Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 24, no. 1, pp. 47-61 (2020) DOI: 10.7155/jgaa. 00517

# Reconfiguring Minimum Dominating Sets in 

 TreesMagdalena Lemańska| Pawet Żyliński|2<br>TDepartment of Probability and Biomathematics<br>Gdańsk University of Technology, 80-233 Gdańsk, Poland<br>${ }^{2}$ Institute of Informatics<br>University of Gdańsk, 80-308 Gdańsk, Poland


#### Abstract

We provide tight bounds on the diameter of $\gamma$-graphs, which are reconfiguration graphs of the minimum dominating sets of a graph $G$. In particular, we prove that for any tree $T$ of order $n \geq 3$, the diameter of its $\gamma$-graph is at most $n / 2$ in the single vertex replacement adjacency model, whereas in the slide adjacency model, it is at most $2(n-1) / 3$. Our proof is constructive, leading to a simple linear-time algorithm for determining the optimal sequence of "moves" between two minimum dominating sets of a tree.


| Submitted: | Reviewed: | Revised: | Reviewed: |
| :---: | :---: | :---: | :---: |
| May 2019 | August 2019 | September 2019 | December 2019 |
| Revised: | Accepted: | Final: | Published: |
| January 2020 | January 2020 | January 2020 | February 2020 |
| Article type: | Communicated by: |  |  |
| Regular Paper | A. Lubiw |  |  |

[^0]
## 1 Introduction

For a vertex $v$ of a (simple) graph $G=\left(V_{G}, E_{G}\right)$, its neighborhood, denoted by $N_{G}(v)$, is the set of all vertices adjacent to $v$. The cardinality of $N_{G}(v)$, denoted by $d_{G}(v)$, is termed the degree of $v$. A vertex of degree one is termed a leaf, and the only neighbor of a leaf is called its support vertex (or simply, its support). If a support vertex has at least two leaves as neighbors, we call it a strong support, otherwise it is a weak support. A set of vertices $D \subseteq V_{G}$ of $G$ is dominating if every vertex in the set $V_{G}-D$ has a neighbor in $D$. The cardinality of a minimum dominating set in $G$ is termed the domination number of $G$ and denoted by $\gamma(G)$, and any minimum dominating set of $G$ is referred to as a $\gamma$-set.

Over the years, researchers have published thousands of papers on domination in graphs, exploring the topic in a variety of contexts. In particular, quite recently, two closely related concepts of reconfiguration graphs of the minimum dominating sets were introduced. In both of these variants, for a given graph $G$, the vertex set of the reconfiguration graph is the collection of all $\gamma$-sets of $G$; however, the difference lies in the adjacency concept. Namely, in the single vertex replacement adjacency model, introduced in 2008 by Subramanian and Sridharan [16], two $\gamma$-sets $X$ and $Y$ of $G$ are adjacent if there are vertices $x \in X$ and $y \in Y$ such that $X-\{x\}=Y-\{y\}$, whereas in the slide adjacency model, introduced by Fricke et al. [5] in 2011, it is required that, in addition, $x y \in E_{G}$. The single vertex replacement adjacency model was further studied in [10, 14, 15, and the slide adjacency model was further studied in [2, 3, 4]. Finally, reconfiguration graphs for dominating sets that are not necessarily minimum or for other models of domination have also been considered, see for example [1, 7, 8, 9, 11, 12, 17].

Herein, we focus on reconfiguration graphs of trees. For simplicity of presentation, we shall assume that in the two aforementioned models, both the reconfiguration graphs are termed the $\gamma$-graphs and denoted by $\Gamma_{G}$ because the model under consideration is always either clear from the context, or not relevant. In 2011, Fricke et al. [5] posed the following question (among others, just as interesting, some of them having been already solved completely, see [3, 4, 13]): In the slide adjacency model, is $\operatorname{diam}\left(\Gamma_{T}\right)=O(n)$ for any tree $T$ of order $n$ ? The partial answer for so-called caterpillars with one leg and for trees of diameter at most five was given by Bien [2], and only in 2018, Edwards et al. [4] answered the question in an affirmative way for all trees.

Theorem 14 For any tree $T$ of order $n$, $\operatorname{diam}\left(\Gamma_{T}\right) \leq 2 \gamma(T) \leq n$ in the single vertex replacement adjacency model, whereas in the slide adjacency model, $\operatorname{diam}\left(\Gamma_{T}\right) \leq 2\left(2 \gamma(T)-\left|S_{T}\right|\right) \leq 2(n-2)$, where $S_{T}$ is the set of support vertices in $T$.

However, the upper bounds established in Theorem 1 are not tight; in the single vertex replacement adjacency model, the best lower bound is $n / 2$ [4] (being attained by the corona graph of a tree [6]), whereas in the slide adjacency


Figure 1: The mixed tree $M$ has two arc-separators, marked with blue and green, respectively.
model it is $2(n-1) / 3$ (being attained by the path of order $n=3 k+1, k \geq 1$ ). Therefore, in this paper, we undertake their study and close down these gaps. Namely, our result is the following theorem:

Theorem 2 For any tree $T$ of order $n \geq 3$, we have $\operatorname{diam}\left(\Gamma_{T}\right) \leq \gamma(T)-$ $\left|S_{T}^{\prime \prime}\right| \leq n / 2$ in the single vertex replacement adjacency model, whereas in the slide adjacency model, $\operatorname{diam}\left(\Gamma_{T}\right) \leq \min \left\{2\left(\gamma(T)-\left|S_{T}^{\prime \prime}\right|\right)-\left|S_{T}^{\prime}\right|, 2(n-1) / 3\right\}$, where $S_{T}^{\prime}$ (resp. $\left.S_{T}^{\prime \prime}\right)$ is the set of weak (resp. strong) support vertices in $T$.

Notation. For a vertex $v$ of a graph $G=\left(V_{G}, E_{G}\right)$, the closed neighborhood of $v$, denoted by $N_{G}[v]$, is the set $N_{G}(v) \cup\{v\}$, and for a subset $X \subseteq V_{G}$ of vertices, the neighborhood of $X$, denoted by $N_{G}(X)$, is defined to be $\bigcup_{v \in X} N_{G}(v)$, and the closed neighborhood of $X$, denoted by $N_{G}[X]$, is the set $N_{G}(X) \cup X$. Next, for a vertex $v \in X$, the private neighborhood of $v$ with respect to $X$ is the set $\mathrm{pn}_{G}(v, X)=N_{G}[v]-N_{G}[X-\{v\}]$, that is, the set of vertices that are in the closed neighborhood of $v$, but are not in the closed neighborhood of any other vertex in $X$. A vertex in $\mathrm{pn}_{G}(v, X)$ is referred as to a private neighbor of $v$ (with respect to $X$ ), and private neighbor of $v$ is external if it is distinct from $v$ itself. The set of leaves, the set of weak supports, the set of strong supports, and the set of all supports of $G$ are denoted by $L_{G}, S_{G}^{\prime}, S_{G}^{\prime \prime}$, and $S_{G}$, respectively.

For a mixed tree $M=\left(V_{M}, E_{M}, A_{M}\right)$, the sets of tails and heads of arcs in $A_{M}$ are denoted by $V_{M}^{\circ}$ and $V_{M}^{\triangleright}$, respectively (notice that $v \in V_{M}$ may be an element of both $V_{M}^{\circ}$ and $V_{M}^{\bullet}$ ). Next, let $\mathcal{F}_{M}$ be the family of all maximal connected arc-free subgraphs of $M$, and let $R=\left(V_{R}, E_{R}\right) \in \mathcal{F}_{M}$ be a subgraph of $M$ such that $V_{R} \cap V_{M}^{\wedge}=\emptyset$. Then the set $S_{R}=V_{R} \cap V_{M}^{\circ}$ is called an arcseparator in $M$, whereas the graph $R$ itself - the certificate graph of $S_{R}$; see Fig. 1 for an illustration. Observe that for any two distinct arc-separators $S_{1}$ and $S_{2}$ in $M$, we have $S_{1} \cap S_{2}=\emptyset$, and moreover, there is neither edge $u v \in E_{M}$ nor $\operatorname{arc}(u, v) \in A_{M}$, nor $\operatorname{arc}(v, u) \in A_{M}$ such that $u \in S_{1}$ and $v \in S_{2}$.

Observation 1 Every mixed tree possesses an arc-separator.
A rooted tree is a pair $(T, r)$, for simplicity denoted by $T_{r}$, where $T=$ $\left(V_{T}, E_{T}\right)$ is a tree and $r \in V_{T}$ is a distinguished vertex termed the root. A vertex $x \in V_{T}$ is labelled an ancestor of a vertex $y$ in $T_{r}$ if $x$ belongs to the
unique path joining $y$ and $r$, and if, in addition, $x y \in E_{T}$, then $x$ is a parent of $y$. Next, symmetrically, the terms descendant of $x$ and child of $x$, respectively, are used to describe such a vertex $y$. Note that $x$ is both an ancestor and a descendant of itself. Finally, we use $T_{r}(x)$ to describe the subtree of $T_{r}$ induced by the descendants of $x$ and rooted at $x$.

## 2 The proof of Theorem 2

The statement is trivially valid for the case of $\gamma(T)=1$. Thus, assume now that $T=\left(V_{T}, E_{T}\right)$ is a tree of order $n \geq 4$, with $\gamma(T) \geq 2$. We start with a simple general lemma.

Lemma 1 Let $X$ and $Y$ be two distinct minimal dominating sets of a graph $G$. If $X-\{x\}=Y-\{y\}$ for some $x \in X$ and $y \in Y$, then:
a) $1 \leq \operatorname{dist}_{G}(x, y) \leq 2$ holds;
b) If the girth of $G$ is at least five, that is, $G$ is acyclic or the shortest cycle in $G$ is of the length at least five, then $|p n(x, X)-\{x\}| \leq 1$ as well as $|p n(y, Y)-\{y\}| \leq 1$.

Proof: (a) Because $X$ and $Y$ are minimal dominating sets of $G$ and $X-\{x\}=$ $Y-\{y\}$, we have that $\mathrm{pn}_{G}(x, X)=\mathrm{pn}_{G}(y, Y) \neq \emptyset$. Consequently, $N_{G}(x) \cap$ $N_{G}(y) \neq \emptyset$, and hence $1 \leq \operatorname{dist}_{G}(x, y) \leq 2$. (b) Next, if $|\operatorname{pn}(x, X)-\{x\}| \geq 2$ or $|\operatorname{pn}(y, Y)-\{y\}| \geq 2$, then $G$ would have a cycle of length three or four, which is a contradiction.

The idea of our proof of Theorem2 is to treat a $\gamma$-set of the tree $T$ as a set of $k$ tokens, where $k=\gamma(T)$, that can be relocated within $T$, in discrete time steps, maintaining domination of the tree. Specifically, assume $V_{T}=\{1,2, \ldots, n\}$ and let $D$ be the $\gamma$-set of $T$ with the following property. When $D$ is represented as the ordered $k$-tuple $\left(v_{1}^{D}, \ldots, v_{k}^{D}\right)$ of vertices in $V_{T}$, with $v_{i-1}^{D}<v_{i}^{D}, i \in$ $[k]-\{1\}]^{1}$, then the sequence $v_{1}^{D} \ldots v_{k}^{D}$ is lexicographically the smallest one over the alphabet $V_{T}$, taken over all $\gamma$-sets of $T$. Next, let the $k$ tokens, where $k=\gamma(T)$, be once labeled with identifying numbers $1, \ldots, k$, which we shall refer to as $I d_{i}, i \in[k]$. Finally, let us initially locate these $k$ tokens in such a way that the (unique) vertex occupied by the token $I d_{i}$ is $v_{i}^{D}, i \in[k]$. Because the $\gamma$-graph of a tree $T$ is connected [5], in both adjacency models, any sequence of consecutive (feasible) vertex replacements/slides (moves), starting from the set $D$ and finishing at another $\gamma$-set of $T$, may be thought of as relocating our $k$-tokens, keeping their identifiers unchanged. In other words, we may uniquely associate any $\gamma$-set $X$ of $T$ with the ordered $k$-tuple $\left(v_{1}^{X}, \ldots, v_{k}^{X}\right)$, where $v_{i}^{X}$ is the vertex occupied by token $I d_{i}$. Following this convention, we observe that for any two (ordered) $\gamma$-sets $X$ and $Y$ of $T$, vertices $X$ and $Y$ are adjacent in the graph $\Gamma_{T}$ if and only if for all but one $i \in[k], v_{i}^{X}=v_{i}^{Y}$ holds. Next, for $i \in[k]$,

[^1]let $V_{T}^{i}$ be the set of all vertices that can ever be occupied by token $I d_{i}$, that is, $V_{T}^{i}=\left\{v_{i}^{X}: X\right.$ is a $\gamma$-set of $\left.T\right\}$ (we emphasize that the set $D$ defining the token labeling remains fixed).

Lemma 2 For any $i \in[k]$, the relevant vertex sets $V_{T}^{i}$ are the same in both adjacency models. In particular, the induced subgraph $T\left[V_{T}^{i}\right]$ is connected for any $i \in[k]$ (in both adjacency models).

Proof: Due to the fact that every $\gamma$-graph in the slide adjacency model is a spanning subgraph of the relevant $\gamma$-graph in the single vertex replacement adjacency model [2], all we need is to argue that in the latter model, if $X$ and $Y$ are two adjacent $\gamma$-sets in the $\gamma$-graph of $T$, then a single move of a token in $T$ from a vertex in $X$ to a vertex in $Y$ can be simulated by at most two subsequent moves of that token in the former model.

Let $X-\{x\}=Y-\{y\}$ for some $x \in X, y \in Y$. Assume without loss of generality that $\operatorname{dist}_{T}(x, y)=2$ (see Lemma (2). First, observe that the unique vertex $z \in N_{T}(x) \cap N_{T}(y)$ neither belongs to $X$ nor to $Y$ (otherwise, the set $X-\{x\}(=Y-\{y\})$ would be a smaller dominating set of $T$, which is a contradiction). Next, the minimality of $X$ and $Y$ combined with Lemma 1 implies that $\operatorname{pn}(x, X)=\{z\}=\operatorname{pn}(y, Y)$, and hence the set $Z=(X-\{x\}) \cup\{z\}$ is a $\gamma$-set of $T$, being adjacent to both $X$ and $Y$ in the $\gamma$-graph of $T$. Therefore, because $\operatorname{dist}_{T}(x, z)=\operatorname{dist}_{T}(z, y)=1$, a single move of a token in $T$ from $x$ to $y$ can be simulated by two subsequent moves of that token (from $x$ to $z$ and then from $z$ to $y$ ) in the slide adjacency model, as required.

In the following sequence of lemmas we describe other properties of the sets $V_{T}^{i}$. These will be useful for the proof of Theorem 2

Lemma $3 V_{T}^{i} \cap V_{T}^{j}=\emptyset$ for any distinct $i, j \in[k]$ (in both adjacency models).

Proof: By Lemma 2, we may restrict ourselves only to the slide adjacency model. Suppose on the contrary that there exist distinct $i, j \in[k]$ such that $V_{T}^{i} \cap V_{T}^{j} \neq \emptyset$. Let $\Pi$ be any (finite) walk in $\Gamma_{T}$ starting at the $\gamma$-set $D$ and traversing the edges of $\Gamma_{T}$ until all vertices in $\cup_{t=1}^{k} V_{T}^{t}$ have been visited/occupied by tokens (tokens are moving with respect to the $\gamma$-sets visited along the walk); clearly, such a walk $\Pi$ exists as $\Gamma_{T}$ is connected [5]. Because $V_{T}^{i} \cap V_{T}^{j} \neq \emptyset$, there exist two $\gamma$-sets of $T$ being adjacent along $\Pi$, say $Y$ and $Z$, such that one of the tokens, say $I d_{a}$, is moved from a vertex of $T$, say $y$, and placed for the first time at another vertex of $T$, say $z$, that has already been visited by another token, say $I d_{b}$, with $b \neq a$. Let $X$ be the $\gamma$-set of $T$ with $I d_{b}$ occupying vertex $z$ for the first time along the walk $\Pi$. Consider now the rooted subtree $T^{\prime}=T_{z}(y)$ of $T_{z}$, and, symmetrically, the rooted subtree $T^{\prime \prime}=T_{y}(z)$ of $T_{y}$, see Fig. 2 for an illustration. From the choice of $y$ and $z$, acyclity of $T$ and $\operatorname{dist}_{T}(y, z)=1$, it follows that:

- $Z \cap V_{T^{\prime}}$ dominates all vertices in $V_{T^{\prime}}-\{y\}$ and $\left|Z \cap V_{T^{\prime}}\right|=\left|Y \cap V_{T^{\prime}}\right|-1$;

token $I d_{a}$ is located in $T^{\prime}$
token $I d_{b}$ is located at $z$


Figure 2: The set $S=\left(Z \cap V_{T^{\prime}}\right) \cup\left(X \cap V_{T^{\prime \prime}}\right)$ is a dominating set of $T$, and $|S|=\gamma(T)-1$; notice that $y$ may belong to $X$.

- $X \cap V_{T^{\prime \prime}}$ dominates all vertices in $V_{T^{\prime \prime}} \cup\{y\}$, and $\left|X \cap V_{T^{\prime \prime}}\right|=\left|Y \cap V_{T^{\prime \prime}}\right|$.

Consequently, because $V_{T}=V_{T^{\prime}} \cup V_{T^{\prime \prime}}$ and $V_{T^{\prime}} \cap V_{T^{\prime \prime}}=\emptyset$, the set $S=(Z \cap$ $\left.V_{T^{\prime}}\right) \cup\left(X \cap V_{T^{\prime \prime}}\right)$ is a dominating set of $T$ with $|S|=\gamma(T)-1$, which is a contradiction.

Lemma 4 For any $i \in[k]$, the distance between any two vertices in $V_{T}^{i}$ is at most two in $T$ (in both adjacency models).

Proof: By Lemma2, we may again restrict ourselves only to the slide adjacency model. Suppose to the contrary that for some $i \in[k]$, there are two vertices $y, z \in V_{T}^{i}$ such that $\operatorname{dist}_{T}(y, z)=3$ (notice that in our supposition, we may, without loss of generality, restrict ourselves to vertices at the distance three because $T\left[V_{T}^{i}\right]$ is connected by Lemma(2). Let $\pi=v_{0} v_{1} v_{2} v_{3}$ be the shortest path between $v_{0}=y$ and $v_{3}=z$ in $T$. Let $Y$ and $Z$ be two $\gamma$-sets of $T$ such that token $I d_{l}$ is located at vertex $v_{0}(=y)$ and at vertex $v_{3}(=z)$, respectively. Consider the rooted subtree $T^{\prime}=T_{v_{2}}\left(v_{1}\right)$ of $T_{v_{2}}$ and the rooted subtree $T^{\prime \prime}=T_{v_{1}}\left(v_{2}\right)$ of $T_{v_{1}}$, see Fig. 3 for an illustration. Now, because $T$ is a tree, $T\left[V_{T}^{i}\right]$ is connected (by Lemma 2), and $V_{T}^{i} \cap V_{T}^{j}=\emptyset$ for any distinct $i, j \in[k]$ (by Lemma 3), we observe that vertices $v_{1}, v_{2} \notin Y$ and $v_{1}, v_{2} \notin Z$. Consequently:

- $Z \cap V_{T^{\prime}}$ dominates all vertices in $V_{T^{\prime}}$ and $\left|Z \cap V_{T^{\prime}}\right|=\left|Y \cap V_{T^{\prime}}\right|-1$;


Figure 3: The set $S=\left(Z \cap V_{T^{\prime}}\right) \cup\left(Y \cap V_{T^{\prime \prime}}\right)$ is a dominating set of $T$, and $|S|=\gamma(T)-1$.

- $Y \cap V_{T^{\prime \prime}}$ dominates all vertices in $V_{T^{\prime \prime}}$.

Consequently, because $V_{T}=V_{T^{\prime}} \cup V_{T^{\prime \prime}}$ and $V_{T^{\prime}} \cap V_{T^{\prime \prime}}=\emptyset$, the set $S=(Z \cap$ $\left.V_{T^{\prime}}\right) \cup\left(Y \cap V_{T^{\prime \prime}}\right)$ is a dominating set of $T$ with $|S|=\gamma(T)-1$, which is a contradiction.

Lemma 5 If $s \in S_{T}^{\prime}$, then there exists $i_{s} \in[k]$ such that $V_{T}^{i_{s}} \subseteq\left\{s, l_{s}\right\}$, where $l_{s}$ is the unique leaf adjacent to $s$ in $T$, and so $\operatorname{diam}\left(T\left[V_{T}^{i_{s}}\right]\right) \leq 1$ (in both adjacency models).

Proof: By Lemma 2 we may focus only on the slide adjacency model. Let $X$ be a $\gamma$-set of $T$ such that $s \in X$ (clearly, such a $\gamma$-set exists) and let $I d_{i_{s}}$ be the token located at vertex $s$. It follows from the minimality of $X$ that no other token occupies the leaf $l_{s}$. Therefore, in order to move $I d_{i_{s}}$ from $s$ to a vertex distinct from the leaf $l_{s}$ in $T$ while maintaining domination of $l_{s}$, there must have already been located another token at $s$, together with $I d_{i_{s}}$, which contradicts Lemma 3

Lemma 6 If $s \in S_{T}^{\prime \prime}$, then there exists $i_{s} \in[k]$ such that $V_{T}^{i_{s}}=\{s\}$, and so $\operatorname{diam}\left(T\left[V_{T}^{i_{s}}\right]\right)=0$ (in both adjacency models).

Proof: It follows by arguments analogous to those in the proof of Lemma 5 ,

We say that two (ordered) $\gamma$-sets $X=\left(v_{1}^{X}, \ldots, v_{k}^{X}\right)$ and $Y=\left(v_{1}^{Y}, \ldots, v_{k}^{Y}\right)$ of the given tree $T$ are inconsistent at the coordinate $i \in[k]$ if $v_{i}^{X} \neq v_{i}^{Y}$; such a coordinate $i$ itself, the vertices $v_{i}^{X}$ and $v_{i}^{Y}$ as well as the token $I d_{i}$ are then also referred to as inconsistent, whereas the set $X-(X \cap Y)$ of all inconsistent vertices in $Y$ (with respect to $Y$ ) is denoted by $\operatorname{In}(X, Y)$, respectively.

Let $X$ and $Z$ be two (different) inconsistent $\gamma$-sets of the tree $T$ (and so $\operatorname{In}(X, Z) \neq \emptyset)$, and let $M=\left(V_{M}, E_{M}, A_{M}\right)$ be the mixed tree, with the vertex set $V_{M}=V_{T}$, the edge set $E_{M}$ and the arc set $A_{M}$, respectively, resulting from $T$ by assigning the orientation to the edges (towards $v_{i}^{Z}$ ) on the shortest path between $v_{i}^{X}$ and $v_{i}^{Z}$, for each $v_{i}^{X} \in \operatorname{In}(X, Z)$. Let $R=\left(V_{R}, E_{R}\right)$ be the certificate graph of some arc-separator in $M$ (such a graph $R$ exists by Observation and it is a subgraph of both $T$ and $M$ ). We have a sequence of observations.
(A) In the mixed tree $M$, all maximal directed paths are vertex-disjoint and of length of at most two (by combining Lemma 2, Lemma 3, and Lemma 4).
(B) Therefore, $\operatorname{In}(X, Z)=X-(X \cap Z) \subseteq V_{M}^{\circ}$ and $Z-(X \cap Z) \subseteq V_{M}^{\triangleright}-V_{M}^{\circ}$, and thus $(Z-(X \cap Z)) \cap V_{R}=\emptyset$ (by the definition of a certificate graph); in other words, there is no inconsistent vertex in $Z$ that belongs to $V_{R}$.
(C) Finally, it follows from the definition of an arc-separator that if $l$ is a leaf of $R$, then $l$ is a leaf of $T$ or $l=v_{i}^{X}\left(\neq v_{i}^{Z}\right)$ for some inconsistent coordinate $i \in[k]$. Notice that in the former case, $l=v_{j}^{X}=v_{j}^{Z}$ for some $j \in[k]$ may also hold.

Next, let $U_{d}$ denote the set of all inconsistent vertices $v_{i}^{X} \in \operatorname{In}(X, Z)$ such that $\operatorname{dist}_{T}\left(v_{i}^{X}, v_{i}^{Z}\right)=d$; notice $d \in\{1,2\}$ by Lemma 4 . Observe that (see Fig. 4 for an illustration):
(D) Because $Z$ is a $\gamma$-set of $T$ and $\operatorname{dist}_{T}\left(v_{i}^{X}, v_{i}^{Z}\right) \geq 1$ for every $v_{i}^{Z} \in Z-(Z \cap X)$, the set $\left(Z \cap V_{R}\right)-U_{2}$ dominates all vertices in $V_{R}$, and so does the set $\left(X \cap V_{R}\right)-U_{2}$ (because $Z \cap V_{R}=X \cap V_{R}$ by the definition of an arcseparator). In other words, for the purpose of domination of $R$, vertices in the set $\left\{v_{i}^{Z}: v_{i}^{X} \in U_{2}\right\} \subseteq Z-(Z \cap X)$ are useless.
(E) By similar arguments, the set $\left(Z \cap V_{R}\right)-\operatorname{In}(X, Z)$ dominates all vertices in $V_{R}-\operatorname{In}(X, Z)$, and so does the set $\left(X \cap V_{R}\right)-\operatorname{In}(X, Z)$. In other words, no vertex in $U_{1}\left(=\operatorname{In}(X, Z) \cap\left(V_{R}-U_{2}\right)\right)$ has an external private neighbor in $V_{R}$, that is, any such vertex may be required only to dominate itself in $R$.
(F) Finally, $N_{T}\left(x_{i}\right) \cap\left(V_{T}-V_{R}\right) \subseteq N_{T}\left(z_{i}\right) \cap\left(V_{T}-V_{R}\right)$.

Consequently, tokens at inconsistent vertices in $\operatorname{In}(X, Z) \cap V_{R}$ can be slid along the relevant arcs of $M$ (recall that all maximal directed paths in $M$ are vertex-disjoint), in a sequence, in total number $\left|U_{1}\right|+2\left|U_{2}\right|$ of slides, to make all of them consistent, and the resulting set $Y$ is a $\gamma$-set of $T$ (by the properties


Figure 4: The set $\left(X \cap V_{R}\right)-U_{2}$ dominates all vertices in $V_{R}$, while the set $\left(X \cap V_{R}\right)-\operatorname{In}(\mathrm{X}, \mathrm{Z})$ dominates all vertices in $V_{R}-\operatorname{In}(\mathrm{X}, \mathrm{Z})$.
discussed above), with $|\operatorname{In}(Y, Z)|<|\operatorname{In}(X, Z)|$. Applying this approach repeatedly will eventually move all tokens from their initial positions $v_{1}^{X}, \ldots, v_{k}^{X}$ to the desired positions $v_{1}^{Z}, \ldots, v_{k}^{Z}$, and - supported by Lemmas 4.6 - we may conclude that in the single vertex replacement adjacency model, the number of jumps is at most $\gamma(T)-\left|S_{T}^{\prime \prime}\right| \leq n / 2$, and so $\operatorname{diam}\left(\Gamma_{T}\right) \leq \gamma(T)-\left|S_{T}^{\prime \prime}\right| \leq n / 2$ in this model, whereas in the slide adjacency model, the number of slides is at most $2\left(\gamma(T)-\left|S_{T}\right|\right)+\left|S_{T}^{\prime}\right|$, and hence $\operatorname{diam}\left(\Gamma_{T}\right) \leq 2\left(\gamma(T)-\left|S_{T}^{\prime \prime}\right|\right)-\left|S_{T}^{\prime}\right|$ in that model, as required.

Regarding the slide adjacency model and bounding the diameter of $\Gamma_{T}$ in terms of the number of vertices, taking into account Lemmas 5 and 6, first observe that there are at least $\left|S_{T}\right| \geq 2$ tokens that require at most $\left|S_{T}\right|$ slides in total to make them consistent (recall that $T$ is a tree of order at least four and $\gamma(T) \geq 2)$. Next, if the number of slides to make a token $I d_{i}$ consistent is equal to 2, then $\left|V_{T}^{i}\right| \geq 3$, and hence the number of such "expensive" tokens is at most $\left(\left|V_{T}\right|-2\left|S_{T}\right|\right) / 3 \leq(n-4) / 3$ (by Lemma 3). Therefore, a simple calculus shows that the maximum (total) number of slides is at most $2+2(n-4) / 3=2(n-1) / 3$, which finishes the proof of Theorem 2.

Remark. Let us note that the statements of Lemmas 3 4 cannot be carried over to the class of arbitrary graphs. As an example, consider the cycle $G=C_{3 k+1}$ in which $V_{G}^{i}=V_{G}$ for any token $I d_{i}$ (defined with respect to the $\gamma$-set $D$ ).

## 3 Algorithmic result

Observe that in the proof of Theorem 2, the relevant graph $R$ can be extended and defined to be the union of the certificate graphs of an arbitrary number of (distinct) arc-separators in the mixed tree $M$. This is a core property that gives rise to a simple linear-time algorithm for determining the optimal sequence of jumps between two minimum dominating sets of a tree. The algorithm consists of three phases: pre-processing, assigning levels and final phase.

Pre-processing Phase. We identify pairs of vertices $\left(x_{i}, z_{i}\right) \in X \times Z$, each of which corresponds to the placement of the (unique by Lemma 3) token $I d_{i}$.

In that phase (see Fig. 5 (a,b) for an illustration), we perform a DFS-based approach starting from a leaf $l \in L_{T}$, and for each vertex $v \in V_{T}$, we recursively determine the number $n_{v}^{X}$ (resp. $n_{v}^{Z}$ ) of inconsistent vertices in the rooted subtree $T_{l}(v)$ that belong to a $\gamma$-set $X$ (resp. to a $\gamma$-set $Z$ ). Notice that $\left|n_{v}^{X}-n_{v}^{Z}\right| \leq 1$ (because otherwise, vertex $v$ must have been visited by two distinct tokens by Lemma 4 - a contradiction with Lemma (3). Next, using these data, starting from the same leaf $l$, the second pass of DFS is sufficient to identify the aforementioned pairs of vertices. More specifically, for the currently handled vertex $v$ (in a post-order manner while performing DFS), assuming that the $i-1$ pairs $(x, z) \in X \times Z$ has already been identified in all subtrees of $T_{l}(v)$ rooted at the children of $v$ (if any), the following rules can be applied (they are exhaustive and distinct by Lemma 3 and Lemma (4).

- If $v \in X \cap Z$, then $x_{i}:=v$ and $z_{i}:=v$. (Notice that $n_{v}^{X}=n_{v}^{Z}$ in this case.)
- If $v \in X-Z$ and $n_{v}^{X}=n_{v}^{Z}$, then $x_{i}:=v$, whereas $z_{i}$ is assigned the unique non-associated yet vertex in $T_{l}(v)$ that belongs to $Z$.
- If $v \in Z-X$ and $n_{v}^{X}=n_{v}^{Z}$, then $z_{i}:=v$, whereas $x_{i}$ is assigned the unique non-associated yet vertex in $T_{l}(v)$ that belongs to $X$.
- Otherwise, continue: no vertices are associated, but if $v \in X$, then $v$ is marked as "non-associated $x$ ", and if $v \in Z$ then it is marked as "nonassociated $z "$.

Assigning Levels Phase. We assigns levels to vertices/tokens in $X$. These levels will constitute the ordering that the tokens will move with respect to.

Let $M=\left(V_{M}, E_{M}, A_{M}\right)$ be the mixed tree defined in the proof of Theorem 2 (Section 2), resulting from $T$ by assigning the orientation to the edges (towards $z_{i}$ ) on the shortest path between $x_{i}$ and $z_{i}$, for each $x_{i} \in \operatorname{In}(X, Z)$; see Fig. 6(a)


Figure 5: Pre-processing Phase. A tree $T$ with $\gamma(T)=20$ and the $\gamma$-sets $X$ and $Z$ of $T: X-Z$ is marked red, $Z-X$ is marked blue, and $X \cap Z$ is marked green. (a) Determining the numbers $n_{v}^{X}$ and $n_{v}^{Z}$ (depicted as pairs $\left(n_{v}^{X}, n_{v}^{Z}\right)$, starting at the black leaf). (b) Identifying the pairs $\left(x_{i}, z_{i}\right) \in X \times Z$; herein, children of a vertex are visited in a counterclockwise manner, with respect to the given plane embedding of $T$.


Figure 6: Assignig Levels Phase. (a) The mixed tree M. (b) The Hasse diagram $H=(\operatorname{In}(X, Z), A)$ of $\langle\operatorname{In}(X, Z), \prec\rangle$.
for an illustration. Recall that all directed paths in $M$ are vertex-disjoint and of a length of at most two. Define the partially ordered set $\langle\operatorname{In}(X, Z), \prec\rangle$, where for two distinct $x_{i}, x_{j} \in \operatorname{In}(X, Z), \prec x_{j}$ if and only if there is no arc-free path between $x_{i}$ and $x_{j}$ in $M$ and all the arcs on the (unique) path between $x_{i}$ and $x_{j}$ are oriented towards $x_{j}$. Next, consider the transitive reduction $H=(\operatorname{In}(X, Z), A)$ of $\langle\operatorname{In}(X, Z), \prec\rangle$ in the form of the Hasse diagram, with the layers $L_{1}, \ldots, L_{t}$, where $t \leq \gamma(T)$ (notice that because $T$ is a tree, such a transitive reduction exists); see Fig. 6(b). These layers define now the labeling of inconsistent vertices in $X$ : if $x_{i} \in L_{k}$, then $x_{i}$ is assigned the level $k$. Observe that $H$ is not necessarily connected, but it is a directed forest, that is, its underlying undirected graph is a forest (because $T$ is a tree). Moreover, it can be computed, together with the layers $L_{1}, \ldots, L_{t}$, in linear time by applying the third pass of a DFS-based approach on the tree $T$.

Final Phase. We move tokens from $x_{i}$ to $z_{i}$ with respect to the increasing order of the assigned levels to inconsistent vertices.

Before we proceed with the correctness proof of our 3-phase algorithm, let us point out that it was not our intention to optimize the number of DFS-phases in our algorithm. Therefore, we believe that with respect to this criterion, some improvement is possible, and we eventually conclude our paper with the following theorem.

Theorem 3 Given two $\gamma$-sets $X$ and $Z$ of a tree $T$, an optimal sequence of jumps through which $X$ can be transformed into $Z$ can be computed in linear time (in both adjacency models).

Proof: For a level $l \in\{1, \ldots, t\}$, let $Y_{l+1}$ denote the set resulting from moving all tokens in $L_{l}$ to the relevant vertices in $Z$. It follows from the definition/construction that $Y_{t+1}=Z$, and for each $l \in\{1, \ldots, t-1\}, L_{l+1} \subseteq Y_{l+1}$ and $\operatorname{In}\left(Y_{l+1}, Z\right)=\operatorname{In}(X, Z)-\bigcup_{i=1}^{l} L_{l}$.

Due to the fact that $L_{1}$ is the set of minimal elements in $\langle\operatorname{In}(X, Z), \prec\rangle, L_{1}$ is the sum of a number of arc-separators in the mixed tree $M_{1}=M$ (exploited in Phase 2 and defined in the proof of Theorem 2). Consequently, it follows from the proof of Theorem 2 (i.e., the arguments from the paragraph just after Lemma (6) that the set $Y_{2}$, resulting from moving tokens located at inconsistent vertices in $L_{1}$ towards the relevant vertices in $Y_{2}$ (and so in $Z$ ), in any order, is a $\gamma$-set of $T$.

But the same argument can be inductively (successively) applied to all the $\gamma$-sets $Y_{l}$ and $Z, l \in\{1,2, \ldots, t\}$, and the partially ordered set $\left\langle\operatorname{In}\left(Y_{l}, Z\right), \prec\right\rangle$, defined now with respect to $Y_{l}$ and $Z$. Namely, observe that $L_{l+1}$ is the set of minimal elements in $\left\langle\operatorname{In}\left(Y_{l+1}, Z\right), \prec\right\rangle$, which implies that $L_{l+1}$ is the sum of a number of arc-separators in the relevant mixed tree $M_{l}$ (defined now with respect to $Y_{l}$ and $Z$ ). Consequently, it follows from the proof of Theorem 2 that the set $Y_{l+1}$ is a $\gamma$-set of $T$ for each $l \in\{1, \ldots, t\}$. Therefore, moving tokens with respect to the increasing order of the assigned levels to inconsistent vertices constitutes a feasible optimal reconfiguration of the $\gamma$-set $X$ into the $\gamma$-set $Z$.

Finally, with respect to the complexity issue, all we need is to observe that all three phases can clearly be accomplished in linear time.

## Acknowledgements

We would like to thank the referees for their remarkable suggestions and comments on our manuscript.

## References

[1] S. Alikhani, D. Fatehi, and S. Klavžar. On the structure of dominating graphs. Graphs and Combinatorics, 33(4):665-672, 2017. doi:10.1007/s00373-017-1792-5.
[2] A. Bień. Gamma graphs of some special classes of trees. Annales Mathematicae Silesianae, 29(1):25-34, 2015. doi:10.1515/amsil-2015-0003.
[3] E. Connelly, S. Hedetniemi, and K. Hutson. A note on $\gamma$-graphs. AKCE International Journal of Graphs and Combinatorics, 8(1):23-31, 1999.
[4] M. Edwards, G. MacGillivray, and S. Nasserasr. Reconfiguring minimum dominating sets: the $\gamma$-graph of a tree. Discussiones Mathematicae Graph Theory, 38(3):703-716, 2018. doi:10.7151/dmgt. 2044
[5] G. Fricke, S. Hedetniemi, S. Hedetniemi, and K. Hutson. $\gamma$-graphs of graphs. Discussiones Mathematicae Graph Theory, 31(3):517-531, 2011.
[6] R. Frucht and F. Harary. On the corona of two graphs. Aequationes Mathematicae, 4(1-2):322-325, 1970. doi:10.1007/BF01844162.
[7] R. Haas and K. Seyffarth. The $k$-dominating graph. Graphs and Combinatorics, 30(3):609-617, 2014. doi:10.1007/s00373-013-1302-3.
[8] R. Haas and K. Seyffarth. Reconfiguring dominating sets in some wellcovered and other classes of graphs. Discrete Mathematics, 340(8):18021817, 2017. doi:10.1016/j.disc.2017.03.007.
[9] A. Haddadan, T. Ito, A. E. Mouawad, N. Nishimura, H. Ono, A. Suzuki, and Y. Tebbal. The complexity of dominating set reconfiguration. Theoretical Computer Science, 651:37-49, 2016. doi:10.1016/j.tcs.2016.08.016.
[10] S. Lakshmanan and A. Vijayakumar. The gamma graph of a graph. AKCE International Journal of Graphs and Combinatorics, 7(1):53-59, 2010.
[11] C. Mynhardt and L. Teshima. A note on some variations of the $\gamma$-graph. Available at arXiv.org/abs/1707.02039.
[12] C. Mynhardt, L. Teshima, and R. Roux. Connected $k$ dominating graphs. Discrete Mathematics, 342(1):145-151, 2019. doi:10.1016/j.disc.2018.09.006
[13] G. Rote. The maximum number of minimal dominating sets in a tree. In T. M. Chan, editor, Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1201-1214, 2019.
[14] N. Sridharan, S. Amutha, and S. B. Rao. Induced subgraphs of gamma graphs. Discrete Mathematics, Algorithms and Applications, \#1350012, 2013. doi:10.1142/S1793830913500122.
[15] N. Sridharan and K. Subramanian. Trees and unicyclic graphs are $\gamma$-graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 69(1):231-236, 2009.
[16] K. Subramanian and N. Sridharan. $\gamma$-graph of a graph. Bulletin of Kerala Mathematics Association, 5:17-34, 2008.
[17] A. Suzuki, A. E. Mouawad, and N. Nishimura. Reconfiguration of dominating sets. Journal of Combinatorial Optimization, 32(4):1182-1195, 2016. doi:10.1007/s10878-015-9947-x


[^0]:    Partially supported by the grant 2015/17/B/ST6/01887 (National Science Centre, Poland).
    E-mail addresses: magleman@pg.edu.pl (Magdalena Lemańska) zylinski@ug.edu.pl (Paweł Żyliński)

[^1]:    ${ }^{1}$ Herein, we use the convention that $[k]$ stands for the index set $\{1,2,3, \ldots, k\}, k \geq 1$.

