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Abstract 

Practical engineering design problems are inherently multi-objective, i.e., require 

simultaneous control of several (and often conflicting) criteria. In many situations, genuine 

multi-objective optimization is required to acquire comprehensive information about the 

system of interest. The most popular solution techniques are population-based metaheuristics, 

however, they are not practical for handling expensive electromagnetic (EM)-simulation 

models in microwave and antenna engineering. A workaround is to use auxiliary response 

surface approximation surrogates but it is challenging for higher-dimensional problems. 

Recently, a deterministic approach has been proposed for expedited multi-objective design 

optimization of expensive models in computational electromagnetics. The method relies on 

variable-fidelity EM simulations, tracking the Pareto front geometry, as well as response 

correction. The algorithm sequentially generates Pareto-optimal designs using a series of 

constrained single-objective optimizations. The previously obtained design is used as a 

starting point for the next iteration. In this work, we review this technique and its 

modification based on space mapping surrogates. We also propose new variations exploiting 

adjoint sensitivities, as well as response features which can be attractive depending on 

availability of derivatives or the characteristics of the system responses that need to be 

handled. We also discuss several case studies involving various antenna and microwave 

components.  
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1. Introduction 

Full-wave electromagnetic (EM) analysis has become a fundamental tool of 

modern microwave and antenna engineering [1], [2] as well as photonics [3]. 

Furthermore, it is ubiquitous in the design of wireless power transfer systems [4], 

microwave imaging [5], non-destructive testing [6], and many other areas. Despite their 

accuracy, high-fidelity EM simulation models are numerically expensive which is 

problematic for complex structures (e.g., antenna arrays in a radome [7]). In many cases, 

computational models need to account for environmental components that affect 

performance of the device at hand [8], [9]. It is common that theoretical models 

unavailable or of unacceptable accuracy so that full-wave EM analysis is the only tool for 

reliable estimation of the system performance. 

The most important challenge of simulation-driven design is high cost of accurate 

EM analysis (from minutes to even days, depends on complexity of the structure). This is 

particularly challenging from the point of view of automated numerical optimization, 

because conventional algorithms require a large number of EM model evaluations to 

yield an optimized design. This applies to both local methods and to population-based 

metaheuristics [10]-[14]. A practical alternative is design by means of parameter 

sweeping which, although simple and intuitive, requires massive interaction with the 

designer [15], [16]. Unfortunately, the method is unsuitable for complex problems (e.g., 

constrained optimization or multi-dimensional parameter spaces) and normally leads to 

sub-optimal designs. Therefore, design automation is highly desirable.  

Numerically feasible EM-simulation-driven design methods are of high interest 

for the research community. In the context of gradient-based algorithms, dramatic 

speedup of the optimization process can be achieved using adjoint sensitivity [17], [18], 

[19] which allows for obtaining both the system response and its gradient [19]-[22]. 

While adjoint technology is one of the basic tools in, e.g., mechanical engineering [23], it 

is commercially available in only a few EM solvers [24], [25]. Another class of methods 

for numerically efficient EM-driven design is surrogate-based optimization (SBO) [26]-

[29]. Surrogate-assisted techniques replace direct handling of the expensive model by a 
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process in which a so-called surrogate is iteratively constructed and utilized as a 

prediction tool guiding the algorithm towards a better design.  

We can identify two classes of surrogate models: data-driven (or approximation) 

and physics-based ones. Approximation surrogates are primarily utilized in a global 

optimization context (e.g., efficient global optimizers, EGO [30], [31], optimization using 

artificial neural networks [32], as well as surrogate-assisted evolutionary algorithms [33], 

[34]). Physics-based models are obtained by means of appropriate correction of the 

underlying low-fidelity (or coarse) models. They can be obtained, among others, as 

equivalent circuits [35], or coarsely-discretized EM models [8]. Physics-based surrogates 

offer better generalization compared to data-driven ones due to system-specific 

knowledge embedded in the low-fidelity model. However, they are more expensive and 

thus better suited for local optimization [8]. Physics-based SBO methods include space 

mapping (SM) [36], [37], response correction [38]-[40], feature-based optimization [41], 

adaptively adjusted design specifications [42], and, recently, adaptive response scaling 

[43].  

Similarly as in other areas, practical design problems in microwave and antenna 

engineering require handling multiple and often conflicting objectives. For example, a 

typical issue pertinent to wireless communication systems ([44], [45]) is finding 

acceptable compromise between the physical size of the component and its performance 

[8], [15], [19]. Such design tasks are often converted into single-objective problems, e.g., 

by selecting the primary objective and handling the others through constraints or penalty 

functions, or by using a weighted sum approach [13]. Nevertheless, having 

comprehensive information about the best possible trade-offs between conflicting design 

criteria is important in certain situations. This can only be achieved by means of genuine 

multi-objective optimization, typically in a form of the Pareto set representing alternative 

solutions with respect to given design criteria. The most popular techniques for solving 

such problems—due to simplicity, global search capability, and ability of yielding the 

Pareto set in a single run—are population-based metaheuristics [12], [13], [46]-[49]. 

Unfortunately, such methods are unsuitable for direct handling of expensive EM 

simulation models because of their tremendous computational cost (thousands of model 

evaluations and more). 
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Several techniques for reduced-cost multi-objective optimization exploiting both 

physics-based and data-driven surrogates have been proposed recently [32], [50]. In [32], 

an artificial neural network (ANN)-based surrogate capable of handling the physical 

topology of dynamic optical networks has been proposed. The ANN model is utilized to 

accelerate multi-objective design of the optical networks. An approach for expedited 

multi-objective design of antennas using variable-fidelity EM simulations and auxiliary 

data-driven model has been introduced in [50]. The method exploits kriging interpolation 

model identified using training data obtained from coarsely-discretized EM simulations. 

The initial approximation of the Pareto front has been obtained using evolutionary 

algorithm and then refined to the high-fidelity model level using space mapping. 

However, practical usefulness of the approach of [50] is limited to low-dimensional 

problems. The method of [50] was further extended for multi-dimensional parameter 

spaces by utilizing design space reduction techniques. In [51], the method for restricting 

search space based on dimensions of so-called extreme designs (i.e., the ones obtained 

through optimization of the system at hand with respect to one objective at a time) has 

been utilized to exploit the technique of [50] for optimization of a 13-parameter antenna. 

In [52], the approach of [51] has been extended by allocating the surrogate model domain 

along the diagonal spanned by the extreme points and reducing all orthogonal dimensions 

(w.r.t. the diagonal) accordingly. It should be emphasized, however, that the techniques 

mentioned in this paragraph still utilize population-based metaheuristics at certain stage 

of the optimization process. 

A fully deterministic technique for multi-objective design optimization of 

computational electromagnetic models has been proposed in [53]. In contrary to the 

methods considered above, the approach of [53] does not require any confinement of the 

search space. The method is based on the concept of Pareto front exploration where 

subsequent Pareto-optimal designs are found using constrained local search starting from 

the previously found solution. Numerical efficiency of the optimization process is 

ensured using local response surface models constructed from coarsely-discretized EM 

simulations. The obtained designs are refined by means of using space mapping.   

In this paper, we review the concept of [53] and discuss its several extensions in 

terms of how the Pareto front can be explored faster, depending on what kind of 
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simulation tools are available and what the characteristics of the system response at hand 

are. In particular, we consider local search using so-called response features where the 

optimization problem is reformulated in terms of suitably defined characteristic points 

[54], as well as gradient search with adjoint sensitivities [20]. Our considerations are 

illustrated using several real-world problems in microwave and antenna engineering. 

Benchmarking as well as comparative analysis of the presented techniques is also 

provided.  

The rest of the paper is organized as follows. Section 2 describes several variants 

of multi-objective design optimization by means of Pareto front exploration, using local 

approximation surrogates, space mapping, adjoint sensitivities, and response features. 

Section 3 provides numerical validation of the considered algorithms using two 

ultrawideband (UWB) monopole antennas, a miniaturized rat-race coupler and a compact 

UWB impedance transformer implemented in microstrip technology. Section 4 discusses 

the results and concludes the work. 

 

2. Multi-Objective Design Optimization by Pareto Front Exploration 

In this section, we formulate multi-objective optimization problem (Section 2.1) 

and discuss a deterministic procedure for Pareto set identification (Section 2.2). Various 

options for finding subsequent Pareto-optimal designs are highlighted in Sections 2.3 

through 2.6. Illustration examples are presented in Section 3.  

 

2.1. Multi-Objective Design Problem Formulation 

 We will denote by Rf(x) a response of a high-fidelity computational model of the 

structure under design and by vector x a set of adjustable parameters (typically, 

geometrical dimensions and/or material parameters). Here, the model is normally 

evaluated using full-wave electromagnetic (EM) simulations. Moreover, Fk(Rf(x)), k = 1, 

…, Nobj, will be a kth design objective (e.g., reduction of the area, improvement of 

performance characteristics of the structure, etc.).  

If the number of objectives is larger than one, i.e., Nobj > 1, then any two designs 

x
(1)

 and x
(2)

 for which Fk(Rf(x
(1)

)) < Fk(Rf(x
(2)

)) and Fl(Rf(x
(2)

)) < Fl(Rf(x
(1)

)) for at least 

one pair k  l, are not commensurable (i.e., none is better than the other in multi-objective 
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sense). In order to assess the designs, we use a Pareto dominance relation  [12] defined 

as follows: for the two designs x and y, we have x  y (x dominates y) if Fk(Rf(x))  

Fk(Rf(y)) for all k = 1, …, Nobj and Fk(Rf(x)) < Fk(Rf(y)) for at least one k.  

Our goal is to obtain the Pareto-optimal set (a representation of the Pareto front) 

XP in the search space X, such that for any x  XP, there is no y  X for which y  x [12]. 

Such a representation is considered to be the final outcome of the optimization process. 

Given available trade-offs as well as performance requirements, the designer can select a 

specific design for further processing, e.g., prototyping. 

 

2.2. Optimization Algorithm 

 The multi-objective optimization algorithm considered here is formulated for two 

design objectives. It is the most practical case for typical problems in microwave and 

antenna engineering (e.g., structure size versus its electrical performance). It is possible 

to generalize it for a larger number of criteria, although this version is not discussed in 

this paper. The algorithm generates a sequence of designs x
(k)

, k = 1, 2, …, where x
(1)

 is a 

solution to the single-objective optimization problem of the form [53] 

 (1)

1arg min ( )
x

x R xfF                                                 (1) 

which is the optimum design with respect to objective F1. For the sake of computational 

efficiency, the solution to (1) is obtained by means of surrogate-assisted optimization of a 

suitably corrected (e.g., space mapping [26], [36]) low-fidelity model Rc (e.g., coarse-

discretization version of the high-fidelity model Rf). By F2
(1)

 = F2(Rf(x
(1)

)) we will denote 

the corresponding value of the second objective. 

The optimization algorithm generates subsequent Pareto-optimal designs using a 

series of constrained single-objective optimizations. In each iteration, the design obtained 

in the previous one is used as a starting point. More specifically, the kth element of the 

Pareto set x
(k)

 is obtained as 

 
( )

2 2

( )

1
, ( ( ))

arg min ( )



x R x

x R x
k

f

k

f
F F

F                                            (2) 

where F2
(k)

 is a user-defined threshold value for the second objective. The process is 

terminated if F1(Rf(x
(k)

)) is no longer satisfactory from the point of view of given design 
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specifications. This way, only a feasible part of the Pareto front (from the specification 

standpoint) is covered. There are various ways of establishing the sequence of thresholds 

F2
(k)

 [55],e.g., as F2
(k)

 =  F2
(k–1)

 with  < 1, or F2
(k)

 = F2
(k–1)

 –  with  > 0. Figure 1 

shows a conceptual illustration of the algorithm. 

 It should be noted that the algorithm (1)-(2) is deterministic and it does not rely 

on any form of population-based metaheuristic. Therefore, it may be computationally 

efficient, particularly if surrogate-based methods are used for solving (2). This can be 

realized using local methods because of the fact that subsequent Pareto-optimal designs 

are typically close to each other. Subsections 2.3 through 2.6 discuss various ways of 

solving (2) and discuss their properties.  

 

2.3. Pareto Front Exploration by Local Approximation Surrogates 

In practice (especially if one is interested in obtaining relatively dense 

representation of the Pareto front), the design x
(k)

 is sufficiently close to the preceding 

one, i.e., x
(k–1)

 so that the solution to the problem (2) can be obtained by means of 

sequential approximate optimization as follows. Let x
(k.j)

, j = 0, 1, …, be a sequence 

approximating x
(k)

 (here, x
(k.0)

 = x
(k–1)

) obtained as 

 

 
( )( . )

2 2
( . ) ( . )

( . 1) ( . )

1
, ( ( ))

arg min ( )



   


x R x

x d x x d

x R x
kk j

s
k j k j

k j k j

s
F F

F                                         (3) 

F
1
(

(
))

R
x

f

F2( ( ))R xf

F2

(2)
F2

(3)
F2

( )k
F2

( +1)k

β

Initial
design

 
Fig. 1. Conceptual illustration of point-by-point exploration of the Pareto front using the algorithm (1)-(2) 

[55]. The initial design (black circle) is determined using (1). Subsequently, consecutive Pareto optimal 

designs (black squares) are obtained sequentially using (2). Vertical dotted lines represent thresholds along 

objective F2 (here, F2
(k)

 = F2
(k–1)

 – ). 
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The surrogate model at iteration j, Rs
(k.j)

, is defined as 

( . ) ( . ) ( . ) ( . ) ( . )( ) ( ) ( ) ( )    R x R x R x R x
k j k j k j k j k j

s q f q
                          (4) 

whereas Rq
(k.j)

 is a local approximation model of the low-fidelity model Rc. It is 

constructed in the interval [x
(k.j)

 – d, x
(k.j)

 + d] which is a vicinity of the current design 

x
(k.j)

. Solving of (3) is constrained to this interval and the size vector d is determined by 

the sensitivity analysis of the structure of interest [56]. The approximation model itself is 

a second-order polynomial model without mixed terms [56], established using 2n + 1 

low-fidelity model evaluations (n is the number of design parameters) allocated using 

factorial design of experiments (here, a star distribution [26], [36]). More specifically, we 

have 

( . ) ( . ) ( . ) ( . ) 2

1 0 1 1
( ) ([ ... ] ) ( ) ( )    

      R x R
n nk j k j T k j k j

q q n l l l n l l ll l
x x x x x x          (5) 

The model coefficients l are found by solving linear regression problems Rq
(k.j)

(x
(b.l)

) = 

Rc(x
(b.l)

) for l = 1, …, 2n + 1, where x
(b.l)

 are the training points. 

The size vector d is reduced after each iteration of (3) as d  d/m (we use m = 2 

in our numerical experiments in Section 3). Because of the fact that subsequent Pareto-

optimal points are allocated close to each other, only a few iterations of (3) are normally 

necessary to yield a reasonable approximation of x
(k)

. The correction term in (4) aligns 

the surrogate and the high-fidelity model at x
(k.j)

, i.e., Rq
(k.j)

(x
(k.j)

) = Rf(x
(k.j)

) [50], [57].  

 

2.4. Pareto Front Exploration Using Space Mapping Surrogates 

 Another option for solving (2) is direct optimization of the surrogate model 

obtained through appropriate correction of the low-fidelity model using, e.g., space 

mapping. This approach is practical if the low-fidelity model is cheap. In microwave 

engineering it would apply to equivalent circuit models, where the structure at hand is 

described using circuit theory [53]. Equivalent circuit simulation is normally very fast 

(typically, miliseconds) so that direct optimization of such a model is computationally 

feasible. There is a large class of structures with reasonably accurate equivalent circuit 

models, including filters, couplers, power dividers, etc. [58]. 
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Here, we use implicit and frequency space mapping as a low-fidelity model 

correction technique [56]. The surrogate is defined as 

.( ) ( ; , )R x R x f ps c F
                                                     (6) 

where Rc.F is a frequency-scaled low-fidelity model. The vectors f and p denote 

parameters of the frequency and implicit SM, respectively. The rationale behind 

frequency scaling is the fact that in microwave/antenna engineering, the model responses 

are often frequency characteristics so that we have Rc(x) = [Rc(x,1) Rc(x,2) … 

Rc(x,m)]
T
, where Rc(x,j) is evaluation of the model at a frequency j. Then, Rc.F(x;f,p) 

= [Rc(x,f0 + 1f1,p)  … Rc(x, f0 + mf1,p)]
T
, with f0 and f1 being frequency scaling 

parameters. In other words, frequency scaling allows us to distort the model response 

along the frequency axis and thus reduce the misalignment between the low- and high-

fidelity model [26].  

Implicit space mapping [59] is a special type of SM where certain number of 

parameters (here, denoted using a symbol p) are used as additional degrees of freedom 

for model alignment. These parameters (such as dielectric permittivity and substrate 

thickness of the microstrip components [35]) are normally fixed in the high-fidelity 

model but can be freely adjusted in Rc. 

The SM parameters are extracted to minimize misalignment between Rs and Rf as 

follows: 

* *

.
,

[ , ] arg min || ( ) ( ; , ) || 
f p

f p R x R x f pf c F      
               

            (7) 

Thus, according to the approach discussed here, the problem (2) is solved using 

the SM surrogate model and it is itself realized as an iterative process similar to (3) 

 
( )( . )

2 2

( . 1) ( . )

1
, ( ( ))

arg min ( )




x R x

x R x
jj k

s

j k j k

s
F F

F                                       (8) 

where 

( . ) ( . ) ( . )

.( ) ( ; , )R x R x f p
j k j k j k

s c F                                             (9) 

and 

( . ) ( . ) ( . ) ( . )

.
,

[ , ] arg min || ( ) ( ; , ) || 
f p

f p R x R x f p
j k j k j k j k

f c F                     (10) 

Similarly as for the technique of Section 2.3, only a few iterations of (8) are normally 

required to converge. 
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2.5. Pareto Front Exploration Using Adjoint Sensitivities 

 In some situations, it is possible to realize fast evaluation of the model derivatives 

using adjoint sensitivity techniques [9]. Currently adjoints are only supported by a few 

commercial EM solvers [24], [25]. If cheap derivatives are available, the sub-problem (2) 

can be efficiently solved using gradient search and trust regions [60] as follows. Similarly 

as before, x
(k)

 is obtained by local optimization starting from the preceding design x
(k–1)

. 

The solution to (2) is found iteratively as a sequence x
(k.j)

, j = 0, 1, …, with x
(k.0)

 = x
(k–1)

, 

as 

 
( . ) ( )

2 2
( . ) ( . )

( . 1) ( . )

1
, ( ( ))

|| ||

arg min ( )







 


x G x

x x

x G x
k j k

k j k j

k j k j

F F
F                                   (11) 

where G
(k.j)

 is a linear expansion model of the high-fidelity EM model Rf at x
(k.j)

 defined 

as 

( . ) ( . ) ( . ) ( . )( ) ( ) ( ) ( )   
R

G x R x J x x x
f

k j k j k j k j

f                                 (12) 

Here, JRf(x
(k.j)

) is a Jacobian of Rf at x
(k.j)

 evaluated using adjoint sensitivities; (k.j)
 is the 

trust region radius updated using conventional rules [60]. When using adjoint, 

computational cost of each iteration of (11), (12) is essentially equal to a single 

evaluation of the high-fidelity model. 

 

2.6. Pareto Front Exploration Using Response Features 

 For many classes of microwave and antenna circuits it is possible to reduce the 

cost of the design process by exploiting so-called feature-based optimization (FBO) 

approach [41]. FBO takes advantage of the fact that reformulating the design problem in 

terms of suitably defined response features (e.g., local maxima of the reflection response 

or frequency location of the –10 dB reflection level [8]) leads to less nonlinear functional 

landscapes and, therefore, to reduction of the computational cost of the optimization 

process [61]. Figure 2 shows the family of responses of a microwave filter [41] evaluated 

along a selected line segment in the design space. It can be observed that the responses 

are highly nonlinear and change considerably when moving from one design to another. 

On the other hand, from the point of view of, e.g., minimax optimization as illustrated in 

Fig. 2(b), only specific characteristic points of the filter responses are important to verify 
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whether the design satisfies or violates given performance specifications. It turns out that 

the dependence of these points (both frequency and level coordinates) on geometry 

parameters of the structure at hand is much less nonlinear as illustrated in Fig. 2(c). 

Thus, in FBO, the original problem (here, (2)) is reformulated in terms of the 

response features so that we have 

 
( )

1. . 1.

( )

2. .
, ( ( ))

arg min ( )



x R x

x R x
k

F F f F

k

F F f
F F

F                                   (13) 

Here, RF.f(x)  denotes the vector of the response features extracted from Rf(x), whereas 

Fk.F denote design objectives re-defined in terms of the feature points [61]. FBO produces 

a sequence x
(j.k)

 of approximations to x
(j)

 

 
( )

1. . 1.
( . ) ( )

( . 1) ( )

2.
, ( ( ))

|| ||

arg min ( )







 


x R x

x x

x R x
k

F F f F
j k k

j k k

F l
F F

F                                   (14) 

where Rl
(k)

 is a linear approximation model of RF.f(x) at x
(j.k)

 obtained using finite 

differentiation [60]. As convergence safeguard, Rl
(k)

 is optimized within the trust region of 

the radius (k)
. The new design x

(j.k+1)
 is only accepted if RF.f(x

(j.k+1)
) < RF.f(x

(j.k)
). The trust 

region radius is updated using the standard rules [60]. To achieve additional speedup, the 

gradient of RF.f is estimated using the low-fidelity model so that we have 
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                (c)       (d) 

Fig. 2. FBO concept: (a) microwave waveguide filter [41], (b) the family of filter responses evaluated along 

the line segment parameterized by 0  t  1, (c) minimax design specifications (response should be above 

the left and right horizontal lines and below the middle one), (d) variability of selected response features as 

function of parameter t (cf. Fig. 2(b)). 
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( ) ( )

1 1

( ) ( ) ( )

( ) ( )

[ ( ) ( )] /

( ) ( ) ... ( )

[ ( ) ( )] /

  
 

    
   

R x h R x

R x R x x x

R x h R x

T
k k T

c c

k k k

l f

k k T

c n c n

d

d

               (15) 

where hk = [0 … dk … 0]
T
 (dk on kth position). This is justified because even if the low- 

and high-fidelity models are misaligned in absolute terms, they are normally well 

correlated so that gradient estimation obtained at the level of the low-fidelity model is a 

reliable representation of the high-fidelity one [62]. 

 

3. Design Case Studies 

In this section we demonstrate the algorithm of Section 2 and its variations 

discussed in Section 2.3-2.6 using several examples of microwave and antenna structures. 

We also provide comparisons with alternative approaches. The overall discussion and 

qualitative comparison of algorithm variations are provided in Section 4. 

 

3.1. Case I: Ultrawideband Monopole Antenna 

 In this section, we illustrate multi-objective optimization using the algorithm of 

Section 2 and local approximation models as described in Section 2.3. Consider a 

compact UWB monopole antenna implemented on a 0.762 mm thick Taconic RF-35 

substrate (εr = 3.5, h = 0.762 mm). The structure is shown in Fig. 3. The set of adjustable 

parameters is x = [lg g a1 a2 l1 l2 w1 s1 s2 o1 o3]
T
, whereas w0 = 1.7 and o2 = 0.5∙a2. All 

dimensions are in mm. 

The high-fidelity antenna model Rf contains ~8,000,000 mesh cells and its 

average simulation time (dual Intel Xeon E5540 machine) is 55 minutes. The low-fidelity 

model Rc consists of ~100,000 cells and its simulation time is one minute. For the sake of 

reliability, the SMA connector is included in the simulations. Both models are 

implemented in CST Microwave Studio and simulated using its transient solver [25]. 

Two objectives are assumed: F1 – minimization of the reflection in 3.1 GHz to 

10.6 GHz band and F2 – footprint reduction S(x) defined as A × B rectangle, where A = 

0.5a2 + o1 + o3 and B = lg + l1 + w1. 

The initial design, featuring minimum in-band reflection was obtained from (1). 

Next, the Pareto-optimal designs were found using (2)-(4). The process was terminated 
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after the ninth iteration, at which the design with the response being close to the 

acceptable threshold (i.e., |S11|  –10 dB in the UWB band) was found.  

The obtained Pareto-optimal designs are shown in Fig. 4. Their dimensions and 

frequency characteristics (for the selected antenna realizations) are provided in Table 1 

and Fig. 5, respectively. The span of the Pareto front along F1 and F2 is 6 dB (from –16 

dB to –10 dB) and 120 mm
2
 (from 300 mm

2
 to 180 mm

2
), respectively.  

Numerical cost of multi-objective optimization corresponds to only 48 

evaluations of the high-fidelity antenna model. It includes: 350 and 4 evaluations of the 

low- and high-fidelity model evaluations for obtaining the starting point, as well as 46 Rc 

and 3 Rf simulations per iteration to find consecutive Pareto-optimal designs. 

 

a1

a2w0

s2

s1

lg

o1

w1

l2

o3

l1

o2

GND

A

B

g

         
                                  (a)                              (b) 

Fig. 3. Compact UWB monopole antenna [55]: (a) geometry; (b) 3D EM model with connector. 
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Fig. 4. Pareto-optimal set of the compact UWB monopole obtained using method of Section 2.3 [55]. 
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Fig. 5. Frequency responses of the selected UWB monopole antenna designs (for corresponding antenna 
dimensions, see Table 1) [55]. 
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Table 1: Compact UWB Monopole Antenna: Dimensions of Pareto-Optimal Designs 

xf
(k) 

Design Variables [mm] max |S11|    

[dB] 

Area 

[mm2] lg g a1 a2 l1 l2 w1 s1 s2 o1 o3 

1 6.79 0.44 9.84 9.07 13.5 5.71 1.49 3.06 1.69 6.44 2.74 –15.9 299 

2 6.51 0.56 9.43 8.93 13.3 5.71 1.45 3.21 1.46 6.48 2.49 –14.8 286 

3 6.46 0.63 9.25 8.47 13.1 5.87 1.31 3.25 1.55 6.35 2.18 –13.6 266 

4 6.28 0.69 8.99 7.91 12.9 5.92 1.19 2.29 1.68 6.25 1.89 –12.8 246 

5 5.98 0.73 8.79 7.47 12.6 6.07 1.13 3.31 1.81 6.11 1.60 –11.9 226 

6 5.30 0.87 8.77 6.93 12.4 6.25 1.50 3.43 2.00 6.18 1.28 –11.5 210 

7 5.39 0.82 8.51 6.62 12.2 6.36 1.32 3.25 2.00 5.94 1.31 –10.7 200 

8 5.16 0.81 8.52 6.34 12.0 6.57 1.48 3.37 2.00 5.93 0.92 –10.4 190 

9 5.18 0.83 8.49 6.31 12.0 6.56 1.45 3.37 2.00 5.90 0.89 –10.3 185 

10 4.98 0.85 8.56 6.27 12.1 6.64 1.48 3.49 2.00 5.85 0.73 –10.2 180 

 

The presented optimization approach was compared with two multi-objective 

evolutionary algorithm-based (MOEA) methods [12], [51]. The first method directly 

utilizes Rc antenna model for MOEA optimization (algorithm setup: population size 100, 

number of iterations 100), whereas the second executes MOEA on kriging model 

constructed from Rc model data (MOEA setup: 500 individuals, 50 iterations) [28], [50]. 

The reason for performing comparison based on the low-fidelity model simulations 

is that the cost of direct MOEA optimization using high-fidelity model (10000 Rf model 

evaluations corresponds to 382 days of CPU-time) is prohibitive. For fair comparison, 

benchmark methods were executed in a search space region defined by the designs xf
(1)

 and 

xf
(10)

 (cf. Table 1). The obtained results are compared in Fig. 6. It should be noted that the 

obtained Pareto front representations noticeably vary along F2 (differences along F1 are 

below 1.5 dB). Narrower MOEA-based Pareto sets can be explained by limited exploration 

capability of the algorithm in the vicinity of the 11-dimensional design space corners. Also, 

limited number of Rc evaluations led the first benchmark method to capture only half of the 

Pareto front. The optimization cost (excluding CPU-time required for obtaining the 

extreme Pareto designs) is 10000 Rc (~167 hours) and 802 Rc simulations (~13.4 hours) for 

the first and second benchmark approach, respectively, whereas only 460 Rc evaluations 

(~7.7 hours of CPU-time) were required to find the Pareto set using our method. 

The results indicate that, for the considered problem, the point-by-point algorithm 

reduces the cost of multi-objective optimization compared to MOEA-based techniques 

(from almost 43 percent to over 93 percent), while ensuring similar (or better) quality of 

Pareto front. 
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3.2. Case II: Miniaturized Rat-Race Coupler 

Our second design problem is a miniaturized rat-race coupler (RRC) of Fig. 7(a). 

For such structures, there are reasonably good equivalent circuit models available which 

allows us to use space mapping surrogate models as described in Section 2.4. Design 

parameters are x = [l1 l2 l3 d w]
T
, with w0 = 1.7, l0 = 15 fixed (all dimensions in mm). The 

low- and high-fidelity models of the structure are implemented in Agilent ADS [MWCL7] 

and CST Microwave Studio [MWCL8] (~220,000 mesh cells, CPU-time: ~15 min), 

respectively. The EM model is implemented on the Taconic RF-35 (see Section 3.1). The 

surrogate model is constructed using frequency SM as well as implicit SM with preassigned 

parameters p being dielectric permittivity and substrate thickness of the microstrip 

components of the circuit corresponding to p = [ε1 ε2 ε3 h1 h2 h3]
T
 (see also Fig. 7(b)). 

The design objectives are: F1 – maximization of bandwidth (given as intersection of 

frequency ranges for which both |S11| ≤ –20 dB and |S41| ≤ –20 dB) and F2 – size reduction. 

Moreover, a suitably defined penalty function ensures 3 dB split at the center frequency. 

Similarly as in Section 3.1, solution to (1) has been found to identify the starting 

point for the algorithm of Section 2.4. The remaining designs have been obtained 

sequentially by optimizing the space mapping surrogate model. The obtained Pareto set is 

shown in Fig. 8(a). The variability of the Pareto front along F1 and F2 is 245 mm
2
 and 

206 MHz, respectively.  
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Fig. 6. Comparison of low-fidelity Pareto-optimal sets obtained using point-by-point algorithm (□), as well 

as MOEA optimization of Rc (○) and kriging interpolation (×) models [55]. 
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(  )             
1 2

3 4ε1 1, h ε2 2, h ε3 3, h

 

           (a)                          (b) 

Fig. 7. Folded RRC [53]: (a) layout (CST Studio); (b) equivalent circuit model (Agilent ADS). Highlighted 

regions correspond to different sets of implicit SM parameters p. 
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               (c)                    (d) 

Fig. 8. Point-by-point optimization of the space mapping-based compact coupler surrogate [53]: (a) Pareto 

set; (b)-(d) Simulated (—) and measured (□) characteristics of selected designs: (b) xf
(1)

; (c) xf
(5)

; (d) xf
(8)

. 

 

Table 2. Multi-Objective RRC Optimization: Dimensions of Selected Pareto-Optimal Designs 

 Design Variables [mm] Objectives 
Miniaturization* [%] 

 l1 l2 l3 d W BW [MHz] Layout Area [mm2] 

xf
(1) 4.18 13.20 20.68 0.994 0.865 281 570 90.8 

xf
(3) 3.83 11.76 20.44 0.825 0.877 270 500 91.9 

xf
(5) 4.10 13.78 21.14 0.581 0.887 260 450 92.7 

xf
(7) 4.25 12.17 22.12 0.400 0.923 202 400 93.5 

xf
(8) 3.95 10.87 21.71 0.350 0.936 174 375 93.9 

xf
(9) 4.37 12.33 22.52 0.350 0.820 151 350 94.3 

* With respect to conventional RRC (radius = 44.39 mm, size = 6190 mm2). 
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The design cost corresponds about 30 high-fidelity model simulations (~7.5 hours 

of CPU-time), including the overhead for the circuit model Rc evaluations. The latter is 

below 20 percent with respect to overall design cost. It should be noted that the estimated 

cost of direct MOEA-based optimization of the coupler (setup: 100 individuals; 100 

iterations) is 10,000 high-fidelity model evaluations (100 days of CPU-time). 

 

3.3. Case III: Miniaturized Impedance Matching Transformer 

In order to illustrate utilization of adjoint sensitivities for solving the sub-problem 

(2) consider a miniaturized 50 ohm to 130 ohm impedance matching transformer 

implemented on the Taconic RF-35 (see Fig. 9) [63]. The vector of adjustable parameters 

is x = [w11 w21 w31 l21 l31 w12 w22 w32 l22 l32 w13 w23 w33 l23 l33]
T
. Dimensions wi1 = 1.7 and 

wi2 = 0.15 remain fixed to ensure the required source and load impedances (all in mm). 

The transformer has been optimized using the method of Section 2.5. The 

response characteristics and their gradients are obtained from the computational model Rf 

implemented in Ansys HFSS (~8000 tetrahedrons, average simulation time on a dual 

Intel Xeon E5540 machine is 34 min) and exploiting adjoint sensitivities [24]. Design 

objectives are as follows: F1 – minimization of reflection defined as max(|S11|3.1 GHz to 10.6 

GHz) and F2 –  transformer miniaturization (F2(x) = A × B rectangle, where A = 2∙(l21+ l31) 

+ w21 + w12 + 2∙(l22 + l32) + w22 + w13 + 2∙(l23 + l33) + w23 and B = w11+ w31 + l31). 

The initial design has been found by unconstrained optimization with respect to F1. 

Subsequently, the Pareto set has been found by solving (2) using adjoint sensitivities 

(Section 2.5). The obtained high-fidelity Pareto set is shown in Fig. 10, whereas the 

dimensions of the selected designs are provided in Table 3. The smallest design features 

footprint of 6 mm
2
 and the in-band reflection close to 10 dB (acceptable threshold value). 

Frequency responses of the transformer at designs of Table 3 are shown in Fig. 11.  

The cost of multi-objective optimization is 60 evaluations of the EM simulation 

model R (~34 hours of CPU-time) including 10 evaluations required to find the initial 

design and three to four evaluations to find the subsequent designs (the cost per design).  
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Fig. 9. Geometry of a compact, three section 50 Ohm to 130 Ohm matching transformer [63]. 

 
 

 

Table 3: Matching Transformer Optimization Results 

Selected designs xf
(1) xf

(5) xf
(9) xf

(13) xf
(16) 

F1 – |S11| [dB] –9.9 –12.8 –14.9 –15.9 –16.4 

F2 – area [mm2] 6.0 9.9 14.0 18.0 21.2 

D
es

ig
n

 v
ar

ia
b
le

s 

w11 0.247 0.539 0.583 0 .622 0.593 

w21 0.693 0.696 0.699 0.493 0.319 

w31 0.150 0.150 0.202 0.418 0.595 

l21 2.417 2.275 2.554 2.111 1.757 

l31 0.150 0.150 0.153 0.151 0.242 

w12 0.150 0.151 0.151 0.371 0.461 

w22 0.150 0.150 0.151 0.292 0.300 

w32 0.240 0.375 0.385 0.225 0.152 

l22 1.000 1.357 1.904 2.085 2.159 

l32 0.155 0.238 0.182 0.177 0.256 

w13 0.150 0.150 0.154 0.153 0.150 

w23 0.150 0.157 0.215 0.306 0.319 

w33 0.177 0.276 0.150 0.151 0.183 

l23 1.000 1.083 1.832 2.059 2.092 

l33 0.150 0.168 0.150 0.150 0.155 
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Fig. 10. Representation of Pareto front obtained by means of the multi-objective algorithm of Section 2.5. 
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Fig. 11. Transformer responses at the selected Pareto-optimal designs. Design symbols correspond to the 

data gathered in Table 3. 

 

 

 

3.4. Case IV: UWB Monopole Antenna 

Our last illustration example is again the UWB monopole considered in Section 

3.1. As a matter of fact, it is a simplified version of the structure of Fig. 3 [4] which does 

not feature a slit below the feeding line. The antenna geometry is shown in Fig. 12. The 

substrate is the same as for the remaining structures. The design variables are x = [w0 g a1 

a2 l1 l2 w1 o]
T
. Parameter w0 = 2o + a2, whereas wi = 1.7 is fixed (all dimensions in mm). 

The EM models are implemented in CST Studio (Rf : ~4,600,000 mesh cells, 

simulation: 40 min, and Rc : ~850,000 cells, 2 minutes). The models include the SMA 

connector (see Fig. 12(b)). The design objectives are the same as in Section 3.1. 

In this case, the problem (2) is solved using the feature-based optimization 

approach (cf. Section 2.6). The feature points utilized in the optimization process include 

the local maxima of the reflection response as well as the point corresponding to the 

required reflection level (the antenna is optimized to) in the vicinity of the lower edge of 

the operational bandwidth (cf. Fig. 13). 
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Fig. 12. UWB monopole antenna [54]: (a) top view with highlighted design parameters, (b) 3D view. 
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The initial Pareto-optimal design has been obtained as in (1) using a combination 

of pattern search [64] and feature-based optimization [54]. The maximum in-band 

reflection at this design is –13.5 dB. The remaining Pareto optimal designs have been 

obtained by applying the feature-based approach (cf. Section 2.6) for solving (2). The 

variability of the Pareto front along objectives F1 and F2 is 46 mm
2
 and –3.5 dB, 

respectively. Detailed dimensions of selected Pareto designs are gathered in Table 4. 
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Fig. 13. UWB monopole antenna: feature points (o) utilized in the multi-objective optimization process 

[54]. 
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(b) 

Fig. 14. Optimization results of the UWB monopole antenna of Fig. 12 [54]: (a) Pareto set for obtained 

using the feature-based method; and (b) frequency characteristics of the antenna at the selected Pareto-

optimal designs x
(1)

 (—), x
(3)

 (- - -), x
(6)

 (), and x
(8)

 (--). 
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Table 4. Selected Pareto-optimal Antenna Designs 

Design 
Size 

[mm2] 

max |S11| 

[dB] 

Antenna dimensions in mm 

w0 g a1 a2 l1 l2 w1 o 

x(1) 343 –13.5 6.00 0.77 8.93 10.29 12.75 5.20 2.45 2.94 

x(3) 304 –12.5 5.69 0.80 8.99 9.96 12.63 5.78 1.89 2.52 

x(6) 269 –11.0 5.13 0.80 9.14 9.04 12.40 6.35 1.75 2.46 

x(8) 258 –10.0 5.06 0.78 9.12 8.94 12.36 6.38 1.64 2.30 

Figure 14 shows the Pareto set representation obtained using the proposed 

approach as well as the antenna reflection responses at the selected Pareto-optimal 

designs from Table 4. The total optimization cost corresponds to only about 28 

evaluations of Rf (~25 hours of CPU-time) including 208 simulations of the low-fidelity 

model Rc and 17 evaluations of the high-fidelity model Rf. For the sake of comparison, 

the cost of antenna optimization using local approximation models (Section 2.3) was 

higher (45 equivalent evaluations of Rf including 411 evaluations of the low- fidelity 

model and 24 evaluations of the high-fidelity one). Furthermore, the cost of the expedited 

MOEA-based optimization [65] is about 67 evaluations of the high-fidelity model 

(including ~200 Rc model evaluations for extreme Pareto designs identification, ~650 Rc 

model simulations for construction of the the kriging model of the antenna and three Rf 

model simulations for output space mapping-refinement (per sample)).  

4. Discussion and Conclusion

In this paper, a deterministic approach for rapid multi-objective optimization of 

expensive computational electromagnetics models has been discussed. The methodology 

exploits point-by-point exploration of the Pareto front using local search. We reviewed a 

basic version of the procedure and proposed a few alternative variations exploiting space 

mapping surrogates, adjoint sensitivities as well as response features. The technique 

allows for rapid identification of the set of Pareto-optimal designs. The computational 

complexity of the procedure is competitive to the methods using population-based 

metaheuristics (either directly or with auxiliary response surface approximation models). 

There were four variations of the methods discussed. The basic one using local 

approximation models is a generic approach suitable for a wide class of problems in 

microwave and antenna engineering. The other three variations are more specific. In 
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particular, availability of fast low-fidelity models (such as equivalent circuits) permits 

utilization of space mapping surrogates as described in Section 2.4. Availability of cheap 

adjoint sensitivities permits rapid solution of the local optimization sub-problems using 

gradient search with trust regions (Section 2.5). Finally, in some cases it is possible to 

further speed up the optimization process by exploiting response features (cf. Section 2.6 

and 3.4) where the original problem is reformulated in terms of the feature points which 

simplified the functional landscape to be optimized. In terms of selecting a particular 

variation of the presented optimization technique, including additional tools and models 

(if available) is recommended as it normally leads to reducing the cost of the design 

process. Most of the presented variations utilize variable-fidelity simulation models. The 

typical cost of generating a Pareto set is a few dozen of high-fidelity simulations, which 

is very low compared to techniques based on metaheuristics. Finally, it should be 

mentioned that although the presented technique is not generic (e.g., it might not work 

well if the Pareto front is not a connected set in the design space) it is well suited for 

problems in computational electromagnetics as illustrated using a variety of microwave 

and antenna structures. Generalization of the algorithm for a larger number of objectives 

will be considered in a future work. 
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