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a  b  s  t  r  a  c  t

Almost  two  decades  of  research  on applications  of  the  mathematical  formalism  of  quantum  theory  as  a
modeling  tool  in  domains  different  from  the micro-world  has given  rise  to  many  successful  applications
in  situations  related  to  human  behavior  and  thought,  more  specifically  in  cognitive  processes  of  decision-
making  and  the  ways  concepts  are combined  into  sentences.  In  this  article,  we  extend  this  approach  to
animal  behavior,  showing  that  an  analysis  of  an interactive  situation  involving  a  mating  competition
between  certain  lizard morphs  allows  to  identify  a quantum  theoretic  structure.  More  in particular,
we  show  that  when  this  lizard  competition  is analyzed  structurally  in  the  light  of a  compound  entity
consisting  of  subentities,  the  contextuality  provided  by  the presence  of  an underlying  rock-paper-scissors
cyclic  dynamics  leads  to a violation  of  Bell’s  inequality,  which  means  it is of  a non-classical  type.  We
work  out  an  explicit  quantum-mechanical  representation  in Hilbert  space  for the  lizard  situation  and
uantum modeling show  that  it faithfully  models  a set  of experimental  data  collected  on three  throat-colored  morphs  of  a
specific  lizard  species.  Furthermore,  we  investigate  the  Hilbert  space  modeling,  and  show  that  the  states
describing  the  lizard  competitions  contain  entanglement  for  each  one  of the  considered  confrontations  of
lizards  with  different  competing  strategies,  which  renders  it no longer  possible  to interpret  these  states
of  the  competing  lizards  as compositions  of  states  of the  individual  lizards.

© 2014  The  Authors.  Published  by Elsevier  B.V. 

Open access under CC BY license.
. Introduction

This article looks into the challenging question of whether quan-
um structures are present in aspects of animal behavior. More
pecifically, we discuss an example that reveals contextuality and
he appearance of entanglement in a proposed quantum theoretic

odel for the mating competition of three male morphs of Uta
tansburiana lizards.

The  first step leading to the result we put forward in the present
rticle was related to our study of biological evolution based on a
pecific situation involving the rock-paper-scissors (RPS) game as

n example. We  observed (Aerts et al., 2011) that when the RPS
ame was regarded as a coincidence experiment, it allowed for
iolation of Bell’s inequality (Bell, 1964).
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The presence of contextuality in a situation of a compound entity
consisting of two  subentities essentially means that what happens
with one of the subentities affects the behavior of the other suben-
tity, which as a general situation is quite common. Contextuality
can hence readily be identified in the case of the RPS dynamics,
when the two players involved in the interaction are looked upon
as a compound entity comprising two  subentities. Indeed, whether
one of the players wins or loses depends essentially on what the
other player does.

It  has been shown in the foundations of quantum theory that
if this contextuality – in addition to its readily identifiable effect
of one subentity functioning as a context for the other subentity –
leads to a violation of Bell’s inequality, this is indicative of the pres-
ence of a special type of contextuality which cannot be modeled
classically and which, when modeled quantum-mechanically, is
expressed by the appearance of entanglement in the state of

the compound entity (Accardi and Fedullo, 1982; Aerts, 1986;
Pitowsky, 1989). In the following we will refer to this type of
‘Bell’s inequality violating contextuality’ as ‘non-classical contex-
tuality’. The presence of entanglement in the state of the compound
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ntity means that this state cannot be described any longer as the
omposition of two states, where each one is a state of one of the
ubentities. The compound entity entails a new type of difficulty
hen attempted to be interpreted as two subentities, which is the
ngerprint of the presence of quantum structure for any situation
f compoundness. This is why finding Bell’s inequality to be vio-
ated by the ideal RPS game to us was a straightforward reason to
nvestigate whether a quantum structure was involved in this RPS
ynamics.

The relevance of this insight to biology only became clear when
ome of us learned that the RPS game had been used as a model-
ng scheme for specific types of dynamical situations in population
cology, including the famous ‘paradox of the plankton’, where
t is referred to as cyclic or multiple competition (Huisman and

eissing, 1999; Huisman et al., 2001; Schippers et al., 2001; Laird
nd Schamp, 2008; Allesina and Levine, 2011). Also, situations of
ompeting lizard species were studied intensively by consider-
ng cyclic competition as a fundamental aspect of their dynamics.

ore specifically, one of us discovered an RPS strategy in the mat-
ng behavior of the side-blotched lizard species Uta stansburiana
Smith, 1996; Sinervo and Lively, 1996). It was found that males,
aving either orange, blue or yellow throats, follow heritable mat-

ng strategies. As in the RPS game, where scissors cut paper, rock
rushes scissors, and paper wraps rock, the three-morph mating
ystem is such that the wide-ranging ultradominant strategy of
range males is defeated by the sneaker strategy of yellow males,
hich is in turn defeated by the mate-guarding strategy of blue
ales. The orange strategy defeats the blue strategy, to complete

he dynamic cycle. This ‘lizard game’ presents a stable pattern in the
eplicator dynamics where the dynamical system follows closed
rbits around a mixed strategy Nash equilibrium (Smith, 1996;
inervo and Lively, 1996; Sinervo, 2001; Sinervo et al., 2006, 2007).
nd indeed, if we regard two competing lizard morphs as a com-
ound entity of two individual lizard morphs, we  can recognize
he same type of contextuality that we identified for the ideal RPS
ame; whether one of the lizards in competition will impregnate

 female depends essentially on the color of the other lizard. Addi-
ionally, Bell’s inequality is violated also for the lizard morphs, as
e will explicitly show in Section 4, investigating in detail the con-

extuality that is apparent in the lizard competition. This explains
ur motivation to build a quantum-theoretic model for this lizard
cosystem.

Identification of quantum structure in the lizard dynamics can
e seen as an example of the use of the mathematical formalism
f quantum theory as a modeling instrument in domains different
rom the micro-world. This approach has led to interesting results
n recent years and is now an active and emergent research field in
tself. In cognitive science (concept theory and decision theory), in
conomics (finance and behavioral economics), and in computer
cience (semantic theories, information retrieval, and artificial
ntelligence), several situations have been identified where applica-
ion of classical structures is problematic, whereas modeling based
n quantum structures is successful (Aerts and Aerts, 1995; Van
ijsbergen, 2004; Aerts and Czachor, 2004; Aerts and Gabora, 2005;
usemeyer et al., 2006, 2011; Pothos and Busemeyer, 2009, 2013;
ruza et al., 2009; Aerts, 2009; Lambert-Mogiliansky et al., 2009;
hrennikov, 2010; Trueblood and Busemeyer, 2011; Aerts et al.,
013b,a; Busemeyer and Bruza, 2012).

An important point to be made for the above-mentioned
pproaches  is that it is not the presence of microscopic quantum
rocesses that is considered to be at work to give rise to the appear-
nce of quantum structure in these different domains. Rather the

ituation is such, that it is possible to identify in these domains some
ypical quantum features, such as the quantum-type of contextu-
lity and entanglement, and it are these features themselves that
ive rise to the presence of quantum structure. We  will identify this
lling 281 (2014) 38–51 39

type of quantum structure for the lizard ecosystem. It is interesting
to mention in this respect, that in a comparable way  such quan-
tum structure has been found to be quite systematically present in
human cognition, in the processes of decision-making (Aerts and
Aerts, 1995; Busemeyer et al., 2006, 2011; Pothos and Busemeyer,
2009, 2013; Trueblood and Busemeyer, 2011; Busemeyer and
Bruza, 2012), and in the dynamics of how humans use and com-
bine concepts (Aerts and Gabora, 2005; Aerts, 2009; Aerts et al.,
2013b,a).

In our investigation of the lizard ecosystem we construct an
explicit quantum-theoretic representation in a complex Hilbert
space of the underlying RPS-like dynamics that gives rise to the
cyclic pattern of frequencies in the population identified exper-
imentally. To accomplish this, we make use of the specific rules
of the quantum formalism to calculate the probabilities in this
underlying RPS-like dynamics in a way  that allows to faithfully
represent the experimental data gathered by one of us on the pop-
ulation frequencies over the last two decades. In Sections 2 and 3,
we introduce our lizard system and explain the main aspects of
our approach and modeling of the underlying RPS-like dynamics.
We analyze how contextuality is one of its essential features. The
latter notion is analyzed in detail with respect to the lizard com-
petition in Section 4. In Section 5, we put forward the notions of
the quantum-mechanical formalism that are needed in our paper,
and in parallel we work out a Hilbert space model for the RPS-type
lizard game. We  show that the self-adjoint operators representing
the confrontation events (called ‘measurements’ in quantum jar-
gon) in the lizard competition do not commute, which means that
the probability structure connected to them is non-classical. In Sec-
tion 6 we analyze the ‘lizard morphs situation’ explicitly from the
perspective of a compound entity consisting of a subentities situ-
ation, a situation well-known and studied in quantum theory, and
we show that, following such a quantum analysis of compoundness,
this lizard morphs situation involves entanglement in its states for
each of the considered measurements. The problem with a Kol-
mogorovian probability model for the lizard game is analyzed in
Section 7. Finally, in our conclusions of Section 8, we put forward
ideas for future investigation. The general result obtained supports
intuitions that dynamical systems based on non-Kolmogorovian
probability may  provide a fruitful conceptual framework for real-
life interactions of populations (Aerts et al., 2013).

2. The RPS-type nature of the lizard dynamics

Before we  provide proof of a quantum-like dynamical structure
underlying the competing morphs of the lizard Uta stansburiana, we
briefly sketch some game-theoretic aspects of population ecology.

Species  competition can be reformulated in terms of evolution-
ary game dynamics describing how the frequencies of strategies
within a population change in time, according to their success.
Game theory typically deals with an individual (player) who is
engaged in a given interaction (game) with other players and can
decide between different options (strategies). Depending on the
strategies of a player and its co-players a payoff is realized, and
the possible maximization of this payoff is one of the fundamental
aspects of game-theory. Evolutionary game dynamics thus deals
with populations of players programmed – genetically or possi-
bly also induced by the environment – to use the same strategy.
Strategies with high payoff will spread within the population,
where the payoffs depend on the actions of the co-players and
hence on the frequencies of the strategies within the population.

In classical evolutionary game theory, one typically assumes that
the elements of the pay-off matrix are time invariant and evo-
lution of the system takes place as frequency-dependent fitness
changes, thereby changing the relative success and the probability

http://mostwiedzy.pl
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f encountering each strategy over time. In evolutionary biology,
he strategies can be identified with morphs, and many species
xhibit color polymorphisms associated with alternative male
eproductive strategies (Sinervo and Lively, 1996; Sinervo et al.,
007; Sinervo and Calsbeek, 2006). The prevalence of multiple
orphs is a challenge to evolutionary theory because a single strat-

gy should prevail unless morphs have exactly the same fitness or a
tness advantage when rare. One of us has shown in several papers
hat the three color morphs of side-blotched lizards, Uta stansburi-
na, follow an underlying RPS-like dynamics (Sinervo and Lively,
996; Sinervo, 2001; Sinervo et al., 2006; Sinervo and Calsbeek,
006; Bleay et al., 2007). More precisely, males have either orange
o), blue (b) or yellow (y) throats and each type follows a fixed

ating strategy, as follows:

(i)  Orange-throated males are strongest and do not form strong
pair  bonds; instead, they fight blue-throated males for their
females.  Yellow-throated males, however, manage to copulate
with  females in the orange male harems. The large size and
aggression is caused by high testosterone production (Mills
et  al., 2008).

(ii) Blue-throated males are smaller in size and form strong pair
bonds.  While they are outcompeted by orange-throated males,
they  can defend against yellow-throated ones via co-operation
with  other blue-throated neighbors. Because blue-throated
males produce less testosterone, they are not as strong as
the  orange-throated males, but it gives them the advantage
of  being less aggressive and able to form strong pair bonds,
and  also engage in territorial co-operation with neighboring
blue-throated males (Sinervo et al., 2006).

iii)  Yellow-throated males are smallest, and their coloration mim-
ics  females. This enables them to approach females in the
harems  of orange-throated males and mate when the latter
are  distracted. This is less likely to work with a female that has
bonded  with a blue-throated male, and by virtue of his vigilant
co-operative blue-throated male partner.

Points  (i)–(iii) can be summarized as “o beats b, b beats y, and y
eats o”, which is similar to the RPS rules. Therefore o and y provide
ontexts for b, and in turn, b and y provide contexts for o, and finally

 and b provide contexts for y. Thus, the interaction of the ‘RPS
izards’ exposes a deeper underlying contextuality beyond the indi-
idual players, since their strategy is unchangeably fixed by their
olor.

Fundamentally it is the structure of the underlying RPS-like
ynamics that entails the quantum structure of the model we
ill construct. For an ideal RPS-situation, where paper beats rock,

cissors beats paper, and rock beats scissors, no probabilities are
nvolved but certitudes (probabilities equal to 1 or 0). We  will see
n the following that, even for this ideal RPS situation, Bell-type
nequalities are violated, which shows that also in this determinis-
ic limit case, contextuality is present. It is contextuality which gives
ise to non-classical quantum-like structure tested by the Bell-type
nequalities. Of course, the real-world situation, with male lizards
onfronting each other in competition for a female, does not reflect
he ideal RPS-situation. The experimental data (next section) shows
hat outcome probabilities not equal to 1 or 0 are valid for the
eal-world situation. This means that the contextuality – which is
eterministic for the true RPS-game – is probabilistic in the real-
orld case of the lizards.

We  must therefore first calculate, for the underlying RPS-like sit-
ation, the outcome probabilities of male lizards of different colors
inning or losing a mutual competition for females. Although these
utcome probabilities are at the origin of the measured cyclic fluc-
uations in the frequency data collected in lizard experiments, they
annot be measured directly. In the next section we  explain how
e calculate the outcome probabilities starting from data collected
elling 281 (2014) 38–51

by  Bleay et al. (2007). The first step in our aim is to (i) prove that
the RPS-like outcome probabilities violate Bell’s inequalities, and
hence cannot be represented within a Kolmogorovian probability
model and, (ii) build a Hilbert space model that does represent these
probabilities quantum-theoretically, and show explicitly how the
considered measurements correspond to non-commuting observ-
ables within this Hilbert space representation.

3. Calculating the RPS-type outcome probabilities

In Bleay et al. (2007), the mutual confrontations of the different
lizard morphs are described as a cyclic RPS-like dynamics: orange
beats blue, blue beats yellow and yellow beats orange. So we  can
choose to identify orange with rock, blue with scissors and yellow
with paper.

In  order to identify the RPS-like scheme quantitatively we  con-
sider their experiments more closely. The relevant data (Bleay et al.,
2007, Figue 1) concerns ‘male fitness’, measured by counting the
proportion of clutch sired by the different male morphs, orange,
yellow, or blue in a frequency-controlled female environment. The
experiments were performed in three variations, with each vari-
ation specifically controlling the ‘male morph frequency within
a female’s social neighborhood’. In particular, one variation con-
trolled the orange male morph frequency within a female’s social
neighborhood, the second variation, the yellow male morph fre-
quency, and the third, the blue male morph frequency.

A first consideration of these data shows how the ‘outcome
probabilities’ are contained in the morph color frequency of the
female’s clutch measured in the experiment. E.g. in the variant with
controlled frequency of orange morphs in a female’s social neigh-
borhood, the all-orange female environment leads to the clutch
proportions of 0.28 orange hatchlings, 0.53 yellow hatchlings,
and 0.19 blue hatchlings. Thus, socially surrounded by all-orange
morphs, the yellow ‘sneakers’ manage to sire more hatchlings than
the orange ones. The blue morphs are less successful in this situa-
tion. These clutch color proportions therefore express a weighted
mean of outcome probabilities of mutual morph color competi-
tions.

In order to extract outcome probabilities from these clutch color
proportions, we  put forward the following hypotheses concerning
the competition for a female between a particular color morph and
another particular color morph, where the female’s clutch is sired
by one of them.

(i)  Only one of the competing males sires the given progeny of the
female,  and since it is color proportion we  measure, only one of
the male morph colors ‘wins’ and the other morph color then
‘loses’,  with respect to this measurement of fertility. We  thus
define  ‘win’ and ‘lose’ in the following way. A specific morph
color  ‘wins’ in a competition with another morph in case its
color  is transferred – as a result of male confrontations and
sperm  competition – to the hatchlings being born in the given
progeny  of the female they compete for. The morph is defined
to  ‘lose’ in case it does not win.

(ii)  We  specify in a way compatible with our general definition of
‘win’  and ‘lose’ what happens in case of a ‘draw’. With the win-
lose  definition we just introduced, in the case of two morphs of
the  same color competing, a hatchling is sired by their common
color  and as a consequence they both win.

iii)  The competition situation is symmetric. We  will suppose that
only  the confrontation of the two  different strategies corre-
sponding to the two morph colors determines the dynamics

and  hence the result of winning or losing.

(iv)  Since even if in a female’s social neighborhood males of only
one  morph color are maximally present, all morph colors still
appear  among the hatchlings, the underlying dynamics cannot

http://mostwiedzy.pl
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be that of the ideal RPS-game. Thus color competition outcome
probabilities can be different from both 1 and 0.

We introduce the following notation to be able to express the
ontent of hypotheses (i), (ii), (iii) and (iv). We  denote by

(ab)11 p(ab)12 p(ab)21 p(ab)22 (1)

he  probabilities that for two morphs with colors a and b con-
ronting each other, there is a situation of ‘win, win’, this is p(ab)11,
f ‘win, lose’, this is p(ab)12, of ‘lose, win’, this is p(ab)21, and of ‘lose,
ose’, this is p(ab)22. Hence, the ‘1’ or ‘2’ in the subscript slots signify
win’ and ‘lose’.

We  will, for a and b interchangeably, allow the colors of the
orphs to be used, with letters o, y and b. Since the four outcomes

11, 12, 21, 22} exhaust all possibilities, we have:

2

ij=1

p(ab)ij = 1 (2)

The  above-mentioned hypotheses can now be expressed math-
matically by means of these probabilities.

(ab)11 = p(ab)22 = 0 p(ab)12 + p(ab)21 = 1 if a /=  b (3)

(aa)11 = 1, p(aa)12 = p(aa)21 = p(aa)22 = 0 (4)

(ab)ij = p(ba)ji (5)

 ≤ p(ab)ij ≤ 1 (6)

Now  we complete the model with the observation we  previ-
usly made in the experiment (Bleay et al., 2007), and its first
ariation and specifically in its all-orange female social neighbor-
ood. Let us denote by wo(o) = 0.35, wo(y) = 0.41 and wo(b) = 0.24
he proportions of orange, yellow and blue hatchlings found in
he female’s clutch. Each of these color appearances is the conse-
uence of competitions taking place in the all-orange environment.
nd competitions can in principle be of six different types, orange-
range, orange-yellow, orange-blue, yellow-yellow, yellow-blue
nd blue-blue. In a given situation of a female’s social neighbor-
ood the color proportions in the clutch are therefore determined
ompletely by (i) the fraction of each type of the six possible con-
rontations taking place, and (ii) the outcome probabilities for each
f the confrontations, because indeed, due to (3) and (4), each one of
uch confrontationd leads to one unique color in the clutch, and the
robability of this happening is given by the outcome probability.

Since  we do not know the relative importance of each type of
onfrontation, we will assign a number Pc(ab) to the fraction of
onfrontations of colors a and b taking place in the female social
eighborhood of color c. Since color confrontations are symmetric,
hese assigned weights satisfy Pc(ab) = Pc(ba). Since Pc(ab) represent
ractions, we have, for an arbitrary c, the following normalization:

c(ob) + Pc(oy) + Pc(oo) + Pc(yb) + Pc(yy) + Pc(bb) = 1 (7)

ach  Pc(ab) represents the fraction of confrontations (ab) that,
ue to (3) and (4), can lead to offspring with either color a or b.
his means that, for a /=  b, and applying (3), Pc(ab)p(ab)12 is the
roportion of a-colored offspring in the clutch, for a female envi-
onment of color c – since p(ab)12 is the probability that a wins
ver b – and Pc(ab)p(ab)21 is the proportion of b-colored offspring
n the clutch, for a female environment with color c, since p(ab)21
s the probability that b wins over a. Finally applying (4), we  find
c(aa)p(aa)11 = Pc(aa) is the proportion of a-colored offspring in the
lutch, for a female environment of color c.
We expect in environment c most of the confrontations to be of
he type (ca), with a one of the three colors, and hence confronta-
ions of the type (ab), with a /=  c, and b /=  c, to be minimal, possibly
egligible. The derivation of the outcome probabilities from the
lling 281 (2014) 38–51 41

data in Bleay et al. (2007) that we present in the following, is gen-
eral enough to take into account this asymmetry due to the focus
on the social environment color of the female, as will become clear
in the following. Besides the colored proportions of the clutch in
orange social environment wo(a), we introduce now the notation
wc(a) expressing the proportions of a-colored hatchlings found in
the female’s clutch for a social environment of color c in general.
Since all color-specific proportions constitute the full clutch, we
have for arbitrary c,

wc(o) + wc(y) + wc(b) = 1 (8)

and  the values of all nine wc(a) were determined experimentally in
Bleay et al. (2007). We  have introduced now all necessary elements
to derive the equations for calculating the outcome probabilities
from the fractions of the colors in the clutch. For an arbitrary c,
representing the color of the female social environment, we  have

Pc(oo)p(oo)11 + Pc(oy)p(oy)12 + Pc(ob)p(ob)12 = wc(o) (9)

Pc(yy)p(yy)11 + Pc(oy)p(oy)21 + Pc(yb)p(yb)12 = wc(y) (10)

Pc(bb)p(bb)11 + Pc(ob)p(ob)21 + Pc(yb)p(yb)21 = wc(b) (11)

Let us interpret these equations, for example, for an orange
social environment of the female. There are three of the six pos-
sible confrontations that can give rise to orange offspring, they are
(oo), (oy), and (ob). Each time, however, they will contribute to
orange offspring only if ‘orange wins’. The outcome probabilities
expressing these events are p(oo)11 = 1, p(oy)12 and p(ob)12. This is
the content of (9) for c being orange. There are also three of the six
possible confrontations that can give rise to yellow offspring, they
are (yy), (oy), and (yb). Each time, however, they will contribute to
yellow offspring only if ‘yellow wins’. The outcome probabilities
expressing these events are p(yy)11 = 1, p(oy)21 and p(yb)12. This is
the content of (10) for c being orange. There are again three of the six
possible confrontations that can give rise to blue offspring, they are
(bb), (ob), and (yb). Each time, however, they will contribute to blue
offspring only if ‘blue wins’. The outcome probabilities expressing
these events are p(bb)11 = 1, p(ob)21 and p(yb)21. This is the content
of (11) for c being orange. In a straightforward generalization, the
six additional equations, three for c being yellow, and three for c
being blue, are interpreted analogously.

We must now solve these nine equations. The right-hand side
elements of the equations are experimentally determined, and
more specifically we extract from Bleay et al. (2007), Figure 1, the
following values

wo(o) = 0.28 wo(y) = 0.53 wo(b) = 0.19 (12)

wy(o) = 0.15 wy(y) = 0.30 wy(b) = 0.55 (13)

wb(o) = 0.54 wb(y) = 0.14 wb(b) = 0.32 (14)

Also the three trivial outcome probabilities
p(oo)11 = p(yy)11 = p(bb)11 = 1 are known. Only three of the out-
come probabilities p(ab)ij are independent due to symmetries and
closure, (3), (5), and fifteen of the fractions of confrontations Pc(a,
b) are independent due to symmetry and closure.

While this system of equations does not lead to a unique solu-
tion, one can check as proof of concept that the following solutions
solve the system of equations:

p(oy)21 = 0.88 p(oy)12 = 0.12 (15)

p(yb)21 = 0.82 p(yb)12 = 0.18 (16)
p(bo)21 = 0.72 p(bo)12 = 0.28 (17)

with

Po(oo) = 0.10 Po(oy) = 0.49 Po(ob) = 0.17 (18)
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o(yy) = 0.08 Po(yb) = 0.08 Po(bb) = 0.08 (19)

y(oo) = 0.08 Py(oy) = 0.11 Py(ob) = 0.08 (20)

y(yy) = 0.11 Py(yb) = 0.55 Py(bb) = 0.07 (21)

b(oo) = 0.08 Pb(oy) = 0.07 Pb(ob) = 0.63 (22)

b(yy) = 0.06 Pb(yb) = 0.08 Pb(bb) = 0.08 (23)

This solution was generated using a simplex algorithm and can
e steered by feeding initial values to the parameters. The present
olution should not necessarily reflect a true natural configuration,
ut only one possibility steered for small weights to confrontations
etween two morph colors in a third-color social environment.

The  model thus shows that the outcome probabilities obtained
rom the experimental data confirm RPS-like probabilities: p(oy)21,
(yb)21 and (bo)21 are all inclined to 1 for the RPS-‘win’, while
(oy)12, p(yb)12 and p(bo)12 are inclined to 0 for the typical RPS-

lose’.

. Contextuality, the violation of Bell inequalities and of
he  marginal law

The  analysis in the foregoing section reveals the essential aspect
f the underlying RPS-type dynamics giving rise to the cyclic
ermutations in the population densities, when the outcome prob-
bilities are to be modeled. It consists in considering the interaction
ituation of two lizards competing for a female from the perspec-
ive of a compound entity (the two interacting lizards), consisting of
wo subentities (each of the two lizards apart), and joint measure-

ents to be performed on the compound entity (the competing
trategies of the two lizards), resulting in outcomes that can be
nterpreted for each of the subentities apart (both lizards can win
r lose, defined by ‘transferring its color to the offspring’, and hence
he ‘win’ or ‘lose’ is defined for each of the lizards apart). This situ-
tion of ‘compound entity’ and ‘joint measurements performed on
he compound entity, with outcomes interpretable as outcomes for
he subentities’, was investigated in great detail in quantum the-
ry, and will be used to analyze the lizards configuration (Aerts and
ozzo, 2013a,b,c).

The  Clauser-Horne-Shimony-Holt (CHSH) variant of Bell’s
nequalities is defined in physics by means of the ‘expectation
alues’ of the joint measurements. These expectation values are
othing but the weighted average value of an outcome, and the out-
ome values themselves are typically set to +1 or −1. We  will first
riefly explain the content of the CHSH inequality and subsequently
elate it to the present biological context.

Regarding the general content of the CHSH inequality, one
egins by considering a compound entity S comprising two  suben-
ities S1 and S2 and prepared in a given state. This is followed by
imultaneous measurements of the observables a and b, each with
ossible outcomes ±1, on S1 and S2, respectively. The statistics
f outcomes are collected and one calculates the expectation val-
es E(ab) = p(ab)11 + p(ab)−1−1 − p(ab)−1+1 − p(ab)−1+1. Here, p(ab)ij
with i, j = ±1) is the probability of obtaining the pair (i, j) when mea-
uring ab, the joint measurement of a on S1 and b on S2, on the joint
ystem S. This procedure is repeated for the pair of measurements
a, b′), (a′, b) and (a′, b′). It is possible to prove that the collected
oint probabilities can be cast into a global classical Kolmogorovian
robability space if and only if the following ‘Bell’s inequality’ is
atisfied

2 ≤ E(ab) − E(ab′) − E(a′b) + E(a′b′) ≤ 2 (24)
It has been shown for micro-physical entities described by quan-
um theory that if the initial state of the compound entity and
he measurements are properly chosen, the Bell’s inequality in
elling 281 (2014) 38–51

(24)  is violated, which entails in particular that quantum prob-
abilities cannot be recovered in a Kolmogorovian framework, i.e.
they are non-Kolmogorovian. A case in which this violation occurs
is the case where the compound entity is prepared in a suitable
‘entangled state’, i.e. a state that cannot be written as a prod-
uct of a state of S1 and a state of S2 (see Section 6). One refers
to such a situation of violation due to the presence of an entan-
gled state as entanglement, and identifies entanglement as one
of the most important non-classical aspects of quantum theory.
Obviously, since the CSHS-inequality is merely a statistical tool, it
can be applied to any kind of entities, not necessarily pertaining
to particles of physics. It is straightforward to adapt it to the lizard
ecosystem, by suitably introducing states, joint measurements and
probabilities of outcomes, and it is remarkable that a simple calcu-
lation suffices to obtain the violation of the inequalities.

To this end, we proceed as follows. In the foregoing section we
introduced the joint probabilities for the joint measurements. For
the case of two  interacting lizards with colors a and b considered
as a compound entity of the two subentities which are the two
individual lizards, they are given in (1). In line with its definition
in probability theory, we  assign the value ‘+1’ to the outcome if a
confrontation of two morphs is of the symmetric type ‘win, win’,
or ‘lose, lose’. And we  assign the value ‘−1’ to the outcome if a
confrontation of two  morphs is of the mixed type ‘win, lose’, or
‘lose, win’. This means that the expectation value for such a joint
measurement is

E(ab) = p(ab)11 − p(ab)12 − p(ab)21 + p(ab)22 (25)

We can then use (24) above, where a, b, a′, and b′ are different
colors of morphs.

For  two  colors a and b we  have

E(ab) = −1 if a /=  b (26)

E(aa) = +1 (27)

Indeed, suppose that a /=  b, then from (3) we have
p(ab)11 = p(ab)22 = 0 and p(ab)12 + p(ab)21 = +1. This means that

E(ab) = p(ab)11 − p(ab)12 − p(ab)21 + p(ab)22 = −1 (28)

Using (4), and hence p(aa)11 = 1, and p(aa)12 = p(aa)21 = p(aa)22 = 0,
it follows that

E(aa) = p(aa)11 − p(aa)12 − p(aa)21 + p(aa)22 = +1 (29)

To violate the CHSH variant of Bell’s inequality, consider the
following colors. We  take a to be orange, b also to be orange,
a′ to be yellow and b′ to be blue. We  then have E(oo) = +1 and
E(ob) = E(yo) = E(yb) = −1. This gives

E(oo) − E(ob) − E(yo) − E(yb) = +4 (30)

hence a maximal violation with value +4 of the inequality.
Instead of analyzing exactly what the violation of the inequali-

ties (24) implies for the lizards system, we  will in the remainder of
this paper explicitly construct the entangled states for the lizards
system, which are the real source for the violation of these inequal-
ities. Indeed, it should be noted that in effect the violation of
the CHSH inequality with the expectation values captures only a
restricted aspect of the source of this entanglement. This is also the
case in micro-physics, and it explains why many entangled states
can be realized that do not violate the inequalities. The inequalities
are only violated for specific and rather ‘extreme’ states of entangle-
ment. This means that it provides deep structural insights neither
here nor in micro-physics to focus on the violation itself, such struc-

tural insights being linked to the source of the violation, which is
entanglement. However, it can be shown that if the inequalities are
violated, the presence of entanglement must be the cause of this
violation.
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Additionally, in physics the connection has been investigated
Accardi and Fedullo, 1982; Aerts, 1986; Pitowsky, 1989) between
he Bell inequality, its being satisfied or violated, and the possibility
o fit the joint probability used for its expectation values in a general
olmogorovian model. More precisely, it has been proven that if

he Bell-inequality is violated, the joint probabilities used for its
xpectation values cannot be fit into a global Kolmogorovian model
or the considered situation – this will be investigated in detail in
ection 7.

Let us identify contextuality in the specific case of the lizards. As
e can see here, the question of which lizard wins or loses depends

ssentially on the other lizard. This is true of the RPS game and it is
rue of the ideal lizard dynamics. None of the players can influence
he outcome of a specific strategy in any way, because it wholly
epends on the other player’s strategy. This type of direct out-
ome dependence, within a situation of a compound entity, and
utcomes and joint measurements identifiable for the subentities,
s known as ‘contextuality’. Of course, the above situation can also
e simply a case of classical contextuality. However, since we have
hown that Bell-type inequalities like CHSH (24) are violated for the
izard situation, and, as we remarked already, this violation proves
he existence of entanglement, we can state that also the contex-
uality identified in the lizard situation is of a non-classical type,
inked to the presence of entanglement. Additionally, in Section 5
elow we will show that the lizard contextuality is related in a
irect way to non-commutativity of measurements, which makes

t non-classical also with respect to this aspect of non-classicality,
.e. non-commutativity. How it is connected to entanglement itself

ill be investigated in detail in Section 6.
There  is another law which is important from a modeling per-

pective, namely ‘the marginal probability law’. This law refers to
he possibility to attribute individual probabilities to the outcomes
or each of the subentities, independently of the other subentity.
iolation of the marginal law involves a ‘deeper’ contextuality,
eaning that in addition to the outcome of one subentity depend-

ng on the state of the other subentity, the probability of an outcome
f this subentity depends on the state of the other subentity. The
ituation of a compound entity, with joint measurements and out-
omes interpretable for the subentities, indeed allows to calculate
eparate probabilities for each outcome of one subentity. In accor-
ance with the marginal law, such a calculation for one of the
ubentities must produce values independently of what happens
ith the other subentity.

This  law is violated in our lizard situation. Indeed, consider any
olor a for one of the lizards, and call p(a)1 the probability that
his morph of color a ‘wins’. We  can then calculate the probability
n different ways, depending on what the other morph is. Indeed,
uppose that b is a color different from a, then we have

(a)1 = p(aa)11 + p(aa)12 = +1 (31)

(a)1 = p(ab)11 + p(ab)12 = p(ab)12 (32)

And p(ab)12 is different for different combinations of a and b,
nd is only equal to 1 for some combinations in the ideal game.
ore specifically, for the solution that we calculated from the data

n Bleay et al. (2007), and that we presented in the foregoing section
n (16), (15) and (17), we have

(y)1 = p(yo)11 + p(yo)12 = 0.88 (33)

(y)1 = p(yb)11 + p(yb)12 = 0.18 (34)

(y)1 = p(yy)11 + p(yy)12 = 1 (35)
hich gives three different values for the probability that ‘a yellow
orph wins’, each value depending on what color the other morph

s. Given the RPS dynamics, we can understand that when the other
orph is orange this probability is bigger than when it is blue.
lling 281 (2014) 38–51 43

It can be shown that the violation of the marginal law – in a way
rather similar to the violation of Bell’s Inequality – also induces the
presence of entanglement. However, as we  will analyze in Section
6, the entanglement caused by the violation of the marginal law is
structurally such that it cannot be modeled in the state alone and
also appears on the level of the measurements.

In the next section, we start elaborating an explicit Hilbert space
model providing our analysis with the necessary technical detail to
make explicit all elements we have introduced so far.

5.  The construction of a Hilbert space model

In this section we  construct an explicit Hilbert space model for
the probabilities that we propose as a solution in (15), (16) and
(17) for the data in Bleay et al. (2007). Parallel to its concrete con-
struction, we will explain the mathematics of quantum modeling
in Hilbert space, and the mathematics of Hilbert space itself. By
proceeding in this parallel way, we can likewise put forward the
essential elements of the type of model building we  are engaging
in here. It will also enable us to point out in detail, in Section 7,
the problem that is encountered when a classical Kolmogorovian
model is attempted for this situation.

1. When quantum theory is applied for modeling purposes, the
entity to be modeled is associated with a complex Hilbert space H.

Before  we explain in detail the way  in which this association
is made, let us specify what a complex Hilbert space H is. It is a
vector space over the field C  of complex numbers, equipped with
an inner product 〈 ·|· 〉 mapping two vectors 〈u| and |v〉 to a com-
plex number 〈u|v〉. We  denote vectors by using the bra-ket notation
introduced by Paul Adrien Dirac, one of the founding fathers of
quantum theory (Dirac, 1958). Vectors can be kets, denoted by
|u〉, |v〉, or bras, denoted by 〈u|, 〈v|. The inner product between
the ket vectors |u〉 and |v〉, or the bra-vectors 〈u| and 〈v|, is real-
ized by juxtaposing the bra vector 〈u| and the ket vector |v〉, and
〈u|v〉 is also called a bra-ket, and it satisfies the following prop-
erties: (i) 〈u|u〉≥0; (ii) 〈u|v〉 = 〈v|u〉∗, where 〈v|u〉∗ is the complex
conjugate of 〈u|v〉; (iii) 〈u|(z|v〉 + t|w〉) = z〈u|v〉 + t〈u|w〉, for z, t ∈ C,
where the sum vector z|u〉 + t|w〉 is called a ‘superposition’ of vec-
tors |u〉 and |w〉 in the quantum jargon. From (ii) and (iii) follows
that the bra-ket is linear in the ket and anti-linear in the bra, i.e.
(z〈u| + t〈v|)|w〉 = z∗〈u|w〉 + t∗〈v|w〉.

For those not acquainted at all with the structure of a complex
Hilbert space, but knowledgeable about vectors spaces in general
over real numbers, we  mention that a complex Hilbert space is
exactly the same as a real vector space, except that real numbers
are exchanged by complex numbers. The bra-ket replaces what is
called the inner product of two vectors in a real vector space. Cal-
culating in a complex Hilbert space is the same, except that the
calculation rules or complex numbers need to be applied whenever
numbers are multiplied. Let us add some more aspects of com-
plex numbers, and the vectors of Hilbert space, that are needed for
modeling.

We recall that the absolute value of a complex number is defined
as the square root of the product of this complex number times
its complex conjugate. In a formula, |z| = √

z∗z.  A complex num-
ber z can either be decomposed into its Cartesian form z = x + iy, or
into its goniometric form z = |z|ei� = |z|(cos � + i sin �). Hence we  have
|〈u|v〉| = √〈u|v〉〈v|u〉.  We  define the ‘length’ of a ket (bra) vector |u〉
(〈u|) as |||u〉|| = ||〈u||| = √〈u|u〉. A vector of unit length is called a
‘unit vector’. We  say that the ket vectors |u〉 and |v〉 are ‘orthog-
onal’ and write |u〉 ⊥ |v〉 if 〈u|v〉 = 0. This introduces the necessary

mathematics to describe the first modeling rule of quantum theory.

2. First modeling rule: The different situations that the modeled
entity can be encountered in, which are called ‘states’ by physicists,
are represented by the ket vectors |u〉 of unit length, i.e. 〈u|u〉=1,
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|〈u|yb22〉|2 = p(yb)22 = 0 (54)

and, due to (5), we have for H(by)

|〈u|by11〉|2 = p(by)11 = 0 (55)

|〈u|by12〉|2 = p(by)12 = 0.82 (56)

|〈u|by21〉|2 = p(by)21 = 0.18 (57)

|〈u|by22〉|2 = p(by)22 = 0 (58)
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ence unit vectors, of the complex Hilbert space H associated with
he entity.

Representing the situations, or states, of the considered entity is
ne fourth of the Hilbert space quantum representation procedures.
he other parts consist of the rules and prescriptions to represent
easurements, probabilities, and the composition of entities. We
ill explain these in the following, and also apply them parallel to

ur lizard situation in constructing a concrete quantum model for
t. Hence, now we first need to introduce some additional mathe-

atics of Hilbert space to explain the way in which measurements
re represented.

Measurements are essentially represented by what are called
self-adjoint operators’ on the Hilbert space H.  For the purpose of
he Hilbert space representation we built for the lizard situation, we
o not need to explain all mathematical aspects of this representa-
ion of measurements by self-adjoint operators. The situation we
ncounter is simpler than the general one, because we will work in

 finite dimensional Hilbert space, while general quantum theory is
ade to cope with infinite dimensions. Each self-adjoint operator

n a finite dimensional Hilbert space is uniquely determined by a
et of vectors, which are called the ‘eigenvectors’ of this self-adjoint
perator. Each eigenvector corresponds to one of the outcomes, and
he number of eigenvectors is also the number of dimensions of
he Hilbert space. Each of such eigenvectors is orthogonal to each
ther one, and if we also decide to choose them of length equal to

 – which we always can – then such a set of eigenvectors forms
n orthonormal basis of the Hilbert space. With ‘basis’, we  mean
hat is ordinarily meant for an arbitrary vector space, i.e. a set

f vectors such that each vector of the space can be written as a
inear independent combination of these vectors. Such a combi-
ation is called a ‘superposition’ in the quantum jargon. It is the
xistence of superposed states which is at the origin of the ‘inter-
erence effects’ observed with quantum particles. We  will construct
he measurements by directly identifying, for each measurement,
ts orthonormal set of eigenvectors.

3. Second modeling rule: A measurement is represented by a
elf-adjoint operator H on H,  and, for a finite dimensional Hilbert
pace, this operator H is determined by its set of eigenvectors, {|h1〉,

 . .,  |hn〉} which we can choose as an orthonormal basis of H.  Each
igenvector corresponds to an outcome of the measurement, and
he dimension of the Hilbert space is determined by the number of
igenvectors of a typical measurement.

Let us apply this second modeling rule to our lizards situation,
nd introduce the necessary notations, operators and vectors. We
enote a measurement where a morph of color a competes with a
orph of color b, by means of the operator H(ab). Such a measure-
ents H(ab) contains always four possible outcomes, i.e. ‘win, win’,

win, lose’, ‘lose, win’ and ‘lose, lose’. Since each outcome requires
 corresponding different eigenstate, we will have to determine for
ach measurement a basis of four orthonormal vectors, so that the
ilbert space we will use for our modeling is the four-dimensional
omplex Hilbert space. Let us introduce the notation for the eigen-
ectors. For a measurement H(ab) we introduce the orthonormal
asis of eigenvectors

ab11〉 |ab12〉 |ab21〉 |ab22〉 (36)

abij|abkl〉 = 0 for ij /=  kl (37)

abij|abij〉 = 1 (38)

4. Next we have to introduce the modeling rule that introduces
he probabilities. This can be achieved fairly simply using all the

achinery previously introduced. The probabilities are determined

s follows. Suppose the considered situation is represented by the
nit vector |u〉 of the Hilbert space H.  For a measurement H, deter-
ined by its orthonormal basis of eigenvectors {|h1〉, . . .,  |hn〉}, the

robability for an outcome corresponding to eigenvector |hm〉 to
elling 281 (2014) 38–51

occur,  is given by |〈u|hm〉|2, which is the square of the absolute value
of the bra-ket between the state and the eigenvector.

Let us apply this probability modeling rule to our lizard situa-
tion. There are nine different measurements to consider, namely
H(oo), H(oy), H(ob), H(yo), H(yy), H(yb), H(bo), H(by) and H(bb). For
each of the nine measurements we have to construct a set of four
orthonormal eigenvectors that satisfy the probability laws. From
(4) follows

|〈u|aa11〉|2 = p(aa)11 = 1 (39)

|〈u|aa12〉|2 = p(aa)12 = 0 (40)

|〈u|aa21〉|2 = p(aa)21 = 0 (41)

|〈u|aa22〉|2 = p(aa)22 = 0 (42)

which gives us all the probability laws to be satisfied for the three
measurements H(oo), H(yy) and H(bb). Indeed, for equal-color con-
frontations, we have probability equal to 1 that a ‘win, win’ outcome
results. For the other color combinations, we  use the symmetry and
anti-symmetry conditions, and the probabilities that we have cal-
culated in Section 3. Hence, from (3), (5), (16), (15) and (17) follows
that, for measurement H(oy), we have

|〈u|oy11〉|2 = p(oy)11 = 0 (43)

|〈u|oy12〉|2 = p(oy)12 = 0.12 (44)

|〈u|oy21〉|2 = p(oy)21 = 0.88 (45)

|〈u|oy22〉|2 = p(oy)22 = 0 (46)

and, due to (5), we have for H(yo)

|〈u|yo11〉|2 = p(yo)11 = 0 (47)

|〈u|yo12〉|2 = p(yo)12 = 0.88 (48)

|〈u|yo21〉|2 = p(yo)21 = 0.12 (49)

|〈u|yo22〉|2 = p(yo)22 = 0 (50)

For measurement H(yb) we have

|〈u|yb11〉|2 = p(yb)11 = 0 (51)

|〈u|yb12〉|2 = p(yb)12 = 0.18 (52)

|〈u|yb21〉|2 = p(yb)21 = 0.82 (53)
And, for measurement H(bo), we have

|〈u|bo11〉|2 = p(bo)11 = 0 (59)
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Hence, a solution is given by a = √
0.88 = 0.94, and c =√

0.12 = 0.34. Then b =
√

1 − a2 = √
1 − 0.88 = √

0.12 = 0.34, and

d  =
√

1 − c2 = √
1 − 0.12 = √

0.88 = 0.94. This gives us
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〈u|bo12〉|2 = p(bo)12 = 0.28 (60)

〈u|bo21〉|2 = p(bo)21 = 0.72 (61)

〈u|bo22〉|2 = p(bo)22 = 0 (62)

nd, due to (5), we have for H(ob)

〈u|ob11〉|2 = p(ob)11 = 0 (63)

〈u|ob12〉|2 = p(ob)12 = 0.72 (64)

〈u|ob21〉|2 = p(ob)21 = 0.28 (65)

〈u|ob22〉|2 = p(ob)22 = 0 (66)

qs. (47)–(62) are all we need to construct the Hilbert space model.
We construct an explicit complex Hilbert space model by mak-

ng use of the canonical complex Hilbert space C
4, namely the set of

ll 4−tuples of complex numbers, equipped with an addition and
ultiplication by a complex number, and an inner product defined

s follows.

4 = {(z1, z2, z3, z4)|z1, z2, z3, z4 ∈ C}  (67)

z1, z2, z3, z4) + (z′
1, z′

2, z′
3, z′

4) = (z1 + z′
1, z2 + z′

2, z3 + z′
3, z4 + z′

4)

(68)

(z1, z2, z3, z4) = (�z1, �z2, �z3, �z4) for � ∈ C  (69)

(z1, z2, z3, z4)|(z′
1, z′

2, z′
3, z′

4)〉 = z∗
1z′

1 + z∗
2z′

2 + z∗
3z′

3 + z∗
4z′

4 (70)

We start by choosing the unit ket vector |u〉 representing the
ituation of the lizards without any measurement being involved,
y the first canonical base vector of C

4.

u〉 = (1, 0, 0, 0) (71)

First we determine the unit vectors representing the eigenstates
or the draw measurements H(oo), H(yy) and H(bb), hence satisfying
39), (40), (41) and (42). We  also make sure that each measurement
s determined by a different set of eigenvectors. There is no unique
olution, hence the one we present here is one of the possible solu-
ions.

|oo11〉 = (e−i�oo, 0, 0, 0), |oo12〉 =
(

0,
1√
2

,
1√
2

, 0
)

,

|oo21〉 =
(

0,
1√
2

, − 1√
2

, 0
)

, |oo22〉 = (0, 0, 0, 1)

(72)

|yy11〉 = (e−i�yy, 0, 0, 0), |yy12〉 =
(

0,
1√
2

, 0,
1√
2

)
,

|yy21〉 =
(

0,
1√
2

, 0, − 1√
2

)
, |yy22〉 = (0, 0, 0)

(73)

|bb11〉 = (e−i�bb, 0, 0, 0), |bb12〉 =
(

0, 0,
1√
2

,
1√
2

)
,

|bb21〉 =
(

0, 0,
1√
2

, − 1√
2

)
, |bb22〉 = (0, 1, 0, 0)

(74)

We can easily verify that the above choices for the eigenvec-
ors constitute an orthonormal basis for each of the measurements
ndsatisfy (39), (40), (41) and (42). Let us check some of them to
lling 281 (2014) 38–51 45

see how this works. Applying (70), we have

〈
oo11|oo21〉 = 〈(e−i�oo, 0, 0, 0)|

(
0,

1√
2

, − 1√
2

, 0
)〉

= (e−i�oo)
∗
(0) + (0)

(
1√
2

)
+ (0)

(
− 1√

2

)
= 0 (75)

|〈u|oo11〉|2 = |〈(1, 0, 0, 0)|(e−i�oo, 0, 0, 0)〉|2 = |e−i�oo|2 = 1 (76)

The first shows that these two  vectors are orthogonal. To prove
orthonormality, we  need to check also the orthogonality with the
others and show that their lengths equal 1, but these calculations
are analogous. The second shows that (39) is satisfied for a being
orange. All the others, i.e. (40), (41) and (42), and for all other colors,
are proven analogously.

The  eigenvectors for the remaining six measurements H(oy),
H(ob), H(yo), H(yb), H(bo) and H(by) are more difficult to determine,
because their probabilities do not follow just from the properties
of the situation itself, but contain also the traces of the real-world
data measured in Bleay et al. (2007). Let us make the construction
for H(yo). Some simplification still follows from the overall struc-
ture of the situation. For example, because of (47) and (50), we can
take, without loss of generality

|yo11〉 =
(

0,
1√
2

,
1√
2

, 0
)

(77)

|yo22〉 =
(

0,
1√
2

, − 1√
2

, 0
)

(78)

and look for |yo12〉 and |yo21〉 for a solution, in the form

|yo12〉 = (a, 0, 0, beiˇ) (79)

|yo21〉 = (c, 0, 0, deiı) (80)

with a2 + b2 = c2 + d2 = 1, which is needed for the vector to have a
length equal to 1, and such that (48) and (49) are satisfied, which
means that

0.88 = |〈u|yo12〉|2 = 〈(1, 0, 0, 0)|(a, 0, 0, beiˇ)〉 = a2 (81)

0.12 = |〈u|yo21〉|2 = 〈(1, 0, 0, 0)|(c, 0, 0, deiı)〉 = c2 (82)
|yo12〉 = (0.94, 0, 0, 0.34 · eiˇ) (83)

|yo21〉 = (0.34, 0, 0, 0.94 · eiı) (84)

The phases  ̌ and ı can now be chosen to make these vec-
tors orthogonal. We  choose  ̌ = 0 and ı = �, and hence eiˇ = +1 and
eiı = −1. This gives us the following solution for the orthonormal set
of eigenvectors of the measurement H(yo).

|yo11〉 =
(

0,
1√
2

,
1√
2

, 0
)

(85)
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the Hilbert space used. Hermitian means that the diagonal elements
are real, and the off-diagonal elements are complex conjugates, i.e.
H(ab)ij = H(ab)∗

ji. The vectors representing a measurement as an
orthonormal basis are the eigenvectors of this matrix. When the
matrix is diagonalised, and hence contains only real numbers on
its diagonal, and zero’s for all its other elements, these real num-
bers are the eigenvalues. These eigenvalues are numbers given to
identify the different outcomes, hence if we  want to distinguish
the four different outcomes in each one of our joint experiments,
we need to choose for each self-adjoint operator four different real
numbers �1, �2, �3, �4, each of the numbers characterizing one of
the four outcomes.

We  will calculate two of such self-adjoint operators for the lizard
situation, because we  want to show explicitly that they do not
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yo12〉 = (0.94, 0, 0, 0.34) (86)

yo21〉 = (0.34, 0, 0, −0.94) (87)

yo22〉 =
(

0,
1√
2

, − 1√
2

, 0
)

(88)

In a very analogous way, we construct a solution for the mea-
urement H(by), but starting from

by11〉 =
(

0,
1√
2

, 0,
1√
2

)
(89)

by22〉 =
(

0,
1√
2

, 0, − 1√
2

)
(90)

nd hence we get

by12〉 = (0.91, 0, 0.42, 0) (91)

by21〉 = (0.42, 0, −0.91, 0) (92)

here 0.91 = √
0.82 and 0.42 = √

0.18. Hence the orthonormal set
f eigenvectors of H(by) can be taken to be

by11〉 =
(

0,
1√
2

, 0,
1√
2

)
(93)

by12〉 = (0.91, 0, 0.42, 0) (94)

by21〉 = (0.42, 0, −0.91, 0) (95)

by22〉 =
(

0,
1√
2

, 0, − 1√
2

)
(96)

For the measurement H(ob) we analogously construct the fol-
owing orthonormal set of eigenvectors

ob11〉 =
(

0, 0,
1√
2

,
1√
2

)
(97)

ob12〉 = (0.85, 0.53, 0, 0) (98)

ob21〉 = (0.53, −0.85, 0, 0) (99)

ob22〉 =
(

0, 0,
1√
2

, − 1√
2

)
(100)

here 0.85 = √
0.72 and 0.53 = √

0.28.
Let us now also construct orthonormal sets of eigenvectors of

he remaining measurements H(oy), H(yb) and H(bo). Let us first
onsider H(oy). Remark that, because of p(yo)12 = p(oy)21 = 0.88, and
(yo)21 = p(oy)12 = 0.12, in the construction procedure we  adapted
or the three foregoing measurements, we might consider the two

easurements to be equivalent. This is in fact even the case for
he situations that we have been considering. Let us show, how-
ver, that Hilbert space allows us to make a construction such that
oth measurements are described by a different orthonormal basis.

f in the future more refined measurements on the situation are
ade, it may  prove necessary to distinguish both measurements.

t is also a way to show how the phases and hence the complex
ature of the Hilbert space play a role in this possibility of distin-
uishing between H(oy) and H(yo), although there is no difference
ith regard to the probabilities that have been measured. Indeed,

nstead of choosing  ̌ = 0 and ı = �, in the step we made from (83)
nd (84), to (86) and (87), we can choose  ̌ = �/2, and ı = 3�/2. It is

 property of the two-dimensional complex Hilbert space, which
s the subspace we are working in with this choice of phase, that
here are these different ways for vectors to be orthogonal, namely
henever the difference in angle between the phases equals �. Let
s also recall that ei�/2 = i, and ei3�/2 = − i. This choice gives us the
ollowing orthonormal basis of eigenvectors for H(oy).
oy11〉 =
(

0,
1√
2

,
i√
2

, 0
)

(101)

oy12〉 = (0.34, 0, 0, −i · 0.94) (102)
elling 281 (2014) 38–51

|oy21〉 = (0.94, 0, 0, i · 0.34) (103)

|oy22〉 =
(

0,
1√
2

, − i√
2

, 0
)

(104)

and in an analogous way  we construct the orthonormal basis of
eigenvectors for the two  remaining measurements H(yb) and H(bo).
They are

|yb11〉 =
(

0,
1√
2

, 0,
i√
2

)
(105)

|yb12〉 = (0.42, 0, −i · 0.91, 0) (106)

|yb21〉 = (0.91, 0, i · 0.42, 0) (107)

|yb22〉 =
(

0,
1√
2

, 0, − i√
2

)
(108)

|bo11〉 =
(

0, 0,
1√
2

,
i√
2

)
(109)

|bo12〉 = (0.53, −i · 0.85, 0, 0) (110)

|bo21〉 = (0.85, i · 0.53, 0, 0) (111)

|bo22〉 =
(

0, 0,
1√
2

, − i√
2

)
(112)

This completes the construction of the orthonormal basis for all
measurements.

In our explanation of the use of the quantum formalism for
modeling purposes, we  have introduced a measurement as charac-
terized by an orthonormal basis. We  did mention that the common
way to represent a measurement is by a self-adjoint operator, and
that is how one will find it described in quantum theory textbooks.
The step from the orthonormal basis to a self-adjoint operator is
straightforward in the case of a finite dimensional Hilbert space.
Indeed, such a self-adjoint operator can then be represented as a
square Hermitian matrix H(ab)ij, with size equal to the dimension of
commute. Non-commuting self-adjoint operators are indeed the
hallmark of non-classicality of the probability model within the
quantum formalism. We  calculate the matrix corresponding to a set
of eigenvectors, and eigenvalues,using standard techniques from
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l

H 1 0 0 0.42
)

+ �3 ·

⎛
⎜⎜⎝

0.42

0

0

−0.91

⎞
⎟⎟⎠ ·

(
0.42 0 0 −0.91

)

 0

�1 0

�1 0

 0

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

0.82�2 0 0 0.38�2

0 0 0 0

0 0 0 0

0.38�2 0 0 0.18�2

⎞
⎟⎟⎠

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎠

2 − �3)

 0.82�3

⎞
⎟⎟⎟⎟⎟⎟⎠

(113)

w
r
l
I

H 85 0 0.53 0
)

⎞
⎟⎟⎟⎟⎟⎠

·
(

0
1√
2

0 − 1√
2

)

+

⎛
⎜⎜⎜⎝

0.28�3 0 −0.45�3 0

0  0 0 0

−0.45�3 0 0.72�3 0

0  0 0 0

⎞
⎟⎟⎟⎠

0 0.45(�2 − �3) 0

1 + �4) 0
1
2

(�1 − �4)

⎞
⎟⎟⎟⎟ (114)
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inear algebra, as follows

(by) = �1 ·

⎛
⎜⎜⎜⎜⎜⎝

0
1√
2

1√
2

0

⎞
⎟⎟⎟⎟⎟⎠

·
(

0
1√
2

1√
2

0
)

+ �2 ·

⎛
⎜⎜⎝

0.91

0

0

0.42

⎞
⎟⎟⎠ ·

(
0.9

+ �4 ·

⎛
⎜⎜⎜⎜⎜⎝

0
1√
2

− 1√
2

0

⎞
⎟⎟⎟⎟⎟⎠

·
(

0
1√
2

− 1√
2

0
)

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0
1
2

�1
1
2

0
1
2

�1
1
2

0 0 0

+

⎛
⎜⎜⎝

0.18�3 0 0 −0.38�3

0 0 0 0

0 0 0 0

−0.38�3 0 0 0.82�3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 

0
1
2

�4 −1
2

�4

0 −1
2

�4
1
2

�4

0 0 0 

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.82�2 + 0.18�3 0 0 0.38(�

0
1
2

(�1 + �4)
1
2

(�1 − �4) 0

0
1
2

(�1 − �4)
1
2

(�1 + �4) 0

0.38(�2 − �3) 0 0 0.18�2 +
here �1, �2, �3 and �4 are four different real numbers that identify

espectively the outcomes ‘win, win’, ‘win, lose’, ‘lose, win’ and ‘lose,
ose’ for a competition of two morphs of color ‘blue’ and ‘yellow’.
n an analogous way we  calculate, for example, H(bo)

(bo) = �1 ·

⎛
⎜⎜⎜⎜⎜⎝

0
1√
2

0
1√
2

⎞
⎟⎟⎟⎟⎟⎠

·
(

0
1√
2

0
1√
2

)
+ �2 ·

⎛
⎜⎜⎝

0.85

0

0.53

0

⎞
⎟⎟⎠ ·

(
0.

+ �3 ·

⎛
⎜⎜⎝

0.53

0

−0.85

0

⎞
⎟⎟⎠ ·

(
0.53 0 −0.85 0

)
+ �4 ·

⎛
⎜⎜⎜⎜⎜⎝

0
1√
2

0

− 1√
2

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0
1
2

�1 0
1
2

�1

0 0 0 0

0
1
2

�1 0
1
2

�1

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

0.72�2 0 0.45�2 0

0  0 0 0

0.45�2 0 0.28�2 0

0  0 0 0

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜

0 0 0 0

0
1
2

�4 0 −1
2

�4

⎞
⎟⎟⎟⎟ =

⎛
⎜⎜⎜⎜

0.72�2 + 0.28�3

0
1
2

(�
⎜⎝ 0 0 0 0

0  −1
2

�4 0
1
2

�4

⎟⎠
⎜⎜⎝ 0.45(�2 − �3) 0 

0
1
2

(�1 − �
0.72�2 + 0.28�3 0

4) 0
1
2

(�1 + �4)

⎟⎟⎠
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here this time �1, �2, �3 and �4 are four different real num-
ers, identifying respectively the outcome ‘win, win’, ‘win, lose’,

lose, win’ and ‘lose, lose’ of a competition of two morphs with col-
rs ‘blue’ and ‘orange’. Let us show that H(yo) and H(by) do not
ommute. We  have

(yo)H(by)ij =
∑

k

H(yo)ikH(by)kj (115)

Consider for example the element in the first column and sec-
nd row of the two products, i.e. the elements H(yo)H(by)21 and
(by)H(yo)21. We  have

(yo)H(by)21 = H(yo)21H(by)11 + H(yo)22H(by)21 + H(yo)23H(by)31

+ H(yo)24H(by)41 = 1
2

(�1 − �4) · 0.45(�2 − �3)

(116)

(by)H(yo)21 = H(by)21H(yo)11 + H(by)22H(yo)21 + H(by)23H(yo)31

+ H(by)24H(yo)41 = 1
2

(�1 − �4) · 0.38(�2 − �3)

(117)

Let us mention here that the commutation of two self-adjoint
perators in the way they represent measurements in quantum
heory is equivalent to the commutation of the projectors on their
rthonormal base of eigenvectors, which shows that the specific
alue of the eigenvalues plays no role in it. Hence, it is sufficient
o observe that (116) is different from (117) for specific values of
1, �2, �3, �4 and �1, �2, �3 and �4, to conclude about the non
ommutativity of the two self-adjoint operators representing the
oint measurements for ‘blue’ and ‘yellow’ competing morphs, and
yellow’ and ‘orange’ competing morphs.

. Quantum compoundness, subentities, submeasurements
nd entanglement

We  have constructed a four dimensional Hilbert space model
or the compound entity consisting of the two interacting lizards.
n this section we will analyze the way in which the two  individual
izards and the measurements we have defined with respect to their

inning and losing appear as subentities and submeasurements,
nd show that quantum entanglement is involved for both.

Contrary  to classical theory, where compoundness appears in
 way equivalent to how two subsets are ‘joined’ by means of the

joining of subsets’, and hence no ‘new is added’, in quantum the-
ry compoundness involves the emergence of new states and new
easurements. These new states and measurements arise as a con-

equence of the mathematical structure of quantum theory. It is
ndeed the vector space structure of the set of states and the linear
lgebra structure of the set of measurements that generate these
ew states and measurements for a situation of compoundness. It

s, in effect, this property of emergence which makes quantum-
ike structures better suited as compared to classical structures to

odel situations of compoundness in the natural world. Indeed, in
 natural situation usually new states and new measurements arise
hen two entities are joined. Since in a situation modeled by clas-

ical structures compoundness is reduced to a simple union of the
xisting subentities and submeasurements, these subentities and
ubmeasurements can easily be retrieved from the structure of the

ompound entity and measurements. In a situation of the natural
orld, and certainly so in a situation modeled by quantum theory,

etrieving the subentities and submeasurements is more compli-
ated, and involves complex aspects due to the effect of emergence.
elling 281 (2014) 38–51

Hence,  to analyze this situation of compoundness, we  carefully
employ the mathematical procedures of quantum theory designed
for retrieving the subentities and measurements. As we will see,
the two  lizards, interacting following RPS-like internal dynamics,
constitute an example of non-classical compoundness in a very sig-
nificant way. The aim of the present section is to investigate this
situation in detail.

We  continue the approach we initiated in Section 5, and intro-
duce the fourth quantum modeling rule, explaining how compound
entities are analyzed in function of their constituting subentities,
while in parallel we investigate the situation of the lizards with
respect to compoundness.

3.  Suppose that the compound entity S is made up of two
subentities S1 and S2, and that S, S1 and S2 are described by the
complex Hilbert spaces H,  H1 and H2, respectively, following the
standard quantum formalism, i.e. a modeling as explained in Sec-
tion 5. Identifying the subentities and submeasurements consists in
considering an isomorphism between the Hilbert space H and the
tensor product H1 ⊗ H2 of the two Hilbert spaces H1 and H2. The
image of this isomorphism of states and measurements is inter-
preted in this tensor product. Entanglement in a state indicates
the situation where the image of this state cannot be written as a
product state in the tensor product.

The tensor product is in many ways the only possible struc-
ture to constitute the basis for the description of the compound
entity of two  subentities within the quantum formalism. It is the
Hilbert space generated linearly by the product states, but it can
also be proven to model the compound entity from an operational
axiomatic point of view (Aerts and Daubechies, 1978).

To  model the compound entity of the two interacting lizards, we
have explicitly introduced the four-dimensional complex Hilbert
space in its canonical form C

4. Each of the lizards is individu-
ally modeled as a subentity in a two-dimensional complex Hilbert
space, and its canonical form is C

2. The tensor product C
2 ⊗ C

2 is
a  four-dimensional complex Hilbert space, which is to be used to
identify the subentities and submeasurements of the entity of the
interacting lizards. It is defined as follows

C
2 ⊗ C

2 =

⎧⎨
⎩

∑
ij

�ij|v〉i ⊗ |w〉j | |v〉i, |w〉j ∈ C
2, �ij ∈ C

⎫⎬
⎭ (118)

where the tensor product ⊗ is an operation with the usual proper-
ties of a product, i.e. for |u〉, |v〉, |w〉, |t〉 ∈ C

2 and �, �, �, � ∈ C,  we
have

(�|u〉 + �|v〉) ⊗ (�|w〉 + �|t〉) = ��|v〉 ⊗ |w〉 + ��|v〉 ⊗ |w〉
+  ��|v〉 ⊗ |t〉 + ��|v〉 ⊗ |t〉 (119)

The bra-ket is defined as follows

(〈u| ⊗ 〈v|)(|w〉 ⊗ |t〉) = 〈u|w〉〈v|t〉 (120)

It can be verified straightforwardly that if {|o1〉, |o2〉} and {|y1〉,
|y2〉} are orthonormal bases of C

2, then {|o1〉 ⊗ |y1〉, |o1〉 ⊗ |y2〉,
|o2〉 ⊗ |y1〉, |o2〉 ⊗ |y2〉} is an orthonormal basis of C

2 ⊗ C
2. The tensor

product  is not commutative, i.e. in general we  have

|v〉 ⊗ |w〉 /=  |w〉 ⊗ |v〉 (121)

We make explicit what entanglement is on the level of
the states. Suppose we  have constructed an orthonormal basis
{|o1〉 ⊗ |y1〉, |o1〉 ⊗ |y2〉, |o2〉 ⊗ |y1〉, |o2〉 ⊗ |y2〉}, starting from two dif-
ferent orthonormal bases {|o 〉, |o 〉} and {|y 〉, |y 〉} of C

2, and, for
1 2 1 2
�12 and �21 both different from zero, consider the following vector
of C

2 ⊗ C
2,

|u〉 = �12|o1〉 ⊗ |y2〉 + �21|o2〉 ⊗ |y1〉 (122)
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hen it is not possible to find vectors |v〉, |w〉 ∈ C
2, such that |u〉 =

v〉 ⊗ |w〉 is a product of such two vectors. This can be shown right
way, but let us try it out. Suppose that we are looking for two  such
ectors |v〉, |w〉 ∈ C

2, such that |u〉 = |v〉 ⊗ |w〉. Then, since {|o1〉, |o2〉}
nd {|y1〉, |y2〉} are both bases of C

2, we can write

v〉 = �1|o1〉 + �2|o2〉 (123)

w〉 = �1|y1〉 + �2|y2〉 (124)

here, for �1, �2, and �1, �2, for each couple, at least one of them
s different from zero. Then we have

v〉 ⊗ |w〉 = (�1|o1〉 + �2|o2〉) ⊗ (�1|y1〉 + �2|y2〉) (125)

= �1�1|o1〉 ⊗ |y1〉 + �1�2|o1〉 ⊗ |y2〉 + �2�1|o2〉 ⊗ |y1〉
+ �2�2|o2〉 ⊗ |y2〉 (126)

Since {|o1〉 ⊗ |y1〉, |o1〉 ⊗ |y2〉, |o2〉 ⊗ |y1〉, |o2〉 ⊗ |y2〉} is a an
rthonormal basis of C

2 ⊗ C
2, from |u〉 = |v〉 ⊗ |w〉 then follows that

1�1 = 0 �1�2 = �12 �2�1 = �21 �2�2 = 0 (127)

hich are four equations impossible to be satisfied together for the
our complex numbers �1, �2, �1 and �2. Indeed, from �1�1 = 0
ollows that �1 = 0 or �1 = 0, and hence at least one of �12 or �21 is
ero, which by construction of the vector |u〉 is not the case.

If  the compound entity is in such a state |u〉, this means that
t cannot be interpreted as the two subentities being in individual
tates each of them. Hence |u〉 is an example of a new emergent
tate of the compound entity.

Let us show that it is exactly states of this nature that appear
n our modeling of the lizard interactions, when we introduce the
ensor product procedure to identify the subentities and submea-
urements of the compound lizard entity. Suppose that for the
ndividual lizards, using the complex Hilbert space C

2 to represent
ts states, we  model the measurements that can result in an indi-
idual win or lose, by the orthonormal basis {|o1〉, |o2〉}, {|y1〉, |y2〉},
nd {|b1〉, |b2〉}, for the different colors. Concretely, this means that
n case one of the two lizards is in state |v〉 ∈ C

2, and the other one in
tate |w〉 ∈ C

2, then o1 is the outcome of an orange morph that wins,
nd o2 the outcome of an orange morph that loses. Similarly, y1 is
he outcome of a yellow morph that wins, and y2 is the outcome of

 yellow morph that loses, and b1 is the outcome of a blue morph
hat wins, while b2 is the outcome of a blue morph that loses.

Taking  into account our construction of the orthonormal basis
or measurements on individual lizards, it follows that |〈v|o1〉|2
|〈w|o1〉|2) is the probability for the first (the second) individual
range morph to win, |〈v|o2〉|2 (|〈w|o2〉|2) for the first (the second)
ndividual orange morph to lose. Similarly, |〈u|y1〉|2 is the probabil-
ty for the first (the second) individual yellow morph to win, |〈v|y2〉|2
|〈w|y2〉|2) for the first (the second) individual yellow morph to
ose, and |〈v|b1〉|2 (|〈w|b1〉|2) for the first (the second) individual
lue morph to win, while |〈v|b2〉|2 (|〈w|b2〉|2) for the first (the sec-
nd) individual blue morph to lose. This means that we apply the
uantum Hilbert space formalism, and all of its modeling rules, to

ndividual morphs.
We  should point out that, since the physical animals which

re the individual lizards, cannot change colors – although there
s some evidence that suggests that the polymorphism of the Uta
tansburiana might occasionally also be environmentally triggered

 and hence cannot change strategies, we do not model the physical
nimal itself. In our model, a morph’s color is therefore considered

o be a variable. One interpretation is to imagine a specific ‘com-
etition situation’ which consists in two morphs appearing in this
ituation competing for a female. The potential states of these two
orphs in this situation are those described in the model, and color
lling 281 (2014) 38–51 49

is included in this potential. The different possible competition sit-
uations as such are modeled by |v〉 for one of the morphs, and by
|w〉 for the other morph, and by |u〉 for the compound of the two
morphs.

We propose the following isomorphism with the tensor product
space.

Ioy : C
4 → C

2 ⊗ C
2 (128)

Ioy|oy11〉 = |o1〉 ⊗ |y1〉 Ioy|oy12〉 = |o1〉 ⊗ |y2〉 (129)

Ioy|oy21〉 = |o2〉 ⊗ |y1〉 Ioy|oy22〉 = |o2〉 ⊗ |y2〉 (130)

Let us calculate the image of the state |u〉, respecting, of course,
our choice for the Hilbert space modeling regarding the compe-
tition compound entity situation in Section 5. We  recall that we
choose |u〉 = (1, 0, 0, 0) as specified and explained in (71). To calcu-
late the image of |u〉, let us write |u〉 as a linear combination in the
orthonormal basis {|oy11〉, |oy12〉, |oy21〉, |oy22〉} of C

4, because the
isomorphism Ioy is defined by its actions on these vectors. We  have

|u〉 = |oy11〉〈oy11|u〉 + |oy12〉〈oy12|u〉
+|oy21〉〈oy21|u〉 + |oy22〉〈oy22|u〉 (131)

= 0.34|oy12〉 + 0.94|oy21〉 (132)

where we used (102) and (103). This means that we have

Ioy|u〉 = Ioy(0.334|oy12〉 + 0.994|oy21〉) (133)

= 0.34Ioy|oy12〉 + 0.94Ioy|oy21〉 (134)

= 0.34|o1〉 ⊗ |y2〉 + 0.94|o2〉 ⊗ |y1〉 (135)

This is exactly the type of vector which we introduced in (122),
with �12 = 0.34 and �21 = 0.94, and we  proved it to be entangled.

It  can be shown that the image of the self-adjoint operator
Hoy representing the orange yellow competition measurement is a
product operator. This means that the entanglement of the orange
yellow competition situation can be fully entered into the state.
However, if we  want to accomplish this for other color combination
competitions, we will have to consider different isomorphisms, one
specific one for each color combination. This is due to the marginal
probability law being violated, like we have shown in (33), (34) and
(35). We have analyzed this aspect of an entanglement situation in
detail in Aerts and Sozzo (2013c).

7. Non-Kolmogorovity in the RPS game

We mentioned in Section 1 that it was the violation of Bell’s
inequalities for the RPS dynamics that caught our attention, and
more specifically that such a violation indicates the presence of a
non-Kolmogorovian structure for the considered probability model
(Accardi and Fedullo, 1982; Pitowsky, 1989). In this section we
analyze the concrete meaning of this violation by constructing a
Kolmogorovian model and identifying where and why it fails. Again,
of course, this analysis is from the specific viewpoint of considering
the two individual lizard morphs as subentities of the compound
lizard system.

Hence, suppose there exists a Kolmogorovian model for the sit-
uation of competing lizards considered as a compound situation of
two lizards. This means that we have a sample space �, and a prob-
and its possibility of winning or losing, is now presented by subsets
and their complements of this sample space, and so for the other
lizard. Concretely, this means that we  have Lo ⊆ �, LC

o ⊆ �, repre-
senting the first orange morph, with�(Lo) and �(LC

o ) = 1 − �(Lo)

http://mostwiedzy.pl
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he probabilities of winning or losing in a competition, respec-
ively. Similarly we have Ly ⊆ �, LC

y ⊆ �, representing the first
ellow morph, with �(Ly) and �(LC

y ) = 1 − �(Ly) the probabilities of
espectively winning or losing in a competition, and Lb ⊆ �, LC

b
⊆ �,

epresenting the first blue morph, with �(Lb) and �(LC
b

) = 1 − �(Lb)
he probabilities of respectively winning or losing in a competi-
ion. We  have an equivalent situation in the sample space for the
econd morph, hence Mo ⊆ �, MC

o ⊆ �, representing the second
range morph, with �(Mo) and �(MC

o ) = 1 − �(Mo) the probabil-
ties of respectively winning or losing in a competition. Similarly,

e have My ⊆ �, MC
y ⊆ �, representing the second yellow morph,

ith �(My) and �(MC
y ) = 1 − �(My) the probabilities of winning or

osing in a competition, respectively, and Mb ⊆ �, MC
b

⊆ �, repre-
enting the second blue morph, with �(Mb) and �(MC

b
) = 1 − �(Mb)

he probabilities of winning or losing in a competition, respectively.
For the situation of both morphs joining in a competition, we

onsider the joint probabilities as constructed in a Kolmogorovian
pproach. Hence, for example, �(Lo ∩ My) represents the probabil-
ty that the first morph being orange and the second being yellow,
oth win, �(Lo ∩ MC

y ) represents the probability that the first morph
eing orange wins and the second being yellow loses, �(LC

o ∩ My)
epresents the probability that the first morph being orange loses
nd the second being yellow wins, and �(LC

o ∩ MC
y ) represents the

robability that the first morph being orange and the second being
ellow both lose.

It  is easy to show that the marginal law is always satisfied within
uch a Kolmogorovian model. Indeed, we have

(Ly) =  �(Ly ∩ (Mo ∪ MC
o )) = �((Ly ∩ Mo) ∪ (Ly ∩ MC

o )

= �(Ly ∩ Mo) + �(Ly ∩ MC
o ) (136)

ut also

(Ly) = �(Ly ∩ (Mb ∪ MC
b )) = �((Ly ∩ Mb) ∪ (Ly ∩ MC

b )

=  �(Ly ∩ Mb) + �(Ly ∩ MC
b ) (137)

nd also

(Ly) = �(Ly ∩ (My ∪ MC
y )) = �((Ly ∩ My) ∪ (Ly ∩ MC

y )

=  �(Ly ∩ My) + �(Ly ∩ MC
y ) (138)

While from (33), (34) and (35), we know that these are not equal
ollowing from the experimental data.

. Conclusions

Cyclic competition, an evolutionary analog of the RPS game, is
elevant to population ecology. However, modeling the intrinsic
robabilities involved in RPS structures, revealed a fundamental
ifficulty. If the competitive encounters of the individual players
re analyzed as subentities interacting within a compound entity,
he joint probabilities describing the interactions turn out to violate
ell’s inequalities and the marginal probability law. This implies
hat such an interaction cannot be modeled in a Kolmogorovian
robability space where the joint probabilities are measures of con-

unctions of the events of the individual players. Following typical
nvestigations of similar situations in the foundations of quantum
hysics, it is known that an occurrence of violation of Bell’s inequal-

ty and the marginal probability law is indicative of the presence
f contextuality of a quantum nature. This means that the com-

lex Hilbert space formalism of quantum mechanics is a natural
andidate for the modeling of such a situation.

In this paper, we have worked with the set of experimental data
ollected in Bleay et al. (2007) on the RPS cycles of the three colored
elling 281 (2014) 38–51

morphs  of the side-blotched lizard Uta Stansburiana. We  have cal-
culated in Section 3 the joint probabilities from the data, and shown
that they give rise to a non-ideal probabilistic RPS type of interac-
tion dynamics for the competing lizard morphs. We  have analyzed
the contextuality following from this dynamics for the lizard morph
encounters, and shown in Section 4 that indeed Bell’s inequality
and the marginal probability law are violated. In Section 5 we  have
constructed an explicit complex Hilbert space description model-
ing this contextually and also in a faithful way all the experimental
data, and we have proven that the operators representing the mea-
surable quantities do not commute, which explicitly shows the
presence of non-classicality in the situation. In Section 6 we  have
investigated in detail the structure of the lizard interaction mak-
ing use of the Hilbert space representation developed in Section 5,
and we have proven the presence of quantum entanglement in
the situation of the competing lizard morphs. In this entanglement
analysis we have made use of results of similarly studied situations
in human cognition where quantum entanglement was  encoun-
tered (Aerts and Sozzo, 2013a,b,c). Finally, we have identified in
Section 7 why a single Kolmogorovian probability space, with joint
probabilities as measures of interactions of individual events, is not
possible.

The result may  have far-reaching consequences, since several
biological systems are believed to contain sub-dynamics of the
cyclic competition type (Sinervo and Calsbeek, 2006). For example,
the coexistence of a large number of phytoplankton species com-
peting for a limited variety of resources in aquatic ecosystems (the
paradox of the plankton) is believed to result from cyclic competi-
tion (Huisman and Weissing, 1999; Huisman et al., 2001; Schippers
et al., 2001), and hence could incorporate the type of quantum-
structural aspects we  identified for the lizard morph interactions.

Our  investigation links up with the new developments of
‘identification of quantum structure in domains different from
the micro-world’, and extends to animal behavior the results
obtained in the context of human cognition. Furthermore, it sug-
gests that ecological systems are intrinsically contextual, and
constitutes a powerful support for systematic applications of
quantum-structural modeling in biology.
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