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Abstract. The paper addresses the problem of computational e�ciency
of the pipe-�ow model used in leak detection and identi�cation systems.
Analysis of the model brings attention to its speci�c structure, where
all matrices are sparse. With certain rearrangements, the model can be
reduced to a set of equations with tridiagonal matrices. Such equations
can be solved using the Thomas algorithm. This method provides almost
the same values of the state vector and maintains stability for the same
discretization grid, while the computational overhead is vastly reduced.
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1 Introduction

Simulation of �ow processes in transmission pipelines allows one not only to
study the behavior of transported �uids but also enables the detection of failures
of pipeline installations. Such a simulation can be used to prevent, or quickly
react, to leaks in the monitored pipelines. This methodology is widely used in
model-based leak detection and isolation/localization (LDI) systems. Usually, on
the basis of measurements obtained from pressure and �ow sensors at the inlet
and outlet of a pipeline, specially designed state observers estimate intermediate
�uid parameters; those parameters are compared with their predictions, and
leaks can accordingly be detected.

An early application of nonlinear state observers to the detection and identi-
�cation of a single leak in a pipeline is presented in [2]. This approach is further
studied in [5] by considering an improved volume balancing method (for better
estimation of the leak size), online estimation of the friction factor, the method
of characteristic lines, and Kalman �ltering. The problem of multiple-leak detec-
tion is discussed in [4, 14], while extension of the leak detection problem towards
branched pipelines is presented in [15]. Other than the model-based methods
of leak detection, there are approaches based on the pressure wave propagation



analysis in the time domain [11], the acoustic wave cross time-frequency spec-
trum analysis [8, 9], the leak detection scheme based on rough set theory and
support vector machine [10], to mention a few.

Practical implementation of a leak detection system, especially the model-
based one, requires a numerical simulation of �uid �ow on a (micro)computer.
Therefore, the problem of limited computational resources arises. It motivates
our investigations aimed at reduction of the computational overhead in simula-
tions of the �ow process in transmission pipelines.

The paper is organized as follows: Section 2 contains the derivation of a
base discrete-time state-space model of the �ow process in a pipeline. Section 3
presents a numerical rearrangement of the base model resulting in two systems of
equations with tridiagonal matrices. Section 4 presents a comparison of the base
and newly-derived models in terms of computational e�ciency and accuracy.
Section 5 provides �nal conclusions.

2 Base Model of the Flow Process

Let us consider the mathematical description of the pressure and mass-�ow rate
of liquid �owing in a transmission pipeline. It is expressed by two equations
resulting from the momentum and mass conservation laws [2]:
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where A is the cross-sectional area [m2], ν is the isothermal velocity of the sound
in the �uid [ms ], D is the diameter of the pipe [m], q is the mass �ow [kgs ], p
is the pressure [Pa], t is the time [s], z is the spatial coordinate [m], λ is the
dimensionless generalized friction factor, α is the inclination angle [rad], and g
is the gravitational acceleration [ms2 ].

Since in practice the operation of a model-based algorithm for pipeline di-
agnosis may require simulation of the behavior of the underlying �ow process.
One way to get a solution is to apply the method of lines and solve the resulting
system using an ODE solver [5]. In this paper the set of equations (1)�(2) is dis-
cretized for computer implementation. The pipeline is divided into N segments
of equal length ∆z, where the pressure at the end of each odd segment, and the
�ow rate at the end of each even segment, are computed. Mass-�ow and pressure
are computed at the inlet and outlet of the pipeline. The discretized pipeline, as
de�ned above, is illustrated in Fig. 1.

The discrete-time model is derived by introducing low-order central di�erence
schemes introduced in [1, 2]:

∂x

∂t
=

3xk+1
d − 4xkd + xk−1

d

2∆t
(3)
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Fig. 1. Discretization scheme of a pipeline with N segments

∂x

∂z
=
xk+1
d+1 − x

k+1
d−1 + xkd+1 − xkd−1

4∆z
(4)

where ∆z is a spatial-step size, ∆t is a time-step size, subscripts and superscripts
denote the number of the pipeline segment and discrete-time index, respectively.
The �rst di�erential scheme derived from the Taylor expansion provides a lower
truncation error than the classic �rst-order di�erence scheme. The second equa-
tion represent the two-sided Crank-Nicolson scheme employed to minimize the
error.

The substitution of (3)�(4) into the composed model (1)�(2) gives the fol-
lowing discretized set of equations for the �ow process in the pipeline:

apk+1
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k+1
d+1

)
=
a

3
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where

a =
3A

2ν2∆t
, b =

1

4∆z
, c =

3

2A∆t
, Yd =

gsinαd
ν2

and αd denotes the inclination angle of a d-th segment. The nonlinear function
F kd is approximated by

F kd ' −
λν2

DA

|qkd |
pkd−1 + pkd+1

Rewriting (5)�(6) into the form of state-space equations, the model can be
represented by the following compact state-space model:

Ax̂k = Bx̂k−2 +C
(
x̂k−1

)
x̂k−1 +Duk−1 +Euk (7)

Taking into account nonsingularity of the recombination matrix [6], one ob-
tains:

x̂k = A−1
(
Bx̂k−2 +C

(
x̂k−1

)
x̂k−1 +Duk−1 +Euk

)
(8)

where B and C
(
x̂k−1

)
are associated with the nonlinear dynamic of the state

x̂k =
[
qk0 q

k
2 q

k
4 · · · qkN pk1 p

k
3 p

k
5 · · · pkN−1

]T ∈ RN+1
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and matrices D and E are associated with the input uk =
[
pk0 p

k
N

]T ∈ R2. Full
description of these matrices can be found in [7].

As can be seen from (7) & (8), the singularity of A a�ects the model. This
description is thus referred to as singular state-space model [16]. The term singu-

lar emphasizes the speci�c form of the model in which A may be not invertible
in general. Moreover, the problem of singularity is quite complex, as our research
shows that the model is very sensitive to the discretization parameters, which
have to be aptly chosen in order to assure stability of the system. The matrix A
is referred to as the recombination matrix and it is de�ned as

A =

[
A1 A2

A3 A4

]
=



r2b 0 · · · 0 0
−b rb · · · 0 0

DN
2
+1(c)

...
. . .

...

0 0 · · · rb 0
0 0 · · · −b rb
0 0 · · · 0 −2b

−b b 0 · · · 0 0 0
0 −b b · · · 0 0 0
...

. . .
... DN

2
(a)

0 0 0 · · · −b b 0
0 0 0 · · · 0 −b b



∈ R(N+1)×(N+1)

(9)

where DW (θ) ∈ RW×W denotes a diagonal matrix with θ on its diagonal. Note

that the upper right submatrix is non-square and belongs to R(
N
2 +1)×(N

2 ).

Initial boundary conditions, required for calculating the subsequent values
of the state vector in the �rst two steps, are obtained on the basis of available
measurements at the time of the system's initialization. Linear distribution of
both pressure and mass-�ow along the pipe is assumed. The convergence of the
solution, obtained with such boundary conditions, is satisfactory.

3 Model Reformulation

Sparsity of matrices in the state-space model (7) allows us to rearrange this
model to a form which falls inside the scope of applicability of the Thomas
algorithm [3], which reduces the computational complexity of computations.

The procedure starts with the consideration of the structure of submatrices
in the recombination matrix. Two of them are square and diagonal, whereas the
other two are non-square band matrices with the band width equal to 2:

A1 = DN
2 +1(c) ∈ R(

N
2 +1)×(N

2 +1) (10)

A4 = DN
2
(a) ∈ R

N
2 ×N

2 (11)
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A2 =



r2b 0 · · · 0 0
−b rb · · · 0 0
...

. . .
...

0 0 · · · rb 0
0 0 · · · −b rb
0 0 · · · 0 −2b


∈ R(

N
2 +1)×N

2 (12)

A3 =


−b rb 0 · · · 0 0 0
0 −b rb · · · 0 0 0
...

. . .
...

0 0 0 · · · −b rb 0
0 0 0 · · · 0 −b rb

 ∈ R
N
2 ×(N

2 +1) (13)

Matrices A2 and A3 as a pair have such a property that their multiplication
(regardless of its order) results in tridiagonal matrices:

A2A3 =



−2b2 2b2 0 0 0 0 0 0
b2 −2b2 b2 0 0 · · · 0 0 0
0 b2 −2b2 b2 0 0 0 0
0 0 b2 −2b2 b2 0 0 0

...
. . .

...
0 0 0 b2 −2b2 b2 0 0
0 0 0 0 b2 −2b2 b2 0
0 0 0 · · · 0 0 b2 −2b2 b2

0 0 0 0 0 0 2b2 −2b2


∈ R(

N
2 +1)×(N

2 +1)

(14)

A3A2 =



−3b2 b2 0 0 0 0 0 0
b2 −2b2 b2 0 0 · · · 0 0 0
0 b2 −2b2 b2 0 0 0 0
0 0 b2 −2b2 b2 0 0 0

...
. . .

...
0 0 0 b2 −2b2 b2 0 0
0 0 0 0 b2 −2b2 b2 0
0 0 0 · · · 0 0 b2 −2b2 b2

0 0 0 0 0 0 b2 −3b2


∈ R(

N
2 +1)×N

2 .

(15)
Thus, the following lemma can be formulated:

Lemma 1. Both matrices obtained from multiplications A2A3 and A3A2 are

tridiagonal.

In order to achieve a simpler form of the model, the right-hand side of (7) is
represented by an auxiliary vector:
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w
(
x̂k−1, x̂k−2,uk,uk−1

)
= Bx̂k−2 +C

(
x̂k−1

)
x̂k−1 +Duk−1 +Euk. (16)

Hence, (7) is rewritten as:

Ax̂k = w
(
x̂k−1, x̂k−2,uk,uk−1

)
. (17)

Since the matrix B is diagonal and the matrices C, D and E are sparse [7],
computation of the vector w is of complexity O(N). Hence, one can rewrite (16)
taking into account the division of the recombination matrix into four subma-
trices: [

A1 A2

A3 A4

]
x̂k = w. (18)

Since

x̂k =

[
qk

pk

]
and w =

[
g
h

]
where qk,g ∈ RN

2 +1 and pk,h ∈ RN
2 , (18) is shown as a system of equations:

A1q
k +A2p

k = g (19)

A3q
k +A4p

k = h. (20)

Solving it for qk and pk leads to:

qk = A−1
1

(
g −A2p

k
)

(21)

pk = A−1
4

(
h−A3q

k
)

(22)

Because A1 and A4 used in (21)�(22) are diagonal matrices with identical
diagonal elements, the e�ect of the pre-multiplication of the respective vectors
by a matrix inversion, can be expressed as the division of these vectors by a
respective number. By de�ning: g̃ = g

c , Ã2 = A2

c , h̃ = h
a and Ã3 = A3

a , one
obtains:

qk = g̃ − Ã2p
k (23)

pk = h̃− Ã3q
k (24)

Substituting (24) into (23) and vice versa, results in

qk = g̃ − Ã2h̃+ Ã2Ã3q
k (25)

pk = h̃− Ã3g̃ + Ã3Ã2p
k (26)
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These equations can be consequently rearranged to:(
I− Ã2Ã3

)
qk = g̃ − Ã2h̃ (27)

(
I− Ã3Ã2

)
pk = h̃− Ã3g̃ (28)

Taking advantage of the previously de�ned Lemma 1, the results of the ma-
trix multiplications Ã3Ã2 and Ã2Ã3 are tridiagonal, as well as (since we sub-

tract these matrices from the identity matrix) the expressions
(
I− Ã3Ã2

)
and(

I− Ã2Ã3

)
are also tridiagonal matrices. Hence, the Thomas algorithm [12]

can be applied assuring the computational complexity of order O(N) [3]. The
algorithm is de�ned for equations given in the following form:

Tv = d (29)

where v and d are vectors, and T is a tridiagonal parameter matrix of the
following structure:

T =



β1 γ1 0
α2 β2 γ2

α3
. . .

. . .

. . .
. . . γn−1

0 αn βn

 . (30)

E�cient computation of the vector v is based on LU decomposition of the tridi-
agonal matrix T = LU, resulting in the following lower and upper triangular
matrices [3]:

L =


1 0
l2 1
. . .

. . .

ln−1 1
0 ln 1

 U =


u1 r1 0
u2 r2

. . .
. . .

un−1 rn−1

0 un

 . (31)

Consequently, equation (29) can be shown as LUv = d. For the purpose
of calculating the vector v for a known d, we can solve subsequently two ma-
trix equations: Ly = d and Uv = y, with initial condition u1 = β1, y1 = d1,
according to the following equations:

l =
αi
ui−1

, ui = βi − lγi−1, yi = di − lyi−1, for i = 1, 2, 3, ..., n (32)

vn =
yn
un
, vi =

yi − γivi+1

ui
, for i = n− 1, n− 2, ..., 2, 1. (33)
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It can be shown that the tridiagonal matrices
(
I− Ã3Ã2

)
and

(
I− Ã2Ã3

)
are diagonally dominant, therefore, the Thomas algorithm can successfully solve
(27)�(28) for qk and pk, respectively [3]. Then, combining both vectors into
a common state vector, a single iteration of the simulation is completed. The
simulated model with this state vector, obtained using the algorithm (32)�(33),
is called the analytic Thomson method (ATM).

4 Comparison of the Methods

There are two principal criteria for comparing the models: the computation time,
and the accuracy of the results. A gain in computational time is strictly con-
nected with the ability to simulate the �ow process in an on-line manner, which
is usually determined by the set of physical parameters and the selected dis-
cretization grid. The accuracy of the model tells, whether the results obtained
by the base model and the ATM model are similar, and thus, whether the same
leak detection methods can be applied using both models. The boundary condi-
tions were calculated assuming linear pressure and �ow distributions along the
pipeline, based on available measurements at the inlet and outlet of the moni-
tored pipeline. The spatial step is closely related to the length of the pipeline and
the number of segments, while the time step was calculated using the method
described in [7] to provide a maximum margin of stability.

4.1 Computation Time

The computation time is analyzed using the MATLAB environment with built-
in functions to measure the execution time associated with both methods. The
results, presented as the ratio of the base model computation time to the ATM
computation time, are referred to as the computational speedup and presented
in Fig. 2. Note that all matrices are stored as full tables. It is necessary to carry
out further research (of the considered methods) for sparse matrices.

Note that for sparse discretization, both methods have similar computa-
tion time. However, the �ner discretization the more signi�cant computational
speedup of the ATM with respect to the base method (e.g., the former becomes
approximately 15 times faster than the latter for 200 segments).

4.2 Validity of the ATM Model

The second analysis concerns the validity of the ATM model. Since the base
model has already been validated [2], a measure for the ATM model accuracy
can be the maximum value (for the whole simulation) of the normalized second
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Fig. 2. Computational speedup measured as the ratio of the base-model computation
time to the ATM computation time (in this experiment the execution times were mea-
sured for 5000 iterations simulating the pipeline, and the physical parameters of the
�ow were the following: L=75 [km], D=0.67 [m], λ=0.02, ν=300 [ms], pinlet=10 [MPa],
and poutlet=8 [MPa])

norm of the di�erence between the two respective state vectors. The results are
presented in Fig. 3.

Since the coordinates of the state-space vector which concern the pressure
were of the order of magnitude 106, due to input pressure, the norm is scaled
with respect to the base-model state vector norm. As a result, the measure of
the di�erence Md between the models has been calculated as:

Md = 20 log10

max
k
||x̂k

b − x̂k
atm||

max
k
||x̂k

b||

 [dB] (34)

where x̂k
b and x̂k

atm denote the state vectors of the base and ATM models,
respectively.

Apart from the in�uence of the spatial discretization on the model accuracy,
the in�uence of the temporal discretization has also been examined. The µ coe�-
cient used in the relation ∆t = µ∆zc , is determined by the time- and spatial-step
sizes and the sound velocity. Results, being a scaled second norm of the di�er-
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Fig. 3. Scaled second norm of the di�erence between two state vectors obtained using
the base model and the ATM model (number of iterations was 5000, and the physical
parameters of the �ow were as follows: L=75 [km], D=0.67 [m], λ=0.02, ν=300 [ms],
pinlet=10 [MPa], and poutlet=8 [MPa])

ence between the state vectors, are presented in Fig. 4, for a �xed N=36 (see *
in Fig. 3), and equivalently ∆z= 2083 [m], as a function of µ (or equivalently
∆t in this setting).

The increase of µ causes a clear decrease of the state di�erence between
the two models, which varies between -275 dB and -235 dB in Fig. 4. Since
the numerical noise level is around -300 dB, the di�erence between models is
negligible. However, the computational overhead is signi�cantly reduced when
the ATM model is applied.

5 Conclusions

The paper addresses the problem of computational complexity of the numerical
computation and simulation of the �ow process in transmission pipelines. The
state-space model has been rearranged in order to obtain two equations with
tridiagonal matrices, for which the Thomas method can be applied. Hence, the
computational overhead is reduced, while the simulation results remain close to
the ones resulting from the base model. The computational speedup is evident
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Fig. 4. Scaled second norm of the di�erence between two state vectors obtained using
the base model and the ATM model (number of iterations was 5000, and the physical
parameters of the �ow were as follows: L=25 [km], N=36, D=0.4 [m], λ=0.02, ν=304
[ms], pinlet=3.2 [MPa], and poutlet=3 [MPa])

for a �ne discretization of a pipeline. Due to the small di�erence between the
state vectors, both models can be considered equivalent, and therefore the leak
detection methods can be evenly well applied using both the state-space models.

There is a possibility that the algorithm can become unstable due to an
incorrect choice of the discretization grid (this issue is discussed in details in
[7], where a certain restriction, in the form of an inequality, on the choice of
the discretization grid is precisely provided). Respective study shows that both
models become unstable in the same circumstances, so there is no de�nite pro�t
of one over another in terms of stability.
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