
ANNALESPOLONICI MATHEMATICI90.3 (2007)

Quasilinearization methods fornonlinear di�erential-funtionalparaboli equations: unbounded aseby Agnieszka Bartłomiejczyk (Gda«sk)Abstrat. We onsider the Cauhy problem for nonlinear paraboli equations withfuntional dependene represented by the Hale funtional ating on the unknown funtionand its gradient. We prove onvergene theorems for a general quasilinearization methodin natural sublasses of unbounded solutions.Introdution. The quasilinearization method belongs to the most ef-fetive analytial approximation tehniques for a given nonlinear problem.It produes sequenes of solutions to problems whih are linear with respetto the unknown funtion. A lassial version of quasilinearization methods,known as the Chaplygin method, de�nes two sequenes of upper and lowersolutions of the nonlinear problem (see [1℄�[3℄, [7℄). One of these sequenesoinides with the quasilinearization method. The theory of monotone iter-ative tehniques has been extensively desribed in the monograph [12℄.In order to illustrate the onvergene rate of the quasilinearizationmethod, let us onsider a simple nonlinear paraboli Cauhy problem with-out funtional dependene.Example 0.1. Let n = 1. We onsider the Cauhy problem
∂tu(t, x) − ∂xxu(t, x) = sinu(t, x),

u(0, x) = ϕ(x),where ϕ is a bounded ontinuous funtion. Assume that u(0) is any funtionsuh that
u(0)(t, x) =

1

(2
√
π t)n

\
Rn

exp

(
−(x− y)2

4t

)
ϕ(y) dy.

Moreover, if u(ν) is already de�ned then u(ν+1) is a solution of the following2000 Mathematis Subjet Classi�ation: 35K10, 35K15, 35R10.Key words and phrases: quasilinearization, iterative method, Cauhy problem.[247℄ © Instytut Matematyzny PAN, 2007



248 A. Bartªomiejzyklinear Cauhy problem:
∂tu(t, x) − ∂xxu(t, x) = sinu(ν)(t, x) + cosu(ν)(t, x) · (u− u(ν))(t, x),

u(0, x) = ϕ(x).It is obvious that there exists a unique bounded ontinuous solution u =
u(ν+1). Sine u(0) satis�es the homogeneous equation

Pu(0) = 0, where P = ∂t − ∂xx,we get the di�erential inequality
|P(u(1) − u(0))(t, x)| ≤ |sinu(0)(t, x)| + |cosu(0)(t, x)| |(u(1) − u(0))(t, x)|

≤ 1 + |(u(1) − u(0))(t, x)|.Hene |(u(1) − u(0))(t, x)| ≤ et − 1 ≤ tet on [0, a] × R. Similarly, we derivethe di�erential inequalities
|P(u(ν+2) − u(ν+1))(t, x)|
≤ |sinu(ν+1)(t, x) − sinu(ν)(t, x) + cosu(ν)(t, x)(u(ν+1) − u(ν))(t, x)|

+ |cosu(ν+1)(t, x)| |(u(ν+2) − u(ν+1))(t, x)|
≤ |(u(ν+1) − u(ν))(t, x)|2 + |(u(ν+2) − u(ν+1))(t, x)|.This leads to the integral inequalities
‖(u(ν+2) − u(ν+1))(t, ·)‖

≤
t\
0

{‖(u(ν+2) − u(ν+1))(s, ·)‖ + ‖(u(ν+1) − u(ν))(s, ·)‖2} ds,where ‖ · ‖ stands for the supremum norm. Applying the Gronwall lemmawe get
‖(u(ν+2) − u(ν+1))(t, ·)‖ ≤

t\
0

‖(u(ν+1) − u(ν))(s, ·)‖2 et−s ds

≤ tet max
s∈[0,t]

‖(u(ν+1) − u(ν))(s, ·)‖2.From this reurrent inequality, one an prove by indution on ν that
‖(u(ν+1) − u(ν))(t, ·)‖ ≤ (tet)2

ν+1−1 =: εν for ν = 0, 1, . . . .Let us reall that fast onvergene of the approximating sequene {u(ν)}to the solution u∗ means that
‖u(ν+1) − u∗‖
‖u(ν) − u∗‖ → 0 as ν → ∞,where ‖ · ‖ is the supremum norm.
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Quasilinearization of di�erential-funtional equations 249It is easily seen that the last estimate in Example 0.1 shows fast onver-gene of suessive approximations for t ∈ [0, a], provided that the interval
[0, a] is su�iently small.In [5℄ we have generalized the result skethed in our simple Example 0.1to di�erential-funtional equations with bounded data and bounded solu-tions. In the present paper we give su�ient onditions for onvergene inthe unbounded ase with typial a priori estimates of solutions |u(t, x)| ≤
C exp(K|x|2).The paper is organized as follows. Setion 1 ontains the formulationof the Cauhy problem and theorems on the existene and uniqueness ofsolutions in the lass of ontinuous funtions satisfying the growth ondition
|u(t, x)| ≤ C exp(K|x|2). We onsider three ases:(i) the unknown funtion appears in the funtional argument u(t,x) inthe equation:

Pu(t, x) = f(t, x, u(t,x)),and the fast onvergene rate εν+1/εν → 0 refers to the weightednorms
εν = sup

|u(ν+1)(t, x) − u(ν)(t, x)|
exp(ψ(t)|x|2) ,(ii) the funtional dependene onerns both the unknown funtion andits derivative:

Pu(t, x) = f̃(t, x, u(t,x), ∂xu(t,x)),and the fast onvergene rate εν+1/εν → 0 refers to the weightednorms
εν = sup

|u(ν+1)(t,x)−u(ν)(t,x)|
exp(ψ(t)|x|2) +sup

‖∂xu(ν+1)(t,x)−∂xu(ν)(t,x)‖
exp(ψ(t)|x|2) ,(iii) the funtional dependene involves the unknown funtion, but itsderivative has the lassial form

Pu(t, x) = f(t, x, u(t,x), ∂xu(t, x)),and the fast onvergene rate εν+1/εν → 0 refers to a weighted normanalogous to (ii), but taking into aount the singularities of ∂xu at
t = 0+.Note that there is a signi�ant di�erene between ases (ii) and (iii): inase (ii) due to nontrivial funtional dependene on ∂xu(t,x), the assumptionson f and ϕ are stronger, and the solutions obtained are more regular; inase (iii) the assumptions on f and ϕ are weaker, and the derivatives ∂xumay admit singularities at t = 0+.Similar results onerning the existene and uniqueness of bounded so-lutions an be found in [6℄; ompare also, e.g., [17℄ or [18℄.
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250 A. BartªomiejzykSetion 2 ontains onvergene theorems for the quasilinearizationmethod in ases (i)�(iii) of unbounded solutions of problem (1)�(2). Theresults of this paper are a natural ontinuation of [5℄ and [14℄.1. Preliminaries1.1. Formulation of the problem. Set R+ = [0,∞). The Eulidean normin R
n will be denoted by | · |. Let a > 0, τ0, τ1, . . . , τn ∈ R+, τ = (τ1, . . . , τn)and [−τ, τ ] = [−τ1, τ1] × · · · × [−τn, τn]. De�ne

E = (0, a]×R
n, E0 = [−τ0, 0]×R

n, Ẽ = E0∪E, B = [−τ0, 0]×[−τ, τ ].The funtional dependene in di�erential equations will be expressed in termsof Hale's operator. If u : E0 ∪ E → R and (t, x) ∈ E, then the Hale-typefuntional u(t,x) : B → R is de�ned by
u(t,x)(s, y) = u(t+ s, x+ y) for (s, y) ∈ B.An analogous one-dimensional model zt(s) = z(t + s) for s ∈ [−τ0, 0] iswell known for ordinary di�erential-funtional equations (see [9℄). Using it,one an generalize di�erential equations with delays, integrals and deviatedarguments (see [11℄).Let C(X) (resp. [C(X)]n) be the set of all ontinuous funtions from ametri spae X into R (resp. R

n), and CB(X) the ontinuous and boundedfuntions from X into R. The supremum norm in CB(X) will be denoted by
‖ · ‖, and the norms and seminorms in funtion spaes by ‖ · ‖ with suitableindies. Let u(t, x) = u(t, x1, . . . , xn) be a su�iently regular funtion. Write
∂t = ∂/∂t, ∂j = ∂/∂xj, ∂jl = ∂2/∂xj∂xl (j, l = 1, . . . , n). We also set ∂x =
(∂1, . . . , ∂n).Suppose that f : E × C(B) → R and ϕ : E0 → R are given funtions.Denote by u an unknown funtion of the variables (t, x) = (t, x1, . . . , xn),and by P the di�erential operator

Pu(t, x) = ∂tu(t, x) −
n∑

j,l=1

ajl(t, x)∂jlu(t, x).In this paper we onsider the Cauhy problem for a nonhomogeneous dif-ferential-funtional nonlinear paraboli equation
Pu(t, x) = f(t, x, u(t,x))(1)with the initial ondition
u(t, x) = ϕ(t, x) on E0.(2)Condition (2) will be brie�y written as u ≻ ϕ, to be read as �u extends ϕ�or �ϕ is the restrition of u to E0.�
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Quasilinearization of di�erential-funtional equations 251Among partiular ases of equation (1) we distinguish the equation
Pu(t, x) = 0.(3) We give a basi assumption on the oe�ients of the di�erential opera-tor P, whih will be needed throughout the paper.Assumption 1.1.(1) The operator P is uniformly paraboli, i.e. there is c′ > 0 suh that

n∑

j,l=1

ajl(t, x)ξjξl ≥ c′|ξ|2 for all (t, x) ∈ E, ξ ∈ R
n.

(2) The oe�ients ajl ∈ CB(E) for j, l = 1, . . . , n satisfy the Hölderondition
|ajl(t, x) − ajl(t̃, x̃)| ≤ c′′(|t− t̃|α/2 + |x− x̃|α) (j, l = 1, . . . , n)for some onstants c′′ > 0, α ∈ (0, 1].Under Assumption 1.1, there exists the fundamental solution Γ (t, x; s, y)of (3) (see [8℄, [13℄) and we have estimates of Γ and its derivatives.Lemma 1.1 ([8, p. 24℄). If Assumption 1.1 holds, then there are k0, c0,

c1, c2 > 0 suh that
|Γ (t, x; s, y)| ≤ c0(t− s)−n/2 exp

(
−k0|x− y|2

4(t− s)

)
,

|∂jΓ (t, x; s, y)| ≤ c1(t− s)−(n+1)/2 exp

(
−k0|x− y|2

4(t− s)

)
,

|∂tΓ (t, x; s, y)|, |∂jlΓ (t, x; s, y)| ≤ c2(t− s)−(n+2)/2 exp

(
−k0|x− y|2

4(t− s)

)

for all 0 ≤ s < t ≤ a and x, y ∈ R
n, j, l = 1, . . . , n.From Lemma 1.1 the following inequalities an be derived:\

Rn

|Γ (t, x; s, y)| dy ≤ c̃0,
\

Rn

|∂jΓ (t, x; s, y)| dy ≤ c̃1(t− s)−1/2

for j = 1, . . . , n, where c̃0 = c0(4π/k0)
n/2, c̃1 = c1(4π/k0)

n/2. The onstants
c̃0 and c̃1 will be frequently used.The Cauhy problem (1)�(2) is transformed to the integral equation(4) u(t, x) =

\
Rn

Γ (t, x; 0, y)ϕ(0, y) dy +

t\
0

\
Rn

Γ (t, x; s, y)f(s, y, u(s,y)) dy ds,where Γ (t, x; s, y) is the fundamental solution of (3).
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252 A. Bartªomiejzyk1.2. Existene and uniqueness. We reall the main result of [4℄. Let
L1[0, a] be the set of all real integrable funtions on [0, a]. If x, y ∈ R

n,then we denote by 〈x, y〉 their standard salar produt.Definition 1.1. Let u ∈ C(Ẽ).

1o The funtion u is alled a C0 solution of problem (1)�(2) if u oinideswith ϕ on E0 and it satis�es the integral equation (4) on E.
2o The funtion u is alled a C0,1 solution of problem (1)�(2) if u is a C0solution whose derivatives ∂ju (j = 1, . . . , n) are ontinuous on E.The integral equation (4) is known as the Cauhy formula and in thoseterms our C0 solutions an be seen as weaker than so alled �mild solutions�of the di�erential-funtional problem (1)�(2) (see [10℄, [16℄).Let C+ be the set of all funtions ψ : [−τ0, a] → (0,∞) suh that(a) ψ is ontinuous and nondereasing,(b) ψ(t) = ψ(0) for t ∈ [−τ0, 0].For any ψ ∈ C+ de�ne the linear spae

X2;ψ = {u ∈ C(Ẽ) : ∃c≥0 ∀
(t,x)∈Ẽ

|u(t, x)| ≤ c exp(ψ(t)|x|2)}and the orresponding weighted norm
‖u‖2;ψ = sup

(t,x)∈Ẽ

|u(t, x)|
exp(ψ(t)|x|2) .The set X2;ψ with the norm ‖u‖2;ψ is a Banah spae.Now, we formulate our fundamental assumption.Assumption 1.2.[ψ℄ The funtion ψ ∈ C+ satis�es the inequality

k0ψ(s)

k0 − 4ψ(s)(t− s)
≤ ψ(t) for 0 ≤ s ≤ t ≤ a,(5) where k0 is the same onstant as in Lemma 1.1.[f ℄ f(·, x, w) ∈ L1[0, a], f(t, ·, w) ∈ C(Rn) and there is a funtion mf ∈

L1[0, a] suh that
|f(t, x, 0)| ≤ mf (t) exp(ψ(t)|x|2) on E,[ϕ℄ ϕ ∈ C(E0) and |ϕ(t, x)| ≤ Kϕ exp(ψ(0)|x|2) for some Kϕ > 0.Example 1.1. A simple example of a funtion ψ ∈ C+ satisfying (5) is

ψ(t) =





k0C

k0 − 4Ct
for 0 ≤ t <

k0

4C
,

C for t ≤ 0,where C > 0 is suh that k0/4C > a (see [15℄).
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Quasilinearization of di�erential-funtional equations 253We start with a theorem on existene and uniqueness in ase (i), i.e.without dependene on ∂xu.Proposition 1.1 ([4, Theorem 2.3℄). Suppose that Assumption 1.2 issatis�ed and there are funtions λ, λ̃ ∈ L1[0, a] suh that
|f(t, x, w) − f(t, x, w)|

≤ λ(t) |w(0, 0) − w(0, 0)|

+ λ̃(t) ‖w − w‖ exp(−2ψ(t)〈|x|, τ〉) on E × C(B).Then there exists a unique C0 solution u of problem (1)�(2) in the lass X2;ψ.Now, we onsider equations (1) with funtionals of the derivatives, whihmeans that the right-hand side may ontain not only u(t,x), but also ∂ju(t,x);in partiular ∂ju(α(t, x), β(t, x)) and TBK(t, x, s, y, ∂ju(s, y)) dy ds.De�ne a new Banah spae X ′
2;ψ = {u ∈ C(Ẽ) : u, ∂1u, . . . , ∂nu ∈ X2;ψ}with the norm

‖u‖′2;ψ = max{‖u‖2;ψ, ‖∂1u‖2;ψ, . . . , ‖∂nu‖2;ψ}.Proposition 1.2 ([4, Theorem 3.1℄). Suppose that Assumption 1.2 issatis�ed and(1) ∂xϕ∈ [C(E0)]
n and |∂xϕ(t, x)| ≤Kϕ′ exp(ψ(0)|x|2) for some Kϕ′ > 0,(2) there are funtions λ, λ̃, λ1, λ̃1 ∈ L1[0, a] suh that(a) on E × C(B) we have the estimates

|f(t, x, w)−f(t, x, w)| ≤ λ(t)|w(0, 0) − w(0, 0)|
+ λ̃(t) ‖w − w‖ exp(−2ψ(t)〈|x|, τ〉)
+ λ1(t)‖∂x(w − w)(0, 0)‖
+ λ̃1(t)‖∂x(w − w)‖ exp(−2ψ(t)〈|x|, τ〉)(b) there are θ ∈ (0, 1) and γ ∈ C+ suh that for all t ∈ [0, a],

t\
0

c̃0a
1/2(t− s)−1/2γ(s)

{
λ(s) + λ̃(s) exp(ψ(s)|τ |2)

+ a−1/2 c1
c0

(λ1(s)+ λ̃1(s) exp(ψ(s)|τ |2))
}
ds ≤ θγ(t).Then there exists a unique C0,1 solution of problem (1)�(2) in the lass X ′

2;ψ.Now, we give a theorem on the existene and uniqueness of solutions ofproblem (1)�(2) with the Volterra funtional dependene on u(·) and point-wise dependene on ∂xu(t, x).
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254 A. BartªomiejzykWe de�ne an operator S : {v ∈ C(E) : limt→0+

√
t v(t, x) = 0} →

C(Ẽ) by
Sv(t, x) =

{√
t v(t, x) for t > 0,

0 for t ≤ 0and a new Banah spae X ′′
2;ψ = {u ∈ C(Ẽ) : u ∈ X2;ψ, ∂jSu ∈ X2;ψ} withthe norm

‖u‖′′2;ψ = max{‖u‖2;ψ, ‖∂x1
Su‖2;ψ, . . . , ‖∂xn

Su‖2;ψ}.Proposition 1.3 ([4, Theorem 3.5℄). Suppose that Assumption 1.2 issatis�ed and there are funtions λ, λ1, λ̃ ∈ L1[0, a] suh that(1) on E × C(B) we have the estimates
|f(t, x, w) − f(t, x, w)| ≤ λ(t)|w(0, 0) − w(0, 0)|

+ λ̃(t)‖w − w‖ exp(−2ψ(t)〈|x|, τ〉) + λ1(t)‖∂x(w − w)(0, 0)‖,(2) there are θ ∈ (0, 1) and γ ∈ C+ suh that for all t ∈ [0, a],
t\
0

c̃0
√
t (t− s)−1/2γ(s)

{
λ(s) + λ̃(s) exp(ψ(s)|τ |2)

+
c1
c0

(λ1(s) + λ̃(s) exp(ψ(s)|τ |2))
}
ds ≤ θγ(t).Then there exists a unique C0,1 solution u of problem (1)�(2) in X ′′

2;ψ.Now we state an auxiliary lemma.Lemma 1.2 ([15, Lemma 1.2℄). If 0 ≤ B < A, then\
Rn

exp(−A|x− y|2 +B|y|2) dy =

(
π

A−B

)n/2

exp

(
AB

A−B
|x|2

)
.

2. The quasilinearization method. In the quasilinearization methodone onstruts a sequene {u(ν)} suh that u(0) ∈ C(Ẽ) is given and u(ν+1) ∈
C(Ẽ) is a solution of the Cauhy problem

Pu(t, x) = f(t, x, u
(ν)
(t,x)) + ∂wf(t, x, u

(ν)
(t,x)) · (u− u(ν))(t,x)(6)

u(t, x) = ϕ(t, x) on E0,(7)where ∂wf(t, x, u
(ν)
(t,x)) stands for the Fréhet derivative with respet to thefuntional variable. Observe that equation (6) is still di�erential-funtional,but its right-hand side is linear with respet to u.The onvergene of the sequene {u(ν)} depends on the initial funtion

u(0) and regularity of the operator ∂wf.
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Quasilinearization of di�erential-funtional equations 255The funtions u = u(ν+1) de�ned as the solutions of (6)�(7) satisfy theintegral formula
(8) u(ν+1)(t, x) =

\
Rn

Γ (t, x; 0, y)ϕ(0, y) dy +

t\
0

\
Rn

Γ (t, x; s, y)

×{f(s, y, u
(ν)
(s,y)) + ∂wf(s, y, u

(ν)
(s,y)) · (u

(ν+1) − u(ν))(s,y)} dy ds.We obtain the above equation by replaing the funtion f in (4) by theright-hand side of (6).We are now able to state the main result on the onvergene of thequasilinearization method. First, we make further assumptions on ∂wf. Theyfeature a funtional Λ : C(B) → R that may have one of the forms below:
(f1) Λ(t, x)h = λ(t)|h(0, 0)|+ λ̃(t)‖h‖ exp(−2ψ(t)〈|x|, τ〉)for h ∈ C(B) and for some λ, λ̃ ∈ L1[0, a];

Λ(t, x)h = λ(t)|h(0, 0)|+ λ̃(t)‖h‖ exp(−2ψ(t)〈|x|, τ〉)(f2)

+ λ(t)‖∂xh(0, 0)‖ + λ̃(t)‖∂xh‖ exp(−2ψ(t)〈|x|, τ〉)for h ∈ C(B), ∂xh(0, ·) ∈ C([−τ, τ ]) and for some λ, λ̃ ∈ L1[0, a];
Λ(t, x)h = λ(t)|h(0, 0)|(f3)

+ λ̃(t)‖h‖ exp(−2ψ(t)〈|x|, τ〉) + λ1(t)‖∂xh(0, 0)‖for h ∈ C(B), ∂xh(0, ·) ∈ C([−τ, τ ]) and for some λ, λ̃, λ1 ∈ L1[0, a].Therefore we obtain three di�erent assumptions on ∂wf :
Assumption 2.i. There is a funtional Λ : C(B) → R suh that(1) Λ has the form (fi),(2) |∂wf(t, x, w)h| ≤ Λ(t, x)h for h ∈ C(B), (t, x, w) ∈ E × C(B),(3) there is a funtion σ : [0, a] × R+ → R+, integrable with respet tothe �rst variable, ontinuous and nondereasing with respet to thelast variable, suh that σ(t, 0) = 0 and

|[∂wf(t, x, w) − ∂wf(t, x, w)]h|
≤ Λ(t, x)h · σ(t, exp(−ψ(t)|x|2)Λ(t, x)(w − w))on E × C(B).Theorem 2.1. Suppose that Assumptions 1.2 and 2.1 are satis�ed andthere exists a ontinuous, nondereasing funtion ψ0 : [0, a] → R+ whihsatis�es the inequalities

ψ0(t) ≥ ‖(u(1) − u(0))|Et
‖2;ψ,(9)

ψ0(t) ≥ c̃0 [ψ(t)]n/2
t\
0

ψ0(s)[ψ(s)]−n/2 λ̂(s){1 + σ(s, ψ0(s)λ̂(s))} ds,(10)
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256 A. Bartªomiejzykwhere λ̂(s) := λ(s)+λ̃(s) exp(ψ(s)|τ |2). Then the sequene {u(ν)} of solutionsof problem (6)�(7) is well de�ned and almost uniformly fast onvergent to u∗,where u∗ is the unique unbounded C0 solution of (1)�(2). The onvergenerate is haraterized by the ondition
‖(u(ν+1) − u∗)|Et

‖2;ψ

‖(u(ν) − u∗)|Et
‖2;ψ

→ 0 as ν → ∞(11)for t ∈ [0, a].Remark 2.1. Reall that the almost uniform fast onvergene meansuniform onvergene on ompat subsets with the onvergene rate satisfying
εν+1/εν → 0 as ν → ∞.Proof of Theorem 2.1. The proof will be given in several stages. First,we observe that the existene and uniqueness of a solution of (6)�(7) followsfrom Proposition 1.1. Now, we estimate the di�erenes u(ν+1) − u(ν) for
ν = 0, 1, . . . . Put ω(ν) = u(ν+1) − u(ν). Sine u(ν+1) satis�es the integralidentity (8), and so also does u(ν+2), we have the integral error equation
ω(ν+1)(t, x) =

t\
0

\
Rn

Γ (t, x; s, y){f(s, y, u
(ν+1)
(s,y) ) − f(s, y, u

(ν)
(s,y))

+ ∂wf(s, y, u
(ν+1)
(s,y) )ω

(ν+1)
(s,y) − ∂wf(s, y, u

(ν)
(s,y))ω

(ν)
(s,y)} dy ds.By the Hadamard mean-value theorem, we get

f(s, y, u
(ν+1)
(s,y) ) − f(s, y, u

(ν)
(s,y)) =

1\
0

∂wf(s, y, u
(ν)
(s,y) + ζω

(ν)
(s,y)) dζ ω

(ν)
(s,y).Hene, we rewrite the error equation as follows:

ω(ν+1)(t, x) =

t\
0

\
Rn

Γ (t, x; s, y)
{
∂wf(s, y, u

(ν+1)
(s,y) )ω

(ν+1)
(s,y)

+

1\
0

∂wf(s, y, u
(ν)
(s,y) + ζω

(ν)
(s,y))ω

(ν)
(s,y) dζ−∂wf(s, y, u

(ν)
(s,y))ω

(ν)
(s,y)

}
dy ds.

From this equation, based on Assumption 2.1, we derive
|ω(ν+1)(t, x)| ≤

t\
0

\
Rn

|Γ (t, x; s, y)|
{
|∂wf(t, x, u

(ν+1)
(s,y)

)| ‖ω(ν+1)
(s,y)

‖

+ ‖ω(ν)
(s,y)‖

1\
0

|∂wf(s, y, u
(ν)
(s,y) +ζω

(ν)
(s,y)) − ∂wf(t, x, u

(ν)
(s,y))| dζ

}
dy ds
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Quasilinearization of di�erential-funtional equations 257
≤

t\
0

\
Rn

|Γ (t, x; s, y)|
{
λ(s)|ω(ν+1)(s, y)| + λ̃(s)‖ω(ν+1)

(s,y) ‖ exp(−2ψ(s)〈|y|, τ〉)

+

1\
0

[λ(s) |ω(ν)(s, y)| + λ̃(s)‖ω(ν)
(s,y)‖ exp(−2ψ(s)〈|y|, τ〉)

× σ(s, λ(s)|ζω(ν)(s, y)| exp(−ψ(s)|y|2) + λ̃(s) ‖ζω(ν)
(s,y)‖

× exp(−ψ(s)| |y| + τ |2))] dζ
}
dy ds.By the monotoniity of σ and the inequalities

|u(s, y)| ≤ ‖u|Es
‖2;ψ exp(ψ(s)|y|2), |u(s,y)| ≤ ‖u|Es

‖2;ψ exp(ψ(s)| |y|+τ |2),we have
|ω(ν+1)(t, x)| ≤

t\
0

\
Rn

|Γ (t, x; s, y)| exp(ψ(s)|y|2)λ̂(s)

×{‖ω(ν+1)|Es
‖2;ψ+‖ω(ν)|Es

‖2;ψσ(s, λ̂(s)‖ω(ν)|Es
‖2;ψ)} dy ds,where λ̂(s) = λ(s)+ λ̃(s) exp(ψ(s)|τ |2). Using the estimate of Γ and Lemma1.2 we get the reurrent integral inequality

‖ω(ν+1)|Et
‖2;ψ ≤ c̃0[ψ(t)]n/2

t\
0

[ψ(s)]−n/2λ̂(s){‖ω(ν+1)|Es
‖2;ψ

+ ‖ω(ν)|Es
‖2;ψ σ(s, ‖ω(ν)|Es

‖2;ψλ̂(s))} ds ≤ ψν+1(t),where ψν+1 : [0, a] → (0,∞) for ν = 0, 1 . . . is de�ned by
ψν+1(t) = c̃0[ψ(t)]n/2

t\
0

[ψ(s)]−n/2λ̂(s), ψν(s)σ(s, ψν(s)λ̂(s))(12)
× exp

(
c̃0[ψ(t)]n/2

t\
s

[ψ(τ)]−n/2λ̂(τ) dτ
)
ds.Applying the Gronwall lemma, we get

‖ω(ν+1)|Et
‖2;ψ ≤ c̃0[ψ(t)]n/2

t\
0

[ψ(s)]−n/2λ̂(s)‖ω(ν)|Es
‖2;ψσ(s,λ̂(s)‖ω(ν)|Es

‖2;ψ)

× exp
(
c̃0 [ψ(t)]n/2

t\
s

[ψ(τ)]−n/2 λ̂(τ) dτ
)
ds.We now show that {ω(ν)} is uniformly onvergent to 0. It is easy toverify that the sequene {ψν} of ontinuous nondereasing funtions is non-inreasing as ν → ∞. This an be veri�ed by indution on ν, applying the
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258 A. Bartªomiejzykinequality
ψ0(t)[ψ(t)]n/2 ≥ c̃0

t\
0

ψ0(s)[ψ(s)]−n/2λ̂(s){1 + σ(s, ψ0(s)λ̂(s))} ds.Furthermore, using one more indution on ν and (13) we have
‖ω(ν+1)|Et

‖2;ψ ≤ ψν+1(t) for all ν = 0, 1, . . . .(13)From this we dedue that {ψν} onverges to a limit funtion ψ, where 0 ≤
ψ(t) ≤ ψ0(t). Letting ν → ∞ in (12), we get

0 ≤ ψ(t) = c̃0[ψ(t)]n/2
t\
0

ψ(s)[ψ(s)]−n/2λ̂(s)σ(s, ψ(a)λ̂(s))

× exp
(
c̃0[ψ(t)]n/2

t\
s

[ψ(τ)]−n/2λ̂(τ) dτ
)
ds.By Gronwall's lemma, we have ψ ≡ 0. Sine ψν are nondereasing funtionsand (12) holds, we have

ψν+1(t)

ψν(t)
≤ c̃0[ψ(t)]n/2

t\
0

[ψ(s)]−n/2λ̂(s)σ(s, ψν(s)λ̂(s))(14)
× exp

(
c̃0[ψ(t)]n/2

t\
s

[ψ(τ)]−n/2λ̂(τ) dτ
)
ds.Realling that σ(s, ·) is ontinuous and monotone, we observe that

σ(s, ψν(s)) ց 0 = σ(s, 0) as ν → ∞.Sine ψν ց 0 as ν → ∞, passing to the limit in (14) we get
ψν+1(t)

ψν(t)
→ 0 as ν → ∞.Hene by d'Alembert's riterion, the series ∑∞

ν=0 ψν(t) is uniformly onver-gent. Sine ‖ω(ν)|Et
‖2;ψ ≤ ψν(t), {u(ν)} is a Cauhy sequene. Indeed,

‖(u(ν) − u(ν+k))|Et
‖2;ψ

≤ ‖(u(ν) − u(ν+1))|Et
‖2;ψ + · · · + ‖(u(ν+k−1) − u(ν+k))|Et

‖2;ψ

≤ ψν(t) + · · · + ψν+k(t).Consequently, {u(ν)} uniformly onverges to a ontinuous funtion u∗. Wenow prove that u∗ satis�es (1). The initial ondition (2), that is, u∗ ≻ ϕ, isful�lled, beause u(ν) ≻ ϕ and u(ν) → u∗ as ν → ∞. It su�es to make thefollowing observation. The integral equation (8) for the funtions u(ν) and
u = u(ν+1) is equivalent to problem (6)�(7). Then letting ν → ∞ in (8) weobtain the integral equality (4) with u = u∗. By Proposition 1.1, u∗ is the
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Quasilinearization of di�erential-funtional equations 259unique solution of problem (1)�(2). The onvergene rate is determined byestimate (13) and ondition (14). This onvergene is faster than geometri.Now, we show that ondition (11) is satis�ed. Subtrating (4) with u = u∗from (8) and performing similar estimations as in the ase of ω(ν+1), we get
‖(u(ν+1)−u∗)|Et

‖2;ψ ≤ c̃0[ψ(t)]n/2
t\
0

[ψ(s)]−n/2λ̂(s){‖(u(ν+1) − u∗)|Es
‖2;ψ

+ ‖(u(ν)−u∗)|Es
‖2;ψ σ(s, λ̂(s)‖(u(ν)−u∗)Es

‖2;ψ)} ds.By Gronwall's lemma, we have
‖(u(ν+1) − u∗)|Et

‖2;ψ ≤ c̃0[ψ(t)]n/2
t\
0

[ψ(s)]−n/2‖(u(ν) − u∗)Es
‖2;ψ

× σ(s, ‖(u(ν) − u∗)|Es
‖2;ψ) exp

(
c̃0[ψ(t)]n/2

t\
s

[ψ(τ)]−n/2λ̂(τ) dτ
)
ds.

Sine the seminorm sale ‖ · |Et
‖2;ψ is nondereasing in t, we get

‖(u(ν+1) − u∗)|Et
‖2;ψ

‖(u(ν) − u∗)|Et
‖2;ψ

≤ c̃0 [ψ(t)]n/2
t\
0

[ψ(s)]−n/2λ̂(s)σ(s, ‖(u(ν) − u∗)|Es
‖2;ψ)

× exp
(
c̃0[ψ(t)]n/2

t\
s

[ψ(τ)]−n/2λ̂(τ) dτ
)
ds→ 0

as ν → ∞. This ompletes the proof of (11) and of Theorem 2.1.Remark 2.2. Inequality (10) has a loal solution. If the interval [0, a] issu�iently small, then there exists a solution of (10) whih satis�es (9). Inpartiular, if we put σ(s, r) = L (or L(s)), then a solution of (10) exists onthe whole interval [0, a]. If σ(s, r) = Lr, then ondition (10) has the Riatiform.Now, we disuss ase (ii).Theorem 2.2. Suppose that Assumptions 1.2 and 2.2 are satis�ed and1) ∂xϕ∈ [C(E0)]
n and |∂xϕ(t, x)|≤Kϕ′ exp(ψ(0)|x|2) for some Kϕ′>0,2) there are θ ∈ (0, 1) and γ ∈ C+ suh that for all t ∈ [0, a],

t\
0

{c̃0
√
a (t− s)−1/2 + c̃1}γ(s)λ̂(s) ds ≤ θ γ(t),

3) there exists a nondereasing , ontinuous funtion ψ0 : [0, a] → R+
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260 A. Bartªomiejzykwhih satis�es the inequalities
ψ0(t) ≥ ‖(u(1) − u(0))|Et

‖′2;ψ,

ψ0(t) ≥ [ψ(t)]n/2
t\
0

{c̃0 + c̃1(t− s)−1/2}[ψ(s)]−n/2 λ̂(s)

× {1 + σ(s, ψ0(s)λ̂(s))}ψ0(s) ds,where λ̂(s) := λ(s) + λ̃(s) exp(ψ(s)|τ |2).Then the sequene {u(ν)} of solutions of (6)�(7) is well de�ned and uniformlyfast onvergent to u∗ with respet to the seminorms ‖ · |Et
‖′2;ψ, where u∗is a unique unbounded C0,1 solution of problem (1)�(2) in the lass X ′

2;ψ.Furthermore,
‖(u(ν+1) − u∗)|Et

‖′2;ψ

‖(u(ν) − u∗)|Et
‖′2;ψ

→ 0 as ν → ∞for t ∈ (0, a].Proof. We only give the main ideas of the proof. Observe that
‖ω(ν+1)|Et

‖2;ψ

≤ c̃0[ψ(t)]n/2
t\
0

[ψ(s)]−n/2λ̂(s){‖ω(ν+1)|Es
‖2;ψ + ‖∂xω(ν+1)|Es

‖2;ψ

+ [‖ω(ν)|Es
‖2;ψ + ‖∂xω(ν)|Es

‖2;ψ]σ(s, ‖ω(ν)|Es
‖2;ψλ̂(s)

+ ‖∂xω(ν)|Es
‖2;ψλ̂(s))} ds.Introduing the seminorms

‖ · |Et
‖′2;ψ = ‖ · |Et

‖2;ψ + ‖∂x(·|Et
)‖2;ψ,we an write the above inequalities in the following way:

‖ω(ν+1)|Et
‖2;ψ ≤ c̃0[ψ(t)]n/2

t\
0

[ψ(s)]−n/2 λ̂(s)

× {‖ω(ν+1)|Es
‖′2;ψ + ‖ω(ν)|Es

‖′2;ψσ(s, ‖ω(ν)|Es
‖′2;ψλ̂(s))} dsand

‖∂xω(ν+1)|Et
‖2;ψ ≤ c̃1 [ψ(t)]n/2

t\
0

(t− s)−1/2[ψ(s)]−n/2 λ̂(s)

× {‖ω(ν+1)|Es
‖′2;ψ + ‖ω(ν)|Es

‖′2;ψσ(s, ‖ω(ν)|Es
‖′2;ψλ̂(s))} ds.
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Quasilinearization of di�erential-funtional equations 261Adding these inequalities and applying the de�nition of ‖ · |Et
‖′2;ψ we get

‖ω(ν+1)|Et
‖′2;ψ ≤ [ψ(t)]n/2

t\
0

{c̃0 + c̃1(t− s)−1/2}[ψ(s)]−n/2 λ̂(s)

× {‖ω(ν+1)|Es
‖′2;ψ + ‖ω(ν)|Es

‖′2;ψ σ(s, ‖ω(ν)|Es
‖′2;ψλ̂(s))} ds.Now, we de�ne ψν+1 : [0, a] → R+ by

ψν+1(t) = [ψ(t)]n/2
t\
0

{c̃0 + c̃1(t− s)−1/2}[ψ(s)]−n/2 λ̂(s)

× {ψν+1(s) + ψν(s)σ(s, ψν(s)λ̂(s))} ds,and repeat the arguments in the proof of the previous theorem.Remark 2.3. The funtion Λ of Theorem 2.2 an be replaed by a moregeneral one,
Λ̃(t, x)h = λ(t)|h(0, 0)|+ λ̃(t)‖h‖ exp(−2ψ(t)〈|x|, τ〉)

+ λ1(t)‖∂xh(0, 0)‖ + λ̃1(t)‖∂xh‖ exp(−2ψ(t)〈|x|, τ〉)for λ, λ1, λ̃, λ̃1 ∈ L1[0, a]. The proof of suh a generalization of Theorem 2.2is more tehnial and ompliated. In fat, it an be redued to Theorem 2.2on a shorter interval [0, a] by taking a new λ, equal to the sum of λ, λ1,

λ̃, λ̃1.It is easy to formulate results on the onvergene of the quasilinearizationmethod for unbounded solutions in ase (iii). The proof is based on the sameidea as for the previous theorems, the main di�erene being that the weakerassumptions on ϕ and f lead to singularities of ∂xu at t = 0+ and the norm
‖ · ‖′′2,ψ takes aount of these singularities.Theorem 2.3. Suppose that Assumptions 1.2 and 2.3 are satis�ed and1) there are θ ∈ (0, 1) and γ ∈ C+ suh that for all t ∈ [0, a],

t\
0

c̃0
√
t (t− s)−1/2γ(s)

{
λ(s) + λ̃(s) exp(ψ(s)|τ |2)

+
c1
c0

(λ1(s) + λ̃(s) exp(ψ(s)|τ |2))
}
ds ≤ θγ(t),2) there exists a nondereasing ontinuous funtion ψ0 : [0, a] → R+ suh
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262 A. Bartªomiejzykthat
ψ0(t) ≥ ‖(u(1) − u(0))|Et

‖′′2;ψ,

ψ0(t) ≥ [ψ(t)]n/2
t\
0

{c̃0 +
√
t c̃1(t− s)−1/2}[ψ(s)]−n/2λ̂1(s)

× {1 + σ(s, ψ0(s)λ̂1(s))}ψ0(s) ds,where λ1(t) = λ(t)
√
t and λ̂1(t) = λ(t) + λ̃(t) exp(ψ(t)|x|2) + λ1(t).Then the sequene {u(ν)} of solutions of (6)�(7) is well de�ned and uniformlyfast onvergent to u∗ with respet to the seminorms ‖ · |Et

‖′′2;ψ, where u∗is a unique unbounded C0,1 solution of problem (1)�(2) in the lass X ′′
2;ψ.Moreover ,

‖(u(ν+1) − u∗)|Et
‖′′2;ψ

‖(u(ν) − u∗)|Et
‖′′2;ψ

→ 0 as ν → ∞for t ∈ (0, a].The proof of the above theorem is similar to the proof of Theorem 2.1.We omit the details.Remark 2.4. Theorems 2.1�2.3 have a similar struture with di�erentfuntionals Λ whih estimate the derivative ∂wf. If Λ has the form (f1),then ∂wf is weighted Lipshitzean with respet to u(t, x) and u(t,x). If Λhas the form (f2) or (f3), then the right-hand side is additionally Lipshitzontinuous with respet to ∂xu(t, x), and (only in the ase (f2)) it is weightedLipshitzean with respet to ∂xu(t,x). The same omment is valid onerningthe di�erenes of ∂wf.
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