality (4) resembles that for a spinless particle
given in equation (1), but the concept of generalized visibility
covers a much wider range of physical scenarios. In order to
illustrate its breadth, let us consider here three cases. First, when
no interaction with the environment occurs, K01¼ I. In this case
VG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrR̂0TrR̂1

p
¼ 1, that is, no matter what internal states for

individual paths are initially chosen, the environment does not
gain any which-way information.

Second, let us take L01ðŝÞ ¼ ŝ0Trŝ, where ŝ0 is a fixed unit-
trace hermitian operator. Physically, this occurs when the internal
degree of freedom is entirely transferred to the environment and
replaced with a state ŝ0. Then VG ¼jj

ffiffiffiffiffi
R̂0

p ffiffiffiffiffi
R̂1

p
jj which is the

standard expression for quantum fidelity18,19 between density
operators R̂0 and R̂1. Consequently, the only way to ensure that no
which-way information leaks out is to associate both the
interferometer paths with identical internal states.

Finally, suppose that

K01ðŝÞ ¼
1
d
ŝT ; ð6Þ

where T denotes transposition. This channel gives VG ¼
1
d jj

ffiffiffiffiffi
R̂0

p
jj jj

ffiffiffiffiffi
R̂1

p
jj. The resulting expression has non-intuitive

properties: for a particle prepared in any pure state
ðj 0iQ j c0iS þ j 1iQ j c1iSÞ=

ffiffiffi
2

p
the generalized visibility equals

1/d, which is strictly less than one for a non-trivial spin subsystem
when dZ2. Generalized visibility reaches one only when the two
paths are associated with maximally mixed spin states,
R̂0 ¼ R̂1 ¼ 1

d 1̂, which follows immediately from the inequality
between arithmetic and quadratic means. This indicates that
which-way information deposited in the environment may be
erased by introducing classical noise in the input state of the spin
subsystem. To illuminate this point, let us take a single photon
travelling through a Mach–Zehnder interferometer and consider
its polarization, spanned by two orthogonal states |hSS and |uSS,
as the two-dimensional internal degree of freedom. Let the
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interaction of the photon with the environment be given by a
unitary map

1ffiffi
2

p ðj 0iQ j c0iS þ j 1iQ j c1iSÞ j e1iE ! 1
2
½j 0iQðc0h j hiS j e1iE

þc0h j uiS j e2iE þc0u j hiS j e3iE þc0u j uiS j e4iEÞ
þ j 1iQðc1h j hiS j e1iE þc1u j hiS j e2iE
þc1h j uiS j e3iE þc1u j uiS j e4iEÞ�;

ð7Þ

where |enSE, n¼ 1,y,4, are four orthogonal states of the
environment and cih¼ S/h|ciSS, ciu ¼ S/u|ciSS are the
probability amplitudes in the rectilinear basis. It is easy to verify
that this map indeed induces K01ðŝÞ ¼ ŝT=2, although the
polarization state in an individual arm is scrambled to a
completely mixed state, K00ðŝÞ ¼ K11ðŝÞ ¼ TrðŝÞ1̂=2.

If we prepare |c0SS¼ |c1SS¼ |hSS, the two states of the
environment correlated with the paths

R̂0E
ð0Þ ¼ 1

2 ðj e1iEhe1 j þ j e2iEhe2 jÞ;
R̂0E

ð1Þ ¼ 1
2 ðj e1iEhe1 j þ j e3iEhe3 jÞ;

ð8Þ

are partly distinguishable. Similarly, for the vertical input
polarization, |c0SS ¼ |c1SS ¼ |uSS, the environment states are

R̂0E
ð0Þ ¼ 1

2 ðj e3iEhe3 j þ j e4iEhe4 jÞ;
R̂0E

ð1Þ ¼ 1
2 ðj e2iEhe2 j þ j e4iEhe4 jÞ:

ð9Þ

However, if the input polarization is prepared in a completely
mixed state 1

2 ðj hiShh j þ j uiShu jÞ, one sees immediately that
both the paths are associated with the same mixed environment
state ð1=4Þ

P4
k¼1 j ekiEhek j and which-way information is not

available anymore. The inequality (4) demonstrates that this
effect is an intrinsic feature of the channel under consideration
rather than its specific realization given in equation (7).

Estimating generalized visibility. Generalized visibility VG is
given by a rather intricate expression involving the spin pre-
paration and the effective quantum channel experienced by the
particle. In principle, full information about the channel can be
obtained from quantum process tomography13–15, but this
approach may be resource consuming, especially for a high
dimension of the internal subsystem S. We will now give a recipe
how to construct estimates for VG from direct visibility
measurements for specific spin preparations and selections of
individual spin components before interfering the particle paths.

Consider the following procedure. The particle is prepared in
one of states

j cmiQS ¼
1ffiffiffi
2

p ðj 0iQ j cm
0iS þ j 1iQ j cm

1iSÞ; ð10Þ

where the normalized kets j cm
0iS and j cm

1iS describe the spin
state in the upper and lower interferometer path. The index m
labels different preparations. After the interaction with the
environment, the spin subsystem is filtered individually in each
interferometer arm to extract probability amplitudes correspond-
ing to normalized spin states j wn0iS and j wn1iS. These components
are subsequently made indistinguishable by a suitable spin
transformation and interfered on a balanced beam splitter with
a relative phase shift f. The probabilities of detecting the particle
at the two output ports ± of the beam splitter read

pmn� ðfÞ ¼ 1
2
½pmn � ReðVmneifÞ�: ð11Þ

Here,

pmn ¼ 1
2

hwn0 j K00ðj cm
0i hc

m
0 jÞ j wn0iþ hwn1 j K11ðj cm

1i hc
m
1 jÞ j wn1i

� �
ð12Þ

is the overall probability of detecting the particle in the filtered
components. The modulation depth of interference fringes is
characterized by the fractional visibility, given explicitly by

Vmn ¼ hwn0 j K01ðj cm
0i hc

m
1 jÞ j wn1i: ð13Þ

For the quantities introduced here, we always have |Vmn|r pmn.
Full-depth modulation of fringes is observed for the equality sign.

Let us now take any set of complex coefficients amn such
that a linear combination of rank-one operators ðj cm

0ihc
m
1 jÞT �

j wn1ihwn0 j can be written asX
mn

amnðj cm
0i hc

m
1 jÞT � j wn1i hwn0 j

¼ ð
ffiffiffiffiffi
R̂T1

q
� 1̂ÞÛð

ffiffiffiffiffi
R̂T0

q
� 1̂Þ ð14Þ

for a certain operator Û acting on the duplicated spin subsystem

that satisfies ÛyÛ � 1̂ � 1̂. We show in Methods that under
these assumptions the generalized visibility is bounded by a linear
combination of fractional visibilities with the same coeffcients amn:

VG �
X
mn

amnVmn

�����
�����: ð15Þ

Combining this result with equation (4) yields a family of
bounds on distinguishability in the form

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

G

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

X
mn

amnVmn

�����
�����
2

vuut : ð16Þ

Special cases of equation (16) are intuitive. Consider a scenario
shown in Fig. 1. We use only a single preparation ðj 0iQ
j c0iS þ j 1iQ j c1iSÞ=

ffiffiffi
2

p
(henceforth in this example we drop

the superfluous label m), and the sets of filter states in the upper
fj wn0iSg and lower fj wn1iSg arms form two orthonormal bases for
the spin subsystem with n indexing the basis elements. In
equation (14), we can take arbitrary phase factors as coefficients
an¼ eiyv , with the operator Û ¼ ðj c0i hc1 jÞ

T �
P

n e
iyn

j wn1i hwn0 j satisfying the condition ÛyÛ � 1̂ � 1̂. According to
equation (15), we have VG �j

P
n e

iynVn j, which maximized over
phases yn estimates the generalized visibility by a sum of absolute
values of fractional visibilities:

VG �
X
n

j Vn j : ð17Þ

If for each filter we measure the maximum possible fractional
visibility |Vn|¼ pn, the right-hand side of equation (17) becomes
one, because completeness of the bases fj wn0iSg and fj wn1iSg
implies that

P
n p

n ¼ 1. In other words, when the interaction with
the environment introduces different phase shifts between
distinguishable components of the spin subsystem but maintains
overall coherence between the paths, we can observe full visibility
by suitably sorting spin components at the output and interfering
them pairwise. This suffices to verify that no which-way
information is deposited in the environment. However, as noted
earlier, the interplay between the path and the spin subsystems
can exhibit more intricate behaviour. We illustrate this point with
a single-photon experiment.

Experiment. To expose more complex aspects of the trade-off
between which-way information and interference visibility for a
particle with an internal structure, we investigated experimentally
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interference of a single photon in a noisy Mach–Zehnder inter-
ferometer shown in Fig. 2, using photon polarization as the internal
subsystem S. Single photons with 810 nm central wavelength were
generated by type-II spontaneous parametric down-conversion in a
30-mm long periodically poled potassium titanyl phosphate crystal
pumped with 14mW of 405nm wavelength light from continuous
wave diode laser, and heralded by detection of orthogonally
polarized conjugate photons from the same pairs. The photons,
after sending through a 3nm bandwidth interference filter and
transmitting through a single-mode fibre, were split between two
paths using a calcite displacer. Equal splitting was ensured by using
a fibre polarization controller. Removable half-wave plates H1 and
H2 were used to prepare any combination of horizontal h and
vertical u polarization states for the two paths.

Inside the interferometer the photons were subjected to
path-dependent unitaries j 0iQh0 j � K̂ð0Þ

S þ j 1iQh1 j � K̂ð1Þ
S ,

where the pair ðK̂ð0Þ
S ; K̂ð1Þ

S Þ was an equally weighted mixture of
(1̂,1̂), ðX̂; X̂Þ, ðŶ ; � ŶÞ and ðẐ; ẐÞ, with X̂, Ŷ and Ẑ denoting
Pauli operators. The unitaries were realized by wave plates H3, H4,
Q1, Q2 mounted on motorized rotation stages, with orientations
specified in Table 1. This procedure scrambled the polarization
state in a single arm to the completely mixed state. But the noise
had a non-trivial effect on the joint path-polarization state, as

K01ðŝÞ ¼
1
4
ðŝþ X̂ŝX̂� Ŷ ŝŶ þ ẐŝẐÞ ¼ 1

2
ŝT ; ð18Þ

which provides a physical realization of equation (6) for d¼ 2.
We treat the realized noisy channel as a black box simulating
interaction with an environment and analyse the maximum
amount of which-way information that might have leaked to the
environment in the worst-case scenario. We have seen that
another realization of this channel, given in equation (7), can
reveal certain which-way information depending on the prepara-
tion of the internal degree of freedom.

In order to estimate which-way information possibly deposited
in the environment, we used four different combinations of
preparations for the photon polarization in the upper and the lower
paths, denoted jointly as m¼ hh, hu, uh, uu. After the simulated
interaction with the environment, we filtered out from each path
either horizontal or vertical component using the half-wave plate
H5, which directed selected polarizations to the same output port
after the second calcite crystal. We used a common-path set-up
based on the half-wave plate H6 and the polarizer P monitored by
single-photon detectors D± to measure the corresponding
fractional visibilities Vmn. The index n labelling filters also assumes
one of four values: hh, hu, uh or uu. The two non-interfering output
ports after the second calcite crystal were monitored by detectors
D0 and D1 in order to normalize overall count rates. The measured
count rates were adjusted by binomial resampling to correct for
non-uniform detection efficiencies of the detectors.

Because individual paths inside the interferometer are
completely depolarized by the interaction with the environment,

H1

H3

H2

H4

H6

D_

P

H5

D1

D0

D+

Q2

Q1

�V

Figure 2 | Noisy Mach–Zehnder interferometer. Experimental set-up. A heralded single photon with 810 nm central wavelength and 3 nm bandwidth from

a down-conversion source is split between two paths using a calcite crystal. Polarizations in individual paths are prepared using optional half-wave

plates (HWPs) H1 and H2. Noise K is introduced using four sets of orientations of HWPs H3 and H4 and quarter-wave plates Q1 and Q2 mounted on

computer-controlled motorized rotation stages. Polarization components of the output state are filtered using a HWP H5 and a second calcite crystal.

Interference is realized in the common-path configuration using HWP H6 oriented at 45� with respect to the set-up plane and a polarizing beam splitter

P with output ports monitored by single-photon detectors Dþ and D� . Two other detectors D0 and D1 are used to determine the overall count rate. The

phase shift f is introduced by rotating the second calcite crystal about an axis perpendicular to the set-up plane using a closed loop piezo actuator.

⏐�1〉

⏐�0〉

⏐�0
d–1〉

⏐�0
1〉

⏐�0
0 〉

⏐�1
0 〉

⏐�1
1〉

⏐�1
d–1〉

�

V

Figure 1 | Projective measurement of fractional visibilities. A particle is prepared in the spin state j c0i in the upper arm and j c1i in the lower

arm. After interaction with the environment described by the channel K the phase between interferometer arms is modulated by f. Next, the spin states

are filtered in the orthonormal bases f j wn0ig for the upper arm and f j wn1ig for the lower arm, and individual components are interfered pairwise

to determine fractional visibilities Vn,n¼0, 1,y,d–1.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3594

4 NATURE COMMUNICATIONS | 4:2594 | DOI: 10.1038/ncomms3594 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://www.nature.com/naturecommunications
http://mostwiedzy.pl


the theoretical probability of filtering out the photon for any
selection of the preparation m and the filter n equals pmn ¼ 1=2.
Theoretical predictions for fractional visibilities are collected in
Table 2. It is seen that only few combinations of preparations and
filters are expected to produce interference fringes. Let us select
for a moment a single preparation m. After filtering a pair of
polarization components, one could use the remaining compo-
nents to measure also the second fractional visibility for
complementary polarizations. For example, n¼ uu is comple-
mentary to n¼ hh, and n¼ uh is complementary to n¼ hu.
This is an example of a scenario covered by the inequality (17).
Although the photon is equally likely to choose either of the two
complementary filters, interference fringes are visible only for one
of them and the right-hand side of equation (17) is at most 1/2.

Suppose now that before interaction with the environment the
photon polarization is averaged to the completely mixed state and
R̂0 ¼ R̂1 ¼ ð1=2Þ1̂, for example by switching randomly between
four preparations hh, hu, uh, uu. To estimate which-way
information available in this case, let us take on the left-hand
side of equation (14) four non-zero coefficients:

ahh;hh ¼ 1
2 e

iy1 ; ahu;uh ¼ 1
2 e

iy2 ;
auh;hu ¼ 1

2 e
iy3 ; auu;uu ¼ 1

2 e
iy4 ð19Þ

where y1,y,y4 are arbitrary phases. The corresponding operator

Û ¼eiy1 j hi hh j � j hi hh j þ eiy2 j hi hu j � j ui hh j
þ eiy3 j ui hh j�j hi hu j þ eiy4 j ui hu j�j ui hu j

ð20Þ

is unitary for any choice of phases y1,y,y4. Therefore,
equation (15) provides a bound on generalized visibility in
the form VGZ |eiy1Vhh,hhþ eiy2Vhu,uhþ eiy3Vuh,huþ eiy4Vuu,uu|/2.
Maximization over phases yields

VG � 1
2
ðj Vhh;hh j þ j Vhu;uh j þ j Vuh;hu j þ j Vuu;uu jÞ: ð21Þ

This bound on generalized visibility can be applied directly to
experimental data in order to estimate available which-way
information for mixed polarization preparation.

In order to measure fractional visibilities, the phase in the
interferometer was adjusted by rotating one of the calcite crystals
about an axis perpendicular to the plane of the set-up using a
closed loop piezo-electric actuator. For each selected phase value,

we averaged over four unitaries simulating the interaction with
the environment. Experimentally measured interference fringes
for combinations of preparations m and filters n entering the
inequality (21) are shown in Fig. 3 along with results obtained for

Table 2 | Theoretical predictions of fractional visibilities Vln

for preparations l and filters n chosen in the rectilinear
basis.

ln hh ht th tt

hh 1
2 0 0 0

hu 0 0 1
2 0

uh 0 1
2 0 0

uu 0 0 0 1
2

Table 3 | Experimental values of filtering probabilities pln

and fractional visibilities Vln.

ln pln Vln ln pln Vln

hh, hh 0.489 0.476 hh, uu 0.512 0.104
hu, uh 0.513 0.488 hu, hu 0.490 0.039
uh, hu 0.511 0.479 uh, uh 0.490 0.032
uu, uu 0.489 0.478 uu, hh 0.512 0.100

Uncertainties are below 0.003 for all values shown.

Table 1 | Orientations of principal axes of wave plates used
to simulate interaction with the environment.

ðK̂ð0Þ
S ; K̂

ð1Þ
S Þ H3 H4 Q1 Q2

ð1̂; 1̂Þ �45� �45� 45� 45�
ðX̂; X̂Þ 45� 45� 45� �45�
ðŶ; � ŶÞ 0� 90� 45� 45�
ðẐ; ẐÞ 0� 0� 45� �45�

0 π/2 π 3π/2 2π 0 π/2 π 3π/2 2π
0
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0
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0
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Phase shift (rad) Phase shift (rad)
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nt
s 

(1
03

s–1
)

Figure 3 | Interference fringes in a noisy interferometer. Count rates on

detectors Dþ (þ , black) and D� (	 , red) conditioned upon detection

of conjugate heralding photons from the down-conversion source as a

function of the phase shift in the interferometer. Panels are labelled as m,n,
where m specifies polarization preparation and n defines polarizations

filtered from the two paths. Solid lines are sinusoidal fits used to determine

fractional visibilities. Experimental uncertainties of count rates are smaller

than the size of the symbols.
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complementary filters. Probabilities pmn and fractional visibilities
Vmn determined from these measurements are collected in Table
3. Inserting these data in equation (21) gives VG Z0.960±0.006.
This translates into an upper bound on distinguishability in the
form D r0.28±0.02 according to equation (16). Remarkably,
this stringent bound is determined from just few measurements
of fractional visibilities rather than complete quantum process
tomography. In contrast, consider an individual pure preparation
and complementary projective filters, corresponding to a pair of
graphs shown in a single row of Fig. 3. In this case, experimental
results yield at most VG Z0.580±0.006 using equation (17),
which implies D r0.815±0.005. This separation between
estimated on distinguishability for mixed and pure polarization
preparations strikingly demonstrates the convoluted effects of
internal degrees of freedom in a which-way experiment.

Discussion
The scenario considered in this work assumed a clear distinction
between the environment and the spin that are both external to
the path subsystem. The amount of available which-way
information was determined solely from the quantum state of
the environment after the interaction with the particle in the
interferometer and no classical information about either spin
preparation or measurement results could be used for that
purpose. This makes our approach distinct from previous studies
of the quantum erasure phenomenon8,20–23, where postselection
carried out on the environment can restore conditional
interference fringes. Here, the environment was treated as an
adversary whose information about the path taken by the particle
we try to control and estimate by manipulating the spin
subsystem at the preparation and the detection stages.

In this context, the analysis of a which-way experiment with an
internal degree of freedom points at non-trivial issues in prepare-
and-measure protocols for quantum key distribution over
complex noisy channels. Suppose that a cryptographic key is to
be established by sending a particle along a randomly selected one
of two paths, and the key security is to be verified by preparing
occasionally the particle in a superposition of the two paths and
measuring its coherence at the output by sampling interference
fringes. If the particle is equipped with spin, the trade-off between
distinguishability and visibility derived in this work implies that
certain eavesdropping strategies require the sender to use
randomness in spin preparation in order to ensure security.
Further, to verify the security, the sender and the receiver may
need to combine data collected for an array of spin preparations
and filterings.

An entanglement-based analogue of the scenario analysed
above would be to prepare jointly two particles in a maximally
entangled path–spin state and to subject one of them to
interaction with the environment modelling an eavesdropping
attempt. In this case, spin can have the role of a shield subsystem
fully protecting the privacy of a cryptographic key generated by
detecting particles in individual paths, even though the noise
present in the bipartite state may prevent entanglement
distillation at the same rate as key generation24–27. To complete
the parallel, estimates for generalized visibility determined from
fractional visibility measurements can be viewed as a dynamical
analogue of recently introduced privacy witnesses28.

Methods
Our basic tool will be the Choi–Jamio"kowski isomorphism29,30 between
linear maps and operators acting on the duplicated Hilbert space. Let us define a
maximally entangled state of two replicas of the system QS as
|FþSQSQ0S0 ¼ |FþSQQ0#|FþSSS0 , where j Fþ iQQ0 ¼ ðj 0iQ j 0iQ0 þ j 1iQ
j 1iQ0 Þ=

ffiffiffi
2

p
and j Fþ iSS0 ¼ ð

Pd� 1
l¼0 j liS j liS0 Þ=

ffiffiffi
d

p
. The Choi–Jamio"kowski state

corresponding to a channel K is given by L̂QSQ0S0 ¼ ðI � KÞðj Fþ iQSQ0S0 hFþ jÞ,
where the identity map I acts on the subsystem QS, whereas K acts on Q0S0 . The
transformation of a state R̂0 ¼ KðR̂Þ can be written as

R̂0Q0S0 ¼ 2dTrQS½L̂QSQ0S0 R̂TQS� ð22Þ

where the transposition T is performed in the same basis in which the state
|FþSQSQ0S0 has been defined. The input state R̂ is encoded in the subsystem QS,
whereas the output state is inscribed in the subsystem Q0S0.

In order to take into account information deposited in the environment in
course of the interaction, we will consider a purification of the state L̂QSQ0S0 :

L̂QSQ0S0 ¼ TrEðj LiQSQ0S0EhL jÞ: ð23Þ
Because the particle is not transferred between the two paths, the purified state

has the form

j LiQSQ0S0E ¼ 1ffiffiffi
2

p ðj 00iQQ0 j L0iSS0E þ j 11iQQ0 j L1iSS0EÞ; ð24Þ

where the states |LiSSS0E, i¼ 0, 1, are normalized.
The joint state of the particle and the environment after the interaction can be

written as follows:

R̂0Q0S0E ¼ 2dTrQSðj LiQSQ0S0EhL j R̂TQSÞ

¼ d
2

X
i;j¼0;1

j iiQ0 hj j � TrS½j LiiSS0EhLj j ð2hi j R̂ j jiÞTS �
ð25Þ

In the first expression, transposition is performed on subsystems QS, while in the
second expression only on S. Thus, the environment states correlated with the
particle present in one or another path are given after normalization by
R̂0EðiÞ ¼ dTrSS0 ½j LiiSS0EhLi j ðR̂iÞ

T
S �, where R̂i ¼ 2Qhi j R̂QS j iiQ are the normalized

internal states of the particle in the upper and the lower arms of the interferometer.
Distinguishability can only increase by access to additional subsystems that purify

the states. We will take as purifications of R̂
0 ðiÞ
E states j eiiSS0E ¼ Û ðiÞ

SS0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dðR̂iÞ

T
S

q
j LiiSS0E where Û ðiÞ

SS0 are arbitrary unitaries. For any choice of these unitaries,
we will have

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jSS0E he0 j e1iSS0E j2

q
: ð26Þ

The most stringent bound is obtained by minimizing the right-hand side over Û ð0Þ
SS0

and Û ð1Þ
SS0 . This can be equivalently written as D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

G

p
, where

VG ¼ max
ÛSS0

SS0EhL1 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðR̂1Þ

T
S

q
ÛSS0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðR̂0Þ

T
S

q
j L0iSS0E

����
���� ð27Þ

and ÛSS0 is an arbitrary unitary, or using the trace operation

VG ¼ dmax
ÛSS0

TrSS0 ÛSS0

ffiffiffiffiffiffiffiffiffiffiffi
ðR̂0Þ

T
S

q
TrEðj L0iSS0EhL1 jÞ

ffiffiffiffiffiffiffiffiffiffiffi
ðR̂1Þ

T
S

q� �����
����: ð28Þ

The maximum can be expressed in terms of the trace norm as follows:

VG ¼ d
ffiffiffiffiffiffiffiffiffiffiffi
ðR̂0Þ

T
S

q
TrEðj L0iSS0EhL1 jÞ

ffiffiffiffiffiffiffiffiffiffiffi
ðR̂1Þ

T
S

q����
����

����
����: ð29Þ

The channel characteristics enters the above formula through

TrEðj L0iSS0EhL1 jÞ ¼ 2QQ0 h00 j L̂QSQ0S0 j 11iQQ0

¼ ðI � K01Þ ðj Fþ iSS0 hFþ jÞ;
ð30Þ

where K01 has been defined in equation (3). Using the fact that ð
ffiffiffiffiffiffiffiffiffiffi
ðR̂iÞ

T
S

q
� 1̂S0 Þ

j Fþ iSS0 ¼ ð1̂S �
ffiffiffiffiffiffiffiffiffiffiffi
ðR̂iÞS0

p
Þ j Fþ iSS0 yields equation (5).

The expression for fractional visibilities Vmn given in equation (13) can be
rewritten in the tensor form

Vmn ¼ dTrf½ðj cm
0iShc

m
1 jÞT � j wn1iS0 hwn0 j�ðI � K01Þðj Fþ iSS0 hFþ jÞg: ð31Þ

Maximization in equation (28) can be extended to all operators ÛSS0 satisfying
Û
y
SS0 ÛSS0 � 1̂. Therefore, for any such operator we have

VG � d TrSS0 ð
ffiffiffiffiffiffiffiffiffiffiffi
ðR̂1Þ

T
S

q
ÛSS0

ffiffiffiffiffiffiffiffiffiffiffi
ðR̂0Þ

T
S

q
ÞðI � K01Þðj Fþ iSS0 hFþ jÞ

� �����
����; ð32Þ

where we used equation (30). Consequently, tracing both sides of equation (14)
multiplied by dðI � K01Þ ðj Fþ i hFþ jÞ and comparing resulting expressions with
equations (31) and (32) immediately yields a lower bound on the generalized
visibility presented in equation (15).
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