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Rapid Yield Estimation and Optimization
of Microwave Structures Exploiting
Feature-Based Statistical Analysis

Slawomir Koziel, Senior Member, IEEE, and John W. Bandler, Life Fellow, IEEE

Abstract—In this paper, we propose a simple, yet reliable
methodology to expedite yield estimation and optimization of
microwave structures. In our approach, the analysis of the entire
response of the structure at hand (e.g., -parameters as a function
of frequency) is replaced by response surface modeling of suitably
selected feature points. On the one hand, this is sufficient to deter-
mine whether a design satisfies given performance specifications.
On the other, by exploiting the almost linear dependence of the
feature points on the designable parameters of the structure,
reliable yield estimates can be realized at low computational
cost. Our methodology is verified using two examples of wave-
guide filters and one microstrip hairpin filter and compared with
conventional Monte Carlo analysis based on repetitive electro-
magnetic simulations, as well as with statistical analysis exploiting
linear response expansions around the nominal design. Finally, we
perform yield-driven design optimizations on these filters.

Index Terms—Design centering, electromagnetic (EM) mod-
eling, microwave component modeling., statistical analysis,
tolerance-aware design, yield estimation, yield-driven design.

I. INTRODUCTION

R ELIABLE design of microwave components and circuits
has to account for manufacturing tolerances and uncer-

tainties. In many cases, the objective is a robust design, i.e.,
maximization of the probability that the fabricated structure sat-
isfies given performance specifications under assumed devia-
tions from the nominal values of geometry and/or material pa-
rameters (yield-driven design or design centering [1]–[6]). In
this context, statistical analysis and yield estimation are indis-
pensable steps in the design process [7]–[9].
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Except in very simple cases, accurate evaluation of mi-
crowave structures can only be obtained by full-wave electro-
magnetic (EM) simulations with fine discretization. This is not
only due to the lack of accuracy of simplified (e.g., equivalent
circuit) models, but also due to the lack of such models for
modern complex structures, where various interactions be-
tween the structure and its environment have to be taken into
account (e.g., housing, connectors, or in the case of antennas,
installation fixtures). Unfortunately, accurate, high-fidelity EM
simulation is computationally expensive so that its use for
direct statistical analysis (e.g., the Monte Carlo (MC) approach
involving multiple full-wave EM simulations) is normally
impractical. At the same time, commonly used methods based
on the analysis of a structure for extreme values in the ranges of
the design parameters (worst case tolerance analysis [1]), while
computationally feasible, are not able to provide meaningful
statistical data for use in yield estimation.
More involved methods, e.g., those exploiting response

surface approximation (RSA) models [10]–[12], or polynomial
chaos expansion [13], alleviate the difficulties of the classical
MC approach to some extent, however, their advantages are
questionable for high-dimensional design spaces. The funda-
mental bottleneck here is the rapid growth of the number of data
samples necessary to set up a reliable structure representation
(whether it is an RSA or chaos expansion model) with the ac-
companying increase in the design space dimensionality. Other
approaches (e.g., [14]) include the use of principal component
analysis (PCA) [15] to reduce the problem complexity for
high-dimensional cases, as well as surrogate-based methods
such as space mapping [16], [17] or neural-space-mapping
modeling [18], [19]. Space-mapping-like techniques aim at re-
ducing the computational cost of the statistical analysis process
by exploiting suitably corrected (mapped) physics-based coarse
models (e.g., equivalent circuits).
In this work, we offer an alternative technique for rapid and

reliable statistical analysis and yield estimation of EM-simu-
lated microwave structures, especially filters. The original ver-
sion of this method was proposed in [20]. Here, it is analyzed in
depth and extended to yield-driven design (design centering).
The essence of our approach is approximation-based mod-

eling of suitably selected features of the filter response. The
features are chosen so that they can be used to uniquely deter-
mine whether or not the structure satisfies given performance re-
quirements. The approximation model is constructed using few
training designs (and, consequently, only a few corresponding
EM simulations of the structure are necessary for its setup),
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which grows only linearly with the dimensionality of the de-
sign space. As comprehensively demonstrated using three filter
examples, our proposed technique facilitates reliable yield esti-
mates at low computational cost. We also include a comparison
with direct statistical analysis using the classical MC approach.
Furthermore, it is shown that our feature-based yield estima-
tion is conceptually different from that derived from linear ex-
pansions around the nominal design point (the latter resulting
in dramatic yield underestimation). Finally, we demonstrate the
possibility of low-cost yield-driven design using a modified ver-
sion of our proposed technique.

II. YIELD ESTIMATION USING RESPONSE FEATURES

In this section, we formulate the yield estimation technique
exploiting suitable response features. We also provide some
background information to explain the effectiveness of our
approach, specifically regarding the high predictive power of
the feature-based model utilized by the proposed statistical
analysis procedure. Applications to yield-driven design are
discussed in Section IV.

A. Yield Estimation of Microwave Structures

We denote by a response of a device or compo-
nent of interest (such as a filter), representing, for example,
EM-simulated -parameters versus frequency. Here, is a
vector of designable (e.g., geometry or material) parameters.
Let be a nominal design (typically, an
optimum design with respect to given performance specifica-
tions). It is assumed that due to manufacturing uncertainties,
the actual parameters of the fabricated device are ,
where a random deviation is de-
scribed by a given probability distribution (such as a Gaussian
distribution with zero mean and a certain standard deviation)
or a uniform distribution with certain lower and upper bounds,
e.g., , .
We define an auxiliary function as follows [7]:

if satisfies the design specifications
otherwise.

(1)
The yield at the nominal design can then be estimated as

(2)

where , are random vectors sampled ac-
cording to the assumed probability distribution. Obviously,
evaluating (2) by means of multiple EM simulations of the
perturbed nominal design may be extremely expensive, partic-
ularly because reliable yield estimation requires a large number
of samples (typically, a few hundred or more). In the case of
small yield values, the number of samples have to be even
larger (a few thousand or more) in order to avoid high variance
of the estimator.

B. Feature-Based Approximation Model

In this work, we estimate the yield using the concept of fea-
ture points, introduced in [21] in the context of shape-preserving
response prediction (SPRP). Let us consider responses (cf.
Fig. 1) of the bandpass filter considered in Section III. The plot

Fig. 1. Reflection response of the bandpass filter (—) at the optimum design
with respect to given minimax specifications (marked with horizontal lines), as
well as the response at a perturbed design (- - -). Circles and squares denote
feature points for both responses, here, corresponding to the 1- and 20-dB
levels, as well as the response maxima in the passband. Design specifications
are: dB for 10.55 to 11.45 GHz, and dB for frequen-
cies lower than 10.3 GHz and higher than 11.7 GHz.

shows the response at the nominal design (i.e., a typically de-
sired minimax optimum with respect to the design specifica-
tions marked with horizontal lines, here, dB for
10.55–11.45 GHz, and dB for frequencies lower
than 10.3 GHz and higher then 11.7 GHz), as well as a set of
so-called feature points, here, represented by 1- and 20-dB
levels, as well as the peaks of the response in the passband. The
location of these points is sufficient to determine whether the
response violates or satisfies the given design specifications.
In particular, assuming small design perturbations, the feature
points corresponding to 1 and 20 dB may move towards
lower or higher frequencies violating (in some cases) the spec-
ifications regarding passband and/or stopband frequencies; the
feature points corresponding to maxima in the passband
may move up leading to violation of the require-
ment.
The choice of feature points for a given problem is straight-

forward. Fig. 1 also shows the response and the corresponding
feature points at a perturbed design (which, in this case, violates
our specifications).
As indicated in [22], modeling feature points is significantly

easier than constructing response surfaces for entire responses.
This is because the dependence of both the frequency and ver-
tical locations of those points on respective designable param-
eters is much less nonlinear than for the -parameters modeled
(conventionally) as functions of frequency. As a result, only
a limited number of training samples is necessary for creating
such models, particularly if we are only interested in local ap-
proximations (i.e., around the nominal design).
It should also be emphasized that—unlike in the case of SPRP

[21]—we are not interested in an accurate prediction of the en-
tire response of the structure. The focus is on those critical parts
of the response where the design specifications can potentially
be violated. This significantly simplifies the modeling process.
In order to construct our model, we consider evalu-

ations of the original model at the nominal design, ,
and at the perturbed designs

, , where may be,
for example, a maximum assumed deviation of the th param-
eter from its nominal value. The feature points of the response
vector are denoted as , ,
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Fig. 2. Deviation vector and its expansion using star-distributed training
vectors and , (denoted as ). The shaded area denotes
an area defined by a subset of points being the closest to , which
is represented as a linear combination of vectors . The feature points
at are calculated using the coefficients of this linear combination and
the feature points of for . Here, we have

.

where and are the frequency and magnitude components of
the respective point, and where is the total number of feature
points.
The aim is to predict the position of the feature points cor-

responding to a perturbed vector using the available
training set . For any given
, we find a subset of the base set that defines an

area containing . The surrogate model is set up using all
the points from , as shown in Fig. 2 for . Without loss
of generality, we can assume that . We
define

(3)
where determines a unique representation of
using vectors , . Coefficients can
be explicitly found as [9]

(4)

Using (3) and (4), we can define an approximation model of
the feature points as

(5)

where ,
. Having , one can estimate yield in a way

similar to (1) and (2). The fundamental difference is that the sat-
isfaction/violation of the design specification frequencies/levels
is verified for the feature points only rather than for the entire
responses.

C. Inadequacy of Linear Expansion Models

It should be emphasized that using response features for es-
timating yield rather than constructing, for example, a linear
model of the entire -parameter response is critical to accuracy.
Let us consider a simple first-order Taylor expansion of the filter
model around the nominal design

(6)

Fig. 3. Fifth-order bandpass filter of Section III-A: the filter response at the
nominal design (—) and the response obtained from a linear model (6) con-
structed using a perturbed design (- - -) (at the selected reference design). The
spikes that appear due to the linear modeling of sharp responses lead to consid-
erable yield underestimation (cf. Table I).

TABLE I
YIELD ESTIMATION: FIFTH-ORDER WAVEGUIDE FILTER

Estimation based on a linear model of the -parameter response around the
nominal design; Estimation cost in number of EM analyses. Feature-based
yield estimation utilizes random samples.

where is an estimated Jacobian of at the nominal
design. The estimate can be obtained using evaluations of at
the perturbed designs considered in Section II-B.
Fig. 3 shows an -parameter prediction obtained by evalu-

ating a linear surrogate constructed from the filter responses
evaluated for the same training set used for the feature-based
model. The lack of accuracy coming from the very sharp re-
sponses (as functions of frequency) is reflected in underesti-
mated yield predictions (cf. Section III). This indicates that the
feature-based yield estimation, although based on the same data
set) is fundamentally different from simple linear modeling.
It should be mentioned that a number of sophisticated

methods for parametric macromodeling (e.g., [23] and [24]) or
stochastic macromodeling (e.g., [25] and [26]) can be found in
the literature that allow for avoiding the presence of abnormal
responses of the simple linear model (6) through, for example,
passivity enforcement. Here, model (6) was only used in
order to indicate that the “naïve” utilization of the small data
set exploited by the feature-based model leads to very poor
predictions.

III. VERIFICATION EXAMPLES

In this section, the proposed yield estimation methodology is
comprehensively validated using twowaveguide filter examples
and one microstrip filter. A comparison with the conventional
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Fig. 4. Fifth-order waveguide bandpass filter [27].

MC analysis is also included. An extension of our method to
yield-driven design is discussed in Section IV.

A. Fifth-Order Chebyshev Waveguide Bandpass Filter

Consider the X-band waveguide filter with nonsym-
metrical irises [27] shown in Fig. 4. The design vari-
ables are . The filter
is simulated in CST [28] ( 140 000 tetrahedrons, sim-
ulation time about 8 min). The nominal design,

mm, is a minimax optimum with
respect to the following design specifications: dB
for GHz GHz and dB for

GHz and GHz. The minimax optimization
is understood as minimization of a maximum violation of the
aforementioned design specifications within the respective
frequency sub-bands.
Yield estimation has been carried out using four scenarios for

geometry parameter deviations, including a uniform probability
distribution with a maximum deviation equal to 0.01 and 0.02
mm (Cases 1 and 2) and a normal distribution with zero mean
and standard deviation of 0.01 and 0.02 mm (Cases 3 and 4).
The deviations are taken as uncorrelated. The yield has been
estimated with the methodology described in Section II, using
the eight feature points shown in Fig. 1.
For comparison, the yield was also estimated using conven-

tional MC analysis with 500 random samples (the number of
samples is limited due to the computational cost of the EM
simulation). The results are shown in Table I. Fig. 5 presents
a visualization of the yield estimation for Case 2. The agree-
ment between the yield estimation obtained using our proposed
method and conventional MC analysis is excellent. As a matter
of fact, the results obtained using our approach are more reli-
able than MC: the uncertainty in the latter is relatively large due
to the small number of samples used in the process to keep the
cost low. Feature-based yield estimation was executed for

.

Fig. 5. Fifth-order waveguide bandpass filter: yield estimation for Case 2. Gray
lines correspond to 500 EM-simulated random samples for MC analysis, cir-
cles represent corresponding feature points calculated using the approximation
model (1)–(5).

Fig. 6. Coupled iris waveguide filter [29].

B. Coupled Iris Waveguide Filter

Consider the coupled iris filter [29] shown in Fig. 6. The
design variables are .
The filter is simulated in CST [28] ( 60 000 tetrahedron mesh
cells, simulation time 5 min). The nominal design,

mm, is a minimax optimum with respect to the
following design specifications: dB for

GHz GHz and dB for
GHz and GHz. The yield has been estimated

for six scenarios for geometry parameter deviations as indi-
cated in Table II (see also Fig. 7). The results confirm that our
technique ensures reliable yield prediction at a fraction of the
cost required by the conventional approach.

C. Microstrip Hairpin Filter

Consider the microstrip hairpin filter [30] shown in Fig. 8.
The design variables are .
The microstrip width is fixed to mm. The substrate
parameters are mm (substrate height) and

(dielectric permittivity). The filter is simulated in FEKO
[31] ( 900 mesh cells, simulation time 15 min). The nominal
design,

mm, is a design optimized with respect to the
following specifications: dB for GHz

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


KOZIEL AND BANDLER: RAPID YIELD ESTIMATION AND OPTIMIZATION OF MICROWAVE STRUCTURES 111

TABLE II
YIELD ESTIMATION: COUPLED IRIS WAVEGUIDE FILTER

Estimation based on a linear model of the -parameter response around the
nominal design; Estimation cost in number of EM analyses. Feature-based
yield estimation utilizes random samples.

Fig. 7. Coupled iris waveguide filter: yield estimation for Case 2. Gray lines
correspond to 500 EM-simulated random samples for MC analysis, circles rep-
resent corresponding feature points calculated using the approximation model
(1)–(5).

Fig. 8. Microstrip hairpin filter: geometry [30].

GHz and dB for GHz and
GHz.

For this last example, the yield has been estimated using four
scenarios of uncertainties in the geometry parameters, as shown
in Table III. Fig. 9 shows a visualization of yield estimation for
the selected case. Our results are consistent with the previous
examples in terms of agreement with the MC analysis, how-
ever, the prediction of yield given by the proposed method is
lower than for MC. It should be emphasized that in this case,

TABLE III
YIELD ESTIMATION: MICROSTRIP HAIRPIN FILTER

Estimation based on a linear model of the -parameter response around the
nominal design; Estimation cost in number of EM analyses. Feature-based
yield estimation utilizes random samples.

Fig. 9. Microstrip hairpin filter: yield estimation for Case 1. Gray lines corre-
spond to 500 EM-simulated random samples for MC analysis, circles represent
corresponding feature points calculated using the approximation model (1)–(5).

the yield estimation with MC based on 500 samples is not par-
ticularly reliable due to low overall values of the yield. For ex-
ample, in Case 2 (a Gaussian distribution with standard devia-
tion of 0.02 mm), the standard deviation of the estimated yield
exceeds 50% of the mean value (based on multiple yield esti-
mates obtained using the proposed method with 500 samples).
To the contrary, because of its speed (once the model (5) is es-
tablished, its evaluation cost is negligible), our approach allows
any number of samples, which greatly improves the yield esti-
mation accuracy.

IV. TOLERANCE-AWARE DESIGN OPTIMIZATION
USING RESPONSE FEATURES

In this section, we describe the use of the methodology of
Section II for cost-efficient tolerance-aware microwave design
optimization (design centering).

A. Yield Maximization Methodology

As demonstrated in Section III, our proposed feature-based
yield estimation technique ensures very good accuracy at low
computational cost. Thus, the feature approximation model (5)
can be utilized for tolerance-aware design. Let denote
the yield estimated at the nominal design usingmultiple eval-
uations of the feature model , as explained in Section II-B. The
yield estimation is based on multiple evaluations of this model,
i.e., , where , , are random vectors
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sampled according to the assumed probability distribution (cf.
Section II-A).
One can define a function realizing a yield estima-

tion for any design (in practice, should be in the vicinity
of ), where the yield is calculated using evaluations of

. However, because is defined with respect to rather
than an arbitrary , the yield estimation has to be performed
using the following set of evaluations: , where

, .
The design that maximizes the yield is then found as

(7)

It should be emphasized that to ensure reliability (in partic-
ular, to minimize the yield estimation variance), a large number
of samples should be used. In our numerical experiments, we set

. The same sample set of perturbations should
also be utilized for all evaluations of in order to avoid
numerical noise related to yield estimation variance.
In practice, the accuracy of a yield estimate using

will degrade as moves away from so yield optimization
should preferably be implemented as an iterative process,
namely,

(8)

where are approximations of obtained by
optimizing , i.e., a yield estimation function set up sim-
ilarly to , but centered around rather than and
using corresponding perturbations. The cost of each iteration is

EM simulations, where is the number of designable
parameters. The procedure is terminated when the current itera-
tion does not lead to yield improvement, which is understood as

. The feature-based model [cf.
(8)] is optimized using a pattern search algorithm [32].
Although this section only covers yield optimization starting

from a certain nominal design (here, minimax optimum with
respect given lower/upper specifications at selected frequen-
cies), it is recommended that when starting from an arbitrary ini-
tial design, the yield-driven optimization is split into two sepa-
rate steps, which are: 1) a conventional minimax-type optimiza-
tion executed to find the nominal design and 2) a yield-driven
stage as described in this section. The first step can be realized,
for the sake of computational efficiency, using, for example,
space mapping [33] or other type of surrogate-based optimiza-
tion technique [33].

B. Application Example: Yield Optimization of Fifth-Order
Waveguide Filter

The yield optimization procedure has been applied
to the waveguide filter of Section III-A, assuming a
Gaussian probability distribution with a standard devi-
ation equal to 0.02 mm (Case 4). The optimization is
started from the nominal design (cf. Section III-A)
with an estimated yield of 0.25. The optimized design is

with an estimated yield of 0.46. This design was obtained in
four iterations of our yield optimization procedure at a total cost
of filter evaluations. Fig. 10 shows a visualization

Fig. 10. Fifth-order waveguide filter: yield estimation assuming a Gaussian
probability distribution with standard deviations of 0.02 mm (Case 4) at: (a) the
nominal design and (b) the optimized design . Gray
lines correspond to 500 EM-simulated random samples for MC analysis, cir-
cles represent corresponding feature points calculated using the approximation
model (1)–(5).

TABLE IV
YIELD OPTIMIZATION: FIFTH-ORDER WAVEGUIDE FILTER

Estimation for a uniform distribution with maximum deviations of 0.01
mm.
Estimation cost in number of EM analyses.

TABLE V
YIELD OPTIMIZATION: MICROSTRIP HAIRPIN FILTER

Estimation for a uniform distribution with maximum deviations of 0.01
mm.
Estimation cost in number of EM analyses.

of the yield estimate at the optimized design. Table IV indicates
the yield estimated using both our method and conventional
MC analysis. Good agreement between the two estimations is
observed.

C. Application Example: Yield Optimization of Microstrip
Hairpin Filter

Yield optimization for the hairpin filter (cf. Section III-C)
was executed for Case 1 (a uniform probability distribution
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with a maximum deviation equal to 0.01 mm). The opti-
mized design,

, with an estimated yield of 0.25 is obtained
in two iterations (total cost filter simulations).
Table V indicates the yield estimated using both our method
and conventional MC analysis.

V. CONCLUSIONS

A reliable technique for low-cost statistical analysis of mi-
crowave structures has been presented. Our approach exploits
feature-based approximationmodels constructed using a limited
number of EM simulations of the structure of interest. Compre-
hensive numerical experiments indicate excellent agreement be-
tween the statistical analysis results obtained with our approach
and conventional MC simulations. The application of our ap-
proach to yield-driven design is also demonstrated.
Our proposed methodology seems to be an interesting alter-

native approach to expedite statistical analyses of filter struc-
tures. An important advantage is that its computational cost de-
pends linearly on the dimensionality of the design space, which
is not the case for most of the known techniques, including some
of the recent methods that exploit RSA models or polynomial
chaos expansions. At the same time, our method can be easily
adopted in yield-driven design optimization, as demonstrated
using examples of both waveguide and planar filters.
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