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email: michal.meller@eti.pg.gda.pl

Abstract: The problem of minimizing dwell time in multifunction phased array radar

is considered. Target of interest is assumed to fluctuate according to a generalization

of Swerling family and the parameters of fluctuation model are assumed to be known.

The a’priori position of the target is uncertain. Optimization, whose variables include

pulse count and array transmit beampattern, is carried out subject to achieving a desired

accuracy of angular coordinate estimates.

1. Introduction

An important capability of multifunction is their ability to perform multiple tasks simultane-

ously. This is done by rapid interleaving of dwells corresponding to different functions, or

modes. Typical examples of modes include, among others, volume search, long range horizon

scan and tracking of detected targets.

Due to different requirements of each mode, design of multifunction radars involves many un-

avoidable conflicts, starting from as fundamental ones as choice of operating band [1]. One

of major difficulties encountered in actual operation is that of scheduling, or radar time bud-

get management. Since execution of each function requires time, there is only a finite amount

of tasks that the radar can handle in a given amount of time. In congested environments this

limitation may become a critical bottleneck.

Compared to legacy systems, modern software defined radars offer much more flexibility in se-

lecting waveform parameters. For instance, pulse modulation, width, repetition frequency, burst

length or aperture illumination can be varied with great freedom. This opens new opportunities

for radar scheduler – the waveform can be tailored to actual operation needs for each mode

and target individually. Due dependence of most performance metrics on a product of signal to

noise ratio and integration time, and strong dependence of signal to noise ratio on a distance to

the target, considerable savings of time can be made in most but a few rare cases.
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Figure 1: Simplified block diagram of cognitive radar.

The problem of radar resource management can be handled rigorously within cognitive radar

framework (Fig. 1). In this approach the cognitive controller provides strong feedback between

the receiver and the transmitter. What differs cognitive radar from current state of the art ap-

proaches, which often rely on heuristic decision rules, is that to make its decisions the cognitive

controller works out predictions of applicable figures of merit and performs optimization in the

space of available transmit degrees of freedom [2]. This means that resulting actions are close

to the optimal ones.

Although cognitive radar was introduced as a mean to increase accuracy in demanding tracking

applications [3] or to improve detection [4], it was soon realized that perhaps one of the most

important benefits offered by cognition is that it allows one to use radar resources more effec-

tively – achieving ultimate performance, in the sense of e.g. minimizing mean squared tracking

errors, is usually not as desirable as achieving just the right amount of performance and being

able to handle more tasks.

In this paper cognitive radar framework is used to minimize observation time of target under

tracking. Since reduction of observation time adversely affects almost all performance metrics,

optimization must be carried out subject to some constraints. Typical constraints could include

probability of detection, clutter visibility or accuracy of target position estimation. Here we

choose ta constrain the accuracy of target angular coordinate estimation. We choose to do so,

because in many scenarios achieving desired accuracy of angular estimates requires such a

value of SNR which automatically fulfills requirement on probability of detection and range

estimation accuracy. Clutter visibility is not considered due to space constraints.

The text is organized as follows. Section 2 presents problem formulation. Prediction of angle ac-
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curacy is carried out in section 3. Sections 4 and 5 discuss optimization and simulation example,

respectively. Section 6 concludes.

2. Problem formulation

Suppose that the radar is to transmit a pulse burst of nP pulses, where nP is to be found by

cognitive controller. Echo signal received during the n-th pulse interval, n = 1, 2, . . . , nP , is

modeled as

yn = FrejφnBT (wT , α)a(α) + vn , (1)

where F is a coefficient which models signal decay during two-way propagation and other

losses, r2 = σ denotes radar cross section (RCS) of the target, φn is echo phase during n-th

pulse interval, α is target angle and a(α) is array steering vector at target angle. The quantity

BT (wT , α) = wH

Ta(α)

is transmit beampattern at the target when the transmit beam is formed using complex array

weights given by vector wT . Finally, vn denotes measurement noise, assumed to form a zero

mean i.i.d. complex circular Gaussian white noise with covariance matrix σ2

vI , where I denotes

eye matrix with size matching the sizes of vn and yn.

Target angle α is assumed to be a Gaussian random variable, α ∼ N (α0, σ
2

α). In the target

tracking scenario this would be a’priori (predictive) distribution obtained from radar tracker.

Target RCS σ is γ-distributed random variable with known shape and rate parameters, γs >

1, γr > 0, respectively. Note that γ distribution is a generalization of chi-squared family of

Swerling models [5] – Swerling I model is obtained for γs = 1, while Swerling III case requires

γs = 2. Values of γs between 1 and 2 yield intermediate cases. Furthermore, for any choice of

γs, γr, average target RCS is given by their ratio

σav = E[σ] =
γs
γr

.

Noncoherent and coherent processing case will be considered. The former is readily obtained

by assuming that φn, n = 1, 2, . . . , nP forms a i.i.d. sequence of random variables uniformly

distributed in [0, 2π). The latter will be handled in a slightly less rigorous way which reflects

actual processing being done typically.

The cognitive controller goal is to minimize

f(nP ,wT ) = nP +Q(wT ) , (2)

where Q(wT ) represents the cost of using distribution wT , subject to

nP ∈ NP

P (∆α̂2) < ∆α2

max
(3)
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where NP denotes the set of admissible pulse trail lengths, ∆α̂ is angle estimation error

∆α = α− α̂ , (4)

of conditional maximum likelihood (ML) angle estimate α̂, P (∆α̂2) is predicted mean square

error of this estimate and ∆α2

max
sets the desired level of accuracy.

3. Estimation accuracy prediction

3.1. Noncoherent processing case

Given an unknown deterministic parameter vector

θnc = [α r φ1 . . . φnP
]T ,

which exceeds a certain threshold signal to noise ratio, performance of ML estimator is well

predicted by the classical Cramér-Rao lower bound (CRB) [6]

E[∆α2] ≥ [FIMnc(θ)
−1]1,1

where

FIMnc(θ) = Ev1...vN

[

(

∂l

∂θnc

)(

∂l

∂θnc

)T
]

denotes Fisher information matrix and l(·) denotes log-likelihood function of measurements

y1, y2, . . . , ynP
.

However, in the case considered, all the parameters in θ are actually random quantities. Due

to adopted definition of constraints (3), which measures estimation errors at the output of ML

estimator rather than tracker, a Bayesian version of CRB, so called posterior Cramér-Rao lower

bound (PCRB), does not apply here as well. This is because PCRB includes prior information,

i.e. it would yield optimistic performance estimates.

We will use so called extended Miller-Chang bound (EMCB), defined as [7]

EMCBnc = Eθ[[FIMnc(θ)
−1]1,1] , (5)

where Eθ[·] denotes averaging over all possible values of θ. Note that EMCB can be interpreted

as expected value of CRB, so it indeed provides predictions of average ML estimator accuracy.

Due to Gaussian assumptions on measurement noise the matrix FIMnc(θ) can be found with

standard approach [6]. Furthermore, applying the Schur complement technique to get rid of

nuisance parameters r, φ1, . . . , φnP
one can obtain a closed form solution for [FIMnc(θ)

−1]1,1.
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Let

S = BT (wT , α)a(α)

T =
∂BT (wT , α)

∂α
a(α) + BT (wT , α)

∂a(α)

∂α

Z1 = THT

Z2 = SHT

Z3 = SHS

(6)

then it can be shown that

[FIMnc(θ)
−1]1,1 =

σ2

v

2F 2r2
(

K1 −KT

2
K−1

3
K2

)−1

(7)

where

K1 = nPZ1

K2 = Re
{

[

nPZ2 −jZ2 −jZ2 . . . −jZ2

]T
}

K3 = diag (nPZ3, Z3, Z3, . . . , Z3) . (8)

Further simplifications yield

[FIMnc(θ)
−1]1,1 =

σ2

v

2nPF 2r2

(

Z1 −
|Z2|

2

Z3

)−1

=
σ2

v

2nPB2

T (wT , α)F 2r2

[

∥

∥

∥

∥

∂a(α)

∂α

∥

∥

∥

∥

2

−

(

∂a(α)

∂α

)H
a(α)aH(α)

‖a(α)‖2
∂a(α)

∂α

]−1

,

(9)

where ‖x‖2 = xHx.

All that is left to find EMCBnc is to perform averaging over r and α. The averaging can be

separated into two steps. First, we perform averaging over r. Using the fact that r2 = σ is γ

distributed one obtains

E

[

1

r2

]

=
γr

γs − 1
=

1

σav −
1

γr

. (10)

Second step, i.e. averaging the term

G(wT , α) =
1

B2

T (wT , α)

[

∥

∥

∥

∥

∂a(α)

∂α

∥

∥

∥

∥

2

−

(

∂a(α)

∂α

)H
a(α)aH(α)

‖a(α)‖2
∂a(α)

∂α

]−1

over α, must be carried out numerically.

Note that, somewhat unfortunately, eq. (10) rules out Swerling I model, because EMCBnc will

be infinite.
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3.2. Coherent processing case

When dealing with a coherent pulse burst it is not uncommon to apply coherent integration

prior to actual detection and estimation. This reduces dimensionality of data to 1 and, at the

same time, increases signal to noise ratio nPL times, where 0 < L < 1 represents loss due

to mismatch between assumed and actual target Doppler frequency. Using results from the

previous subsection yields the following loss discounted FIM

[FIMc(θ)
−1]1,1 =

σ2

v

2nPLB2

T (wT , α)F 2r2

[

∥

∥

∥

∥

∂a(α)

∂α

∥

∥

∥

∥

2

−

(

∂a(α)

∂α

)H
a(α)aH(α)

‖a(α)‖2
∂a(α)

∂α

]−1

(11)

which can be used to compute EMCB.

Remark: Observe that, perhaps counter-intuitively, (11) is larger than (9) by a factor of 1/L.

This stems from the fact that the processing method is not optimal. However, noncoherent pro-

cessing may be much more sensitive to presence of clutter than coherent one. Hence, the latter

still holds an advantage in clutter-limited scenarios.

4. Optimization

Direct optimization of (2)-(3) may be demanding in terms of computational complexity. Sup-

pose however, that a set W of prespecified transmit distributions is available. Further, assume

that W is a union of M disjoint sets Wm, m = 1, 2, . . . ,M . Now suppose that for each

wT ∈ Wm it holds that Q(wT ) = qm, i.e. Q(· · · ) sets an order of preference, where all distri-

butions in Wm are equally preferred with respect to each other. A reasonable example of such

ordering is, e.g. to prespecify several choices of amplitude taper and rank available options

according to sidelobe level.

Under such setup one can perform minimization of (2) subject to (3) with respect to nP for

each wT ∈ W separately. Then one can pick the optimal solution by comparing values of f(·)
obtained during such independent optimizations.

Note that this search strategy can be parallelized in a straightforward way, if needed. Addition-

ally an explicit formula the optimal value of nP for a given wT can be found, which reduces

computational load. It takes the form

nP = CNP

(

σ2

v

2F 2∆α2
max

E
[

r−2
]

E [G(wT , α)]

)

, (12)

where CNP
(x) denotes the operator of casting x to NP , i.e. choosing smallest admissible pulse

trail length larger than x.

Two situations deserve special treatment. First, it may occur that the above procedure yields

several array distributions with equal resulting f(·). Second, under adverse circumstances, all
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choices of wT may require pulse trails larger than largest element of NP to satisfy accuracy

constraint. In these situations, it is reasonable to prefer such a distribution wT which yields the

smallest mean-square estimation error.

5. Results of simulation

Our simulated radar system is fitted with a uniform linear array, consisting of 12 elements

spaced at half wavelength. The array is tilted by 20 degrees upwards. We adopt sine of off-

boresight angle as α, i.e.

α = sin[(ǫ− π/9)]

a(α) =
[

1 ejπα ej2πα . . . ej11πα
]T

,

where ǫ denotes elevation angle.

The simulation will feature a single Swerling III target with average RCS of σav = 2.5 m2,

traveling between Rmin = 1000 meters to Rmax = 4000 meters away from the radar at a height

of 750 meters. Uncertainty of target’s a’priori elevation angle varies with its distance form the

radar. For simplicity we adopt the following formula for standard deviation of α

σα =
100

R

where R denotes target distance. The desired measurement accuracy is set to ∆αmax = 0.0035.

The library W consists of three subsets W1, W2, W3. Each subset comprises of 23 beams,

spaced uniformly between 2 and 48 degrees. The subsets differ from each other by amplitude

taper. The subset W1 employs Chebyshev taper with -50 dB sidelobe level. The subset W2 also

employs Chebyshev weights, this time with -30 dB sidelobes. Finally, W3 contains beams with

uniform weighting.

Before moving ahead, let us make a brief comment on a particular choice of beams. The ultra

low sidelobe beams are well suited for situations where a’priori angle uncertainty is rather high

and SNR is not a problem. The other two options offer gradually increasing gain and power

output to cope with weak targets at a long distance.

Generally, we prefer to use low-sidelobe beams, unless it results in excessive pulse trail length.

To this end we adopt the following form of Q(wT ) in (2)

Q(wT ) =







0 for wT ∈ W1

8 for wT ∈ W2

32 for wT ∈ W3

Finally, the set NP consists of integers between 1 and 64, NP = {1, 2, . . . , 64}, and F =

5 · 107/R2.
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Figure 2: Comparison of mean squared angle estimation errors (dashed line) with their desired (fine-dotted line)

values when fixed-parameter dwells are employed.

Fig. 2 shows mean squared elevation estimation errors when dwells with fixed parameters –

nP = 32 pulses and -50 dB weighting – are in use. Experimental means, computed by averaging

2000 realizations of (α, r, φ1, . . . , φ32,v1, . . . ,v32), are compared with desired mean square

errors. It is obvious that performance goal is missed most of the time. For range smaller than

2500 m, the system is performing too well, i.e. one is spending excessive resources. Above 3000

m, the radar is not able to keep up with the goal and eventually we see signs of the threshold

effect [6] – the growing fraction of large errors causes large spikes in the mean.

The situation is radically different when cognitive approach is used. Fig. 3 shows that the pre-

dicted and the actual MSE errors are always close to the assumed target. We can also see that

dwells are scheduled in a very reasonable manner (Fig. 4): the system starts with low sidelobe

beams and short pulse trails. It then increases nP up to a certain point at which it makes more

sense to sacrifice sidelobe level in order to save some time. This pattern is repeated again, when

the system switches to uniform array weighting. After that, the only option left is to increase

nP , which is exactly what the system does.

6. Conclusions

The problem of optimizing time budget in tracking application was considered. A cognition-

inspired solution, which balances dwell time and transmit beampatters sidelobe level, was pro-

posed. Simulation results confirm that resulting radar performance stays close to desired values.

In this final paragraph of the paper we note that we are well aware that one could design a rule-

based decision system with exhibiting a similar behavior. However, the important feature of

cognitive approach is that the observed behavior is emergent, rather than hard-coded, feature of
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Figure 3: Comparison of mean squared angle estimation errors (dashed line) with their predicted (solid line) and

desired (fine-dotted line) values when optimized dwells are employed.

the system. This marks a significant change of paradigm: rather than designing system behavior

rules, the engineer is expected to specify goals and constraints while the cognitive system will

‘simply do the rest’.
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Figure 4: Number of pulses and transmit beam sidelobe level for dwells selected by the cognitive controller.
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