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Abstract
The popularity of the elasto-plastic Hardening Soil (HS) model is based on simple parameter identification from standard

testing and empirical formulas. The HS model is implemented in many commercial FE codes designed to analyse

geotechnical problems. In its basic version, the stress–strain behaviour within the elastic range is subject to the hypoelastic

power law, which assures the barotropy of the elastic stiffness. However, a proper modelling within the small strain range,

i.e. strain-induced stiffness degradation and correct reproduction of the hysteretic behaviour, was one of the most important

drawbacks in the HS formulation. The first small strain stiffness extension to the HS model was proposed by Benz (Small

strain stiffness of soils and its numerical consequences, 2007), and the new model was called Hardening Soil Small (HSS).

Despite the simple isotropic formulation, its applicability was proved in various numerical simulations in geotechnics.

However, the HSS formulation exhibits a serious fault known in the literature as overshooting, i.e. uncontrolled reset of the

loading memory after tiny unloading–reloading cycles. The authors’ main aim was to retain the set of material parameters

for the HSS formulation and to propose a new small strain extension to the HS model without overshooting. The new

proposal is based on the BRICK model which represents the concept of nested yield surfaces in strain space. The imple-

mentation aspects of the new HS-Brick model are described, and its performance is presented in some element tests and

selected boundary value problems by comparisons with the HSS formulation.
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List of symbols
c Effective cohesion

De;De
ijkl Fourth-order isotropic linear elastic Hooke’s

stiffness tensor

e; eij Deviatoric part of strain tensor,

eij ¼ eij � 1
3
ev dij

E50 Secant Young’s modulus at 50% of the

ultimate deviatoric stress

Eoed Oedometric (constrained) tangent modulus

Eur Unloading–reloading secant Young’s modulus

G Shear modulus

J2; J3 Invariants of deviatoric part of the stress tensor

s, J2 ¼ 1
2
sijsij, J3 ¼ det s

m Exponent in the power law—the order of the

stiffness dependency on stress

p Mean effective pressure (Roscoe’s stress

invariant), p ¼ 1
3
rkk

pc Preconsolidation pressure

q Roscoe’s invariant of deviatoric part of the

stress tensor s, q ¼
ffiffiffiffiffiffiffiffiffiffiffi

3
2
sijsij

q

s; sij Deviatoric part of the stress tensor,

sij ¼ rij � p dij
sb String length of b-th brick in the HS-Brick

model

ux; uy Horizontal and vertical displacement

components, respectively

c
Shear strain invariant, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

3
2
eijeij

q

cb Shear strain invariant of actual relative strain

distance between the man and b-th brick in the

HS-Brick model

d; dij Kronecker’s symbol

e; eij Strain tensor, compression positive
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ev Volumetric strain, ev ¼ eii
ea; er Axial and radial strain components in

axisymmetric condition, respectively

r; rij Effective Cauchy stress tensor, compression

positive

r1; r2; r3 Major, intermediate and minor principal stress

components, respectively

ra; rr Axial and radial stress components in

axisymmetric condition, respectively

/;/cs Effective and critical state friction angle,

respectively

w Dilatancy angle

m Poisson’s ratio

xG Shear stiffness modulus reduction factor in the

HS-Brick model

Dxb
G

Proportion of xG assigned to b-th brick,
PNb

b¼1 Dx
b
G ¼ ðGref

0 � Gref
ur Þ=Gref

0

ðÞ0; ðÞ
0 Initial magnitudes, e.g. small strain stiffness

moduli or stress

ðÞref , ðÞ
ref Reference magnitudes, e.g. reference tangent

stiffness moduli estimated at reference

pressure pref
ðÞe, ðÞp Elastic and plastic magnitudes, respectively

ðÞs; ðÞt Secant and tangent parameters or operators,

respectively

k k Euclidean norm, e.g. kxk ¼ ffiffiffiffiffiffiffi

xixi
p

or

krk ¼ ffiffiffiffiffiffiffiffiffiffi

rijrij
p

1 Introduction

The basic version of the elasto-plastic Hardening Soil (HS)

model was developed by Schanz et al. [36] and imple-

mented into the Plaxis FE code [7]. The HS model has

become a standard in geotechnical engineering computa-

tions. It is implemented in many commercial FE codes due

to clear parameter identification based on the standard

laboratory and field tests or empirical formulas. The model

assembles well-established concepts in soil mechanics

concerning the barotropy, dilatancy, shear strength and the

nonlinear pre-failure stiffness. The behaviour of granular,

fine grained and even soft organic soils is possible to be

simulated with the HS model. The HS formulation has also

some limits and simplifications which should be taken into

account in the numerical analyses of geotechnical prob-

lems. The main framework of the HS model may be

explained by drawing the contours of yield surfaces on the

plane of Roscoe’s stress invariants p-q. It is shown in

Fig. 1. The Mohr–Coulomb shear strength criterion limits

shear stress levels, whereas the volumetric and pre-failure

deviatoric hardening is controlled by two yield surfaces.

The HS model is entirely isotropic in both the elastic and

elasto-plastic ranges. Hence, no inherent and stress induced

anisotropy is available contrary to the experimental evi-

dence especially in fine grained deposits, e.g. [26, 27].

Non-viscous formulation excludes also simulation of the

time effects in soils like creep or relaxation. The stiffness

in the elastic range is represented by the hypoelastic power

law with the stress-dependent unloading–reloading

Young’s modulus Eur and constant Poisson’s ratio m. This
limits the application of the HS model in the dynamic

analyses [30, 45]. However, one of the most important

drawbacks in the initial HS model formulation was the lack

of proper modelling of the small strain behaviour, i.e.

strain-induced degradation of the high initial stiffness

during monotonic loading, regain of the high stiffness after

sharp loading reversals and correct reproduction of the

hysteretic behaviour. The practical importance of the small

strain stiffness incorporation in the constitutive models of

soils was widely approved in literature [1, 3, 8, 10]. Hence,

it was a necessity to refine the HS model to comply with

this evidence.

The first small strain stiffness extension to the HS for-

mulation was proposed Benz and co-workers [5, 6], and the

new model is called Hardening Soil Small (HSS). The new

formulation introduces a special algorithm of controlling

the current hypoelastic stiffness within the elastic range of

the basic HS model. Additional parameters can be obtained

from extended standard tests or empirical formulas.

Fig. 1 Yield surfaces and elastic range in the basic HS model. In the

initial HS version, the hypoelastic stress–strain relation is used within

the elastic range with the stress-dependent Young’s modulus

EurðEref
ur ;rÞ via power law and constant Poisson’s ratio mur. In the

HSS version, the small strain stiffness depends on both stress and

accumulated shear strain, while in the hypoelastic relation the actual

reference shear modulus Gref
t changes between the values Gref

ur and

Gref
0
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Despite the simple isotropic formulation, its applicability

was proved in various numerical simulations in geotech-

nics, e.g. [4, 5, 19, 20, 22, 33, 41]. The extended HSS

model is also implemented in commercial geotechnical FE

codes available for researchers and practitioners. However,

the HSS formulation exhibits serious fault known in the

literature as overshooting, i.e. uncontrolled reset of the

loading memory and regain of high initial stiffness after

tiny unloading–reloading cycles. It is illustrated schemati-

cally in Fig. 2. The overshooting problem in the HSS

model is critically reviewed in details in [31].

The primary aim of this paper is to propose a new small

strain extension without the overshooting and to retain the

main modelling assumptions of the HSS formulation

together with its set of material parameters. The new pro-

posal is based on the modified version of the Simpson’s

BRICK model [38] which practically represents the concept

of nested yield surfaces in strain space [29]. We describe

the implementation aspects of the new HS-Brick model and

present its performance by comparisons with the HSS

formulation in some element tests and selected example

boundary value problems.

2 Summary of the basic HS model

The basic HS model belongs to the class of multi-surface

elasto-plastic models. The deviatoric and the volumetric

cap yield surfaces, with the corresponding plastic flow

rules, and hardening laws, are the two major plastic

mechanisms introduced to represent the nonlinear soil

behaviour. The ultimate limit states are controlled by the

Mohr–Coulomb and Rankine strength criteria. The main

model equations and theoretical assumptions are system-

atized in [36]. Since the HS model is implemented in

several FE codes, we would like to emphasize only the

main characteristic aspects of its formulation in the cur-

rently developed version of ZSoil FE code [44]. This ver-

sion of the basic HS model is refined to account for the

small strain stiffness and used in the calculations presented

in the article.

2.1 Deviatoric plastic mechanism

The yield surface controlling the deviatoric hardening

mechanism is expressed as follows [36]:

f1 ¼
qa

E50

r1 � r3
qa � r1 � r3ð Þ � 2

r1 � r3
Eur

� cp ¼ 0 for

q\qf ;
ð1Þ

where the asymptotic and ultimate deviatoric stresses qa, qf
are defined as:

qf ¼
2 sinð/Þ

1� sinð/Þ r3 þ c cot/ð Þ; ð2Þ

qa ¼
qf

Rf

; ð3Þ

and Rf\1:0 is the failure ratio. We also assume that the

minimum initial value of the hardening parameter

cp0 � 10�6 and r1 � r2 � r3.
The plastic flow rule is derived from the following

plastic potential function:

g1 ¼
r1 � r3

2
� r1 þ r3

2
sinwm: ð4Þ

The mobilized dilatancy angle wm is defined after Rowe

[35] as:

sinwm ¼ D
sin/m � sin/cs

1� sin/m sin/cs

; ð5Þ

where mobilized and critical state friction angles /m;/cs

are calculated from:

sin/m ¼ r1 � r3
r1 þ r3 þ 2 c cot/

; ð6Þ

sin/cs ¼
sin/� sinw
1� sin/ sinw

: ð7Þ

It is worth noting that D ¼ 1 in the reference Rowe’s

formula [35]. In general, when sin/m\ sin/cs, the con-

tractancy cut-off condition is assumed and sinwm value is

scaled by the parameter D� 1:0. In the basic HS model

D ¼ 0, whereas in the extended version with small strain

stiffness refinement D � 0:25.
Fig. 2 Example of overshooting as a fault in the modelling of

hysteretic behaviour during cyclic shearing. Small loading reversal

continued by reloading causes unexpected irregularity in the

hysteresis
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The hardening law in the deviatoric mechanism is given

by:

dcp ¼ dk1
og1

or1
� og1

or3

� �

¼ dk1; ð8Þ

where dk1 is the plastic multiplier corresponding to the

shear plastic mechanism.

2.2 Volumetric plastic mechanism

The smooth cap yield surface is described by the following

equation:

f2 ¼
q2

M2 r2ðhÞ þ p2 � p2c ¼ 0: ð9Þ

In the above expression rðhÞ is defined after van Ekelen’s

[13] formula:

r ðhÞ ¼ 1� a sinð3hÞ
1� a

� �n

; ð10Þ

where

sinð3hÞ ¼ � 3
ffiffiffi

3
p

2

J3

J
3
2

2

; ð11Þ

a ¼ k
1
n � 1

k
1
n þ 1

; ð12Þ

k ¼ 3� sin/
3þ sin/

: ð13Þ

The power exponent n ¼ �0:229 and the parameter

a� 0:7925.

A non-associated plastic flow rule is derived from the

following potential function:

g2 ¼
q2

M2
þ p2: ð14Þ

The above form is crucial for the efficient implementation

scheme in which the stress return algorithm is executed in

the principal stress space. It is worth noting that the plastic

potential is obtained from the yield function f2 (Eq. 9) by

fixing rðhÞ ¼ 1. One can set the rðhÞ to any fixed value in

the range k. . .1 (Eq. 13).

The volumetric hardening law is expressed in the fol-

lowing form:

dpc ¼ H
pc

pref

� �m

depv2; ð15Þ

depv2 ¼ dk2
og2

op
; ð16Þ

where the volumetric plastic strain increment depv2 is gen-

erated entirely by the cap mechanism. The internal model

parameters M and H are derived taking into account the

assumed KNC
0 value and the reference tangent oedometric

modulus Eref
oed defined at a given vertical stress assuming the

normal consolidation.

2.3 Stiffness barotropy

In the basic HS model [36], the unloading–reloading Eur

and secant E50 stiffness moduli are stress dependent by the

following power laws and the corresponding empirical

barotropy function fr:

Eur rð Þ ¼ Eref
ur fr rð Þ; ð17Þ

E50 rð Þ ¼ Eref
50 fr rð Þ; ð18Þ

fr rð Þ ¼ r3 þ c cot/
pref þ c cot/

� �m

: ð19Þ

However, the above form exhibits certain drawbacks, e.g.

when deep excavations or highly overconsolidated soil

layers are analysed. In such conditions, horizontal stresses

are usually larger than the vertical ones. Therefore, we

prefer to use the following barotropy function based on the

mean effective stress:

fr rð Þ ¼ p

pref

� �m

: ð20Þ

In both cases, a certain cut-off condition has to be applied

for the minimum value of stress invariants r3 or p to avoid

too low stiffness moduli.

3 Small strain stiffness extensions to the HS
model

3.1 HSS formulation

The first refinement of the basic HS model to account for

the realistic small strain stiffness of soils was proposed

under the name Hardening Soil Small (HSS) [5, 6] and

implemented into the Plaxis FE code [7]. The main idea

was to substitute hypoelastic kernel of the HS model

(constant Poisson’s ratio mur and stress dependent Eur) by a

model allowing to reproduce the small strain stiffness

properties [3, 10, 15, 21, 42]. These are high initial elastic

stiffness of soils represented by the small strain shear

modulus G0, strain degradation of the high stiffness in

monotonic loading and changes of the stiffness adequate to

the current loading direction, e.g. regain of the high stiff-

ness after sharp loading reversals. The stiffness strain

degradation is often described by the so-called S-shaped

curve relating the current shear modulus to the selected

strain measure. Among many proposals from the literature,

the modified Hardin–Drnevich relationship [16] is applied
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in the HSS model where the current secant shear modulus

Gs is related to the shear strain invariant c:

Gs ¼
G0

1þ a c
c0:7

: ð21Þ

The new important small strain threshold parameter c0:7 is

the shear strain needed to degrade G0 down to 0:7G0 and a

is another parameter influencing the S-shaped curve. The

fixed value a ¼ 0:385 is proposed. Decay of both the tan-

gent and secant shear stiffness resulting from Eq. 21 is

limited by a strain threshold beyond which the target

stiffness achieves its low cut-off value Gur. As such, shear

stiffness tends towards a fixed positive constant value.

More complicated modelling aspect is connected with

controlling changes of the current stiffness due to loading

reversals or changes of the loading direction. To this end,

the strain history second-order tensor H is proposed. The

evolution of H is related to the increments of the deviatoric

strain De. The original strain history tracing algorithm

responsible for the evolution of H is formulated in [5]

together with the implementation code. On the basis of

strain history evolution and current deviatoric strain incre-

ment, the shear strain measure cHist is defined and substi-

tuted into Eq. 21 instead of c. In the monotonic loading,

cHist is equivalent to c. However, the history tracing algo-

rithm used in the HSS model was recently reanalysed and

critically reviewed in [31]. It is shown that the reset of the

material memory resulting in regaining of the high initial

stiffness may be induced by tiny unloading–reloading

loops, and hence, the reproduced stress–strain behaviour

will depart from the expected. This modelling fault is often

denoted in the literature as overshooting. We refer the

interested reader to the article [31] for comprehensive

analysis of the overshooting problem in the HSS model.

In the rest of the following section, we describe some

important issues of the HSS model implementation used in

the presented calculations. Similarly to the reference

approach [5, 6], we also trace current stiffness ratio param-

eter Gm being the minimum of the fraction ~Gs=Gur over

whole loading history (notion of the incremental secant

stiffness modulus ~Gs is explained in Box 3). This state

parameter is needed to detect transition from the unloading–

reloading branch to the virgin loading one. Moreover, it is

used in the modified hardening laws of the deviatoric and

volumetric mechanisms, via hi function, as follows:

dcp ¼ hi dk1; ð22Þ

d pc ¼ hi H
pc

pref

� �m

dk2
og2

op
; ð23Þ

hi ¼ G
1þ Erefur

2Eref
50

m :
ð24Þ

Depending on the current loading status, which can be the

unloading–reloading or virgin loading, an incremental

secant shear modulus ~Gs is derived from Eq. 21. This

modulus is used later on to compute the elastic trial state

but also the plastic corrector. The algorithmic treatment of

stiffness barotropy is discussed in Sect. 4.1. It should be

emphasized that these two aspects are not clearly explained

in [5, 6].

3.2 HS-Brick formulation

The main aim of the reported work is to develop a new

small strain formulation without the overshooting which

may substitute the procedure based on the strain history

tensor H in the HSS model. However, we want to keep the

set of HSS material constants and the basic assumptions of

this model. These are hypoelastic stress dependency of the

actual tangent shear modulus Gt based on the power law

(e.g. Eq. 20) and parallel incorporation of the strain

degradation of reference small strain shear modulus Gref
0

according to Eq. 21. We decided to employ the concept of

nested circular yield surfaces by Mróz [29]. Since it is

convenient to keep the control of small strain stiffness

within the strain space, we have followed the original

version of nested yield surfaces in strain space proposed by

Simpson [38, 39] in his BRICK model. This model is

described by the analogy of a man pulling the finite number

of bricks on strings. Initially strings of different lengths are

slack. When man moves monotonically in a given direction

strings become taut one by one pulling the following

bricks. The man’s movement represents strain, and the

strings lengths are radii of circular yield surfaces in the

strain space. Every time the next brick starts to be pulled by

man, the reference stiffness is degraded in the stepwise

fashion. Hence, the S-shaped curve is not reproduced as

continuous. When the loading direction in strain space

changes loosing the strings, the high initial stiffness is

regained. Different versions of the BRICK model are

reported in the literature giving satisfactory results in var-

ious FE computations, e.g. [9, 11, 14, 23, 25, 40, 43]. The

original BRICK model [38] has been developed in plane

strain for which volumetric strain and shear strain are

appropriate axes—the sides of the room where the descri-

bed pulling process takes place. In the 3D extension of the

original BRICK model [25], these axes were replaced with

volumetric strain axis and five shear strain axes. Addi-

tionally, the pulling process of a given brick is enhanced by

the so-called plastic strain reduction which provides volu-

metric strain hardening by repositioning the bricks [14].

In our version of BRICK model, we place the pulling

process within the general six-dimensional strain space.

However, the relative strain distances between the man and
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the b-th brick are measured by the shear strain invariant cb

of the strain distance. In such a way, the pulling process is

projected on the deviatoric plane in strain space. This is

shown for various loading situations in Fig. 3. The

obtained strain degradation accords with that assumed in

the HSS model. The only difference is the fact that con-

tinuous S-shaped curve from the HSS model is substituted

by the stepwise model presented in Fig. 4.

Summing up, within the elastic range of HS model the

current reference tangent shear modulus Gref
t changes

between the values of Gref
ur and Gref

0 . This is controlled by

the BRICK type strain history update procedure in the

stepwise way. Additionally, barotropy of small strain

stiffness is taken into account in parallel and final actual

tangent shear modulus Gt is both strain and stress depen-

dent. The proposed new formulation of the HS model

accounting for the small strain stiffness is named the HS-

Brick model.

The bricks strain history update procedure is given in

Box.1. In the presented expressions, the string length of b-

th brick is denoted by sb. Any quantity with the right lower

subscript n refers to the last configuration of equilibrium

while the one with the index nþ 1 to the new configuration

(a) (b)

(c) (d)

Fig. 3 Controlling of the small strain stiffness and loading history in the HS-Brick model: a possible initial situation when all strings are slack

and no strain history is recorded—the bricks placement may reflect the deposition history; however, in calculations all bricks are located at e ¼ 0;

b begin of the Gref
t degradation when the first brick is pulled; c maximum degradation of the actual Gref

t down to Gref
ur , all strings are taut pulling

the bricks; d sharp loading reversal and regain of the high shear stiffness, all strings are slack
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which is currently sought. The additional right superscript i

refers given quantity to the current iteration in the non-

linear iterative procedure while i� 1 to the previous one.

Although it is formally designed as a one step procedure

(the full strain increment Deij;nþ1 is used) a sub-incre-

mentation scheme, discussed later on, can easily be adop-

ted. In the latter case, the Deij;nþ1 has to be treated as a

fraction of the full strain increment, while bricks strain

history ebij;n and strain eij;n correspond to the end state of the

previous sub-step. The resulting eij;nþ1, ebij;nþ1 correspond to

the end state of the current sub-step. This procedure

enables to compute the current reference incremental tan-

gent shear modulus Gref
t . This modulus degrades with the

number of bricks that are currently pulled. It is worth to

note that the minimum reference tangent shear modulus is

delimited by the material parameter Gref
ur .

Fig. 4 The stepwise model of S-shaped curve applied in the proposed HS-Brick model. Shear strain invariant c is used as a measure of strain

distance between the man and bricks. Nb ¼ 10 bricks are employed with equal stiffness proportions (Dxb
G ¼ const )
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4 General implementation scheme

Numerical efficiency of the stress–strain integration

scheme is the key when dealing with practical initial

boundary value problems. Barotropy and its algorithmic

treatment as well as the specific form of the yield surface

controlling the deviatoric mechanism yield major difficul-

ties when implementing the new extended version of the

HS model. Therefore, we discuss all these aspects in the

following subsections.

4.1 Algorithmic treatment of barotropy

The general implementation scheme, as in the case of most

elastic-plastic constitutive models, consists of three major

steps, i.e. the trial stress evaluation rtrij , checking its plastic

admissibility (fkðrtrij ; cpn; pc;nÞ� 0 for k ¼ 1. . .N) and then

carrying out the stress return procedure, if at least one of

N plastic yield surfaces becomes active. The major prob-

lem in the HS model is related to the treatment of stiffness

stress dependency called here as barotropy.

In several publications, researchers try to derive the

algorithmic tangent stiffness operator which should preserve

quadratic convergence rate of the iterative scheme used to

solve a nonlinear system of equilibrium equations. In the

considered model formulation, deriving such an operator is

not really possible. It is mainly due to non-smooth consti-

tutive functions appearing in the cut-off condition in baro-

tropy functions but also in the brick type approximation

applied to the stiffness degradation function. As it will be

pointed out at the end of this section, the stress return algo-

rithm can be carried out in the principal stress space by

freezing elastic stiffness moduli. This seems to be optimal

from the computational efficiency point of view.

In the HS model, no matter if it is extended to the small

strain regime or not, barotropy is present at the stage of

trial stress evaluation, in the analytical expression for the

shear plastic yield surface and in the plastic corrector

procedure. In order to preserve all benefits of implicit

integration schemes, barotropy cannot be treated in the

same manner in all the aforementioned three stages. Let us

define the two different reference stress states influencing

barotropy:

~rij;nþh ¼ ð1� hÞrij;n þ hrði�1Þ
ij;nþ1; ð25Þ

~rij;nþ1 ¼ rði�1Þ
ij;nþ1; ð26Þ

where h ¼ 1

2
and previous iteration is denoted by the

superscript ði� 1Þ.

The trial stress state and plastic correction are computed

as follows:

rtrðiÞij;nþ1 ¼ rij;n þ De
ijklð~rij;nþhÞ DeðiÞkl;nþ1; ð27Þ

rðiÞij;nþ1 ¼ rtrðiÞij;nþ1 � De
ijklð~rij;nþhÞ DepðiÞkl;nþ1: ð28Þ

Using the stress state form (i� 1) iteration, we treat bar-

otropy in a semi-implicit manner. Assuming h ¼ 1
2
the

current elastic stiffness operator De
ijklð~rij;nþhÞ represents the

incremental secant stiffness. When strain increments are

very small it reduces to the tangent elastic operator. The

De
ijkl operator is calculated using current incremental

Young’s modulus E, i.e. stress dependent Eur in the basic

HS model or the actual Es when the small strain extension

is activated.

However, the reference stress state influencing baro-

tropy in the algorithmic stiffness treatment cannot be used

in the analytical condition defining the deviatoric harden-

ing yield surface in Eq. 1. The stress-dependent moduli Eur

and E50 should be calculated using ~rij;nþ1. To explain this,

let us assume that we start a new time step nþ 1 with a

very small strain increment Deij. This means that rðiÞij;nþ1 �
rij;n and ~rij;nþh � rij;n. If we use the barotropic reference

stress to verify the deviatoric yield condition then the

current stress state, previously satisfying the condition

f1ðrij;n; cnÞ � 0 now can easily violate it and from

f1ðrij;n; cnÞ[ 0 some additional plastic straining will be

induced. Moreover, in the strain history update procedure

of the HSS model, the strain history tensor H can be reset.

The small strain formulation in the HS-Brick model is

insensitive to these faults.

The above algorithmic treatment of barotropy enables

application of the classical operator split method and to

conduct the stress return procedure in the principal stress

space. Furthermore, due to the specific form of the assumed

plastic potentials the multi-surface stress return problem

may be solved in an analytical manner in the case of active

deviatoric plastic mechanism and optionally together with

Rankine one.

4.2 Elastic stress predictor in the HS-Brick model

As the S-shape stiffness degradation curve in the HS-Brick

model is discretized with piece-wise constant segments a

certain sort of strain increment subincrementing is required

to compute the elastic stress predictor. The proposed sub-

incrementation scheme is summarized in details in Box.2
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4.3 Multi-surface stress return in the principal
stress space

In the case of the HS model, due to the specific form of

assumed plastic potentials, it is possible to perform stress

return in the principal stress space, using the approach

proposed in [24]. Additionally, the stress return can be

solved analytically in all cases when the final stress state

remains on the deviatoric yield surface or in the point of its

intersection with the Rankine surface. In all these cases, if

we keep constant sinwm value, the stress return procedure

reduces to a scalar quadratic equation for unknown plastic

multiplier Dk1. This is crucial as the deviatoric yield sur-

face is undefined for q� qa. If the final stress state violates

the cap yield condition, an iterative procedure is executed

in the principal stress space with the following vector v of

independent variables:

v ¼ Depnþ1; Dknþ1; pcnþ1
; cpnþ1; sinwmnþ1

� �T
; ð29Þ

while the vector r of update equations residuals

r ¼ rep ; rk; rpc ; rc; rsinwm

� �T ð30Þ

is defined as follows:

rep ¼ Depnþ1 �
X

NJACT

k

Dkk bk rnþ1; sinwmnþ1

� �

¼ 0; ð31Þ

rk ¼ fk rnþ1; pcnþ1
; cpnþ1

� �

¼ 0 8 k 2 JACT; ð32Þ

rpc ¼ pcnþ1
� C1 �2 C2Dk2 pnþ1 þ C3ð ÞC4¼ 0; ð33Þ

rc ¼ cpnþ1 � cpn � vT1b1 rnþ1; sinwmnþ1

� �

Dk1 hi ¼ 0; ð34Þ

rsinwm
¼ sinwmnþ1 � D

sin/m rnþ1ð Þ � sin/cs

1� sin/m rnþ1ð Þ sin/cs

¼ 0;

ð35Þ

where

bk ¼
ogk
or

; ð36Þ

v1 ¼ 1; 1;�1f gT; ð37Þ

C1 ¼ pref ; ð38Þ

C2 ¼ �H hi
1� m

C1

; ð39Þ

C3 ¼
pcn
pref

� �1�m

; ð40Þ

C4 ¼
1

1� m
: ð41Þ
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The JACT is a current set of NJACT active plastic mecha-

nisms. In order to handle intersection of deviatoric yield

surface with Rankine one, the additional two constraints

(surfaces f3 and f4 are reserved for the Mohr–Coulomb and

Rankine criteria) are added [24]:

f5 ¼ g5 ¼ r2 � r1 ¼ 0; ð42Þ

f6 ¼ g6 ¼ r3 � r2 ¼ 0: ð43Þ

The nonlinear set of update equations can be solved using

Newton–Raphson iterative scheme supplemented by a line-

searching procedure. The initial values of independent

variables are derived from the analytical solution where

cap surface is neglected. Mapping from the reduced prin-

cipal stress space to the full one is carried out based on the

eigenvectors of the trial stress tensor.

5 Element tests

In the following section, some basic element tests (stress

and strain fields are homogeneous) in the axisymmetric

stress conditions are performed to examine the proposed

HS-Brick model in the cases which display overshooting

problems in the HSS formulation. Generally, the over-

shooting occurs independently of the material parameter

values. Therefore, we adopt the common set of material

constants of glacial till used in [5] for all element tests

presented in the article:

Eref
50 ¼ 8500 kPa;Eref

oed ¼ 6150 kPa;Eref
ur ¼ 25750 kPa;

mur ¼ 0:29;m ¼ 0:7; pref ¼ 100 kPa;

c ¼ 6 kPa;/ ¼ 28�;w ¼ 6�;

c0:7 ¼ 3:0� 10�4;Gref
0 ¼ 60000 kPa ðEref

0 ¼ 154800 kPaÞ

Rf ¼ 0:9;KNC
0 ¼ 0:8:

ð44Þ

The FE model for axisymmetric element tests of dimen-

sions 1�1m is meshed with 1 quadrilateral enhanced

assumed strain element (Q4 EAS elements [12, 37] are

used in all presented calculations). The vertical displace-

ments at the bottom are fixed and the horizontal fixities at

the symmetry line are applied. The uniform loading is

controlled separately on the top and outer side of the

sample—axial ra and radial rr stress components, respec-

tively. The soil is weightless. The initial preconsolidation

pressure is set to pc ¼ 200 kPa, and initial position of the

yield surfaces corresponds to the KNC
0 value. The initial

strain is set to zero, i.e. the history tensor H is zero in the

HSS model, whereas in the HS-Brick model all bricks are

set together with the initial strain to zero. In the first phase

of all presented axisymmetric element tests, the sample is

consolidated isotropically to p0 ¼ 100 kPa and as a result

OCR ¼ pc=p0 ¼ 2:0. As during the isotropic compression

of isotropic material no shear strains are induced, there is

no difference in the mechanical response of both compared

models. Therefore, we present only the results of numerical

calculations after the isotropic consolidation phase with

resetting the strains to zero on the graphs. In all element

tests, we use time-dependent load drivers. Every single

loading phase is performed in one day periods, and equal

time increments Dt ¼ 0:01 day are used in calculations.

5.1 Triaxial drained compression with small
unloading–reloading loops

In real soil behaviour, when a monotonic loading is inter-

rupted by a small single unloading–reloading loop the

continuation of the loading leads to sweeping the effect of

short stiffness increase within the loop. The subsequent

response is practically the same like in the case without

interruptions. In routine numerical analyses of geotechnical

problems, the small loading reversals may be never

intended to include as a separate calculation phase; how-

ever, the tiny unloading–reloading loops may occur in

some domains of the model without control and it is

extremely important that such occurrences will not influ-

ence the results of modelling the soil structure interaction.

In the current example, we show the influence of five

small unloading–reloading axial stress loops

(Dra ¼ 	5 kPa) performed during drained triaxial com-

pression test within the pre-failure range. The compres-

sions with small reversals are compared with analogous

purely monotonic tests for the HSS and HS-Brick models.

The details and results of these tests are presented in Fig. 5.

The first small unloading–reloading loop is performed after

reaching ra ¼ 120 kPa. Then, the loops are executed after

each of four axial stress increases of 30 kPa, i.e. when

ra ¼ 150; 180; 210; 240 kPa. The compression is continued

up to the shear failure determined by Mohr–Coulomb cri-

terion which occurs at ra ¼ 297 kPa. Responses due to

monotonic loading illustrated by axial strain–stress curves

in Fig.5 are equal from both models. In the case of com-

pression interrupted by loading reversals, the overshooting

causes uncontrolled increases of stiffness in the HSS model

and the response diverges from analogous monotonic

compression. It is highly evident in the small strain range

magnified by logarithmic strain scale before the stress path

reaches the yield surfaces of the basic HS model. In the

HS-Brick model, the small unloading–reloading loops do

not influence the general response as expected.
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5.2 Triaxial hysteretic behaviour

In constitutive modelling of soils, the purely hysteretic

behaviour, i.e. without cumulative effects, is modelled with

different nonlinear elastic models. The most popular for-

mulations are based on the classical 1D models [16, 34]

which follow the Masing rules [28]. However, general-

ization to 3D modelling is not straightforward and requires

some special techniques in order to properly simulate

hysteretic behaviour. It is very important to appropriately

define the loading reversals as well as the actual stiffness

during the reloading and overloading. Firstly, the reloading

curves on the strain–stress graphs need to pass exactly

through the old loading reversals. Secondly, smaller cycles

need to be swept out from the material memory due to

overloading. The purely hysteretic behaviour in general 3D

cases is shown to be correctly reproduced in the paraelastic

models [18, 32] or by using the multi-surface plasticity

models with kinematic hardening [29]. The latter method is

actually applied in the HS-Brick model.

We perform two element tests to validate the hysteretic

behaviour reproduced by the HSS and HS-Brick models. In

the first element test, a single hysteresis loop is interrupted

by small unloading–reloading cycle. The results are shown

in Fig. 6. To obtain the reference single symmetric hys-

teresis, the sample is loaded up to ra ¼ 180 kPa, unloaded

down to ra ¼ 50 kPa, reloaded again up to ra ¼ 180 kPa

and overloaded up to ra ¼ 185 kPa. In both models, the

Fig. 5 Drained triaxial compression simulation results with HSS and HS-Brick models. In the HSS model, small axial stress unloading–reloading

(ur) loops Dra ¼ 	5 kPa cause overshooting within the elastic range. In the proposed HS-Brick model, the small interruptions of the monotonic

loading do not influence the general course of the stress–strain response as expected. In the graphs at the bottom, the logarithmic scale of strain is

used to magnify the changes within the small strain range where overshooting is clearly evident in the HSS model
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response is equal and the obtained loop is closed. To

examine the overshooting problem, the single hysteresis

loop is interrupted by small axial stress unloading–

reloading loop Dra ¼ 	10 kPa at ra ¼ 130 kPa as shown

in Fig. 6. The interruption causes overshooting in the HSS

model, and the main loop is not closed deviating from the

expected paraelastic behaviour. The response obtained with

the HS-Brick model is correct, and the main loop is closed

regardless the small loading reversal during reloading. In

the second element test, more complicated loading pro-

gramme is applied in the so-called shakedown test. The

obtained results are presented in Fig. 7. Similar to the

previous test, regarding hysteretic behaviour, the sample is

initially loaded up to ra ¼ 180 kPa (point 1) and unloaded

down to ra ¼ 50 kPa (point 2). Then, axial cyclic unload-

ing–reloading is applied with subsequent changes of

the stress amplitude after each loading reversal by 10 kPa,

i.e. ra ¼ 170; 60; 160; 70; 150; 80; 140; 90; 130; 100; 120;

110 kPa marked in Fig. 7 by points 3 to 14, respectively.

After unloading to point 14, the reloading back to the initial

reversal at ra ¼ 180 kPa and overloading up to ra ¼
185 kPa is simulated. In the desired hysteretic behaviour,

the last reloading from point 14 should pass through old

reversals (subsequently points 13, 11, 9, 7, 5, 3, 1) which is

fulfilled only in the case of the new HS-Brick model. In the

HSS model, the main hysteresis loop is not closed and

point 15 is reached due to overshooting.

6 Simple geotechnical boundary value
problems

It is important to present the overshooting problem and to

validate the proposed HS-Brick model not only at the level

of representative elementary volume but also in the

numerical simulations of some real geotechnical problems,

which are analysed in the routine design using FE codes.

We have prepared and analysed three different simple

boundary value problems concerning the loading of a

shallow foundation, execution of supported excavation and

dynamic analysis of the shear layer problem during earth-

quake. In the shallow foundation and excavation problems,

the parameter set of glacial till from Eq. 44 is used.

Additionally, the dry and effective weights of the soil are

c ¼ 19:0; c0 ¼ 9:0KN/m3, respectively. The overconsoli-

dation is prescribed by the pre-overburden pressure POP ¼
200 kPa and the initial position of yield surfaces corre-

sponds to the KNC
0 value. Initial value of K0 ¼ 0:9 is con-

stant within the glacial till deposit according to the applied

overconsolidation. In both problems, we include the shal-

low dry layer of granular fill simulated with the Mohr–

Coulomb model (/ ¼ 30�, c ¼ 1 kPa, w ¼ 0�,

Eoed ¼ 50000 kPa, m ¼ 0:3, c ¼ 19:0KN/m3, K0 ¼ 0:5).

The purpose of introduction of this layer is to prevent

activation of the cut-off procedure for the minimum value

of stress invariants influencing current stiffness moduli like

in Eq. 20.

Fig. 6 Influence of small axial stress unloading–reloading loop Dra ¼ 	10 kPa on single hysteresis loop in drained triaxial test. In the HSS

model, the small loading interruption sweeps the material memory causing the overshooting, and consequently, the hysteretic behaviour is not

simulated. In the HS-Brick model, the overshooting problem does not occur and hysteresis loops are identical regardless the small loading

interruption
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6.1 Loading case—shallow foundation

The FE model of the shallow foundation problem is shown

in Fig. 8. The concrete strip foundation of 3.0 m width and

0.5 m thickness in plane strain conditions is assumed

elastic (E ¼ 3� 107 kPa, m ¼ 0:3, c ¼ 25:0KN/m3). The

inclined line loading is applied with 0.3 m eccentricity

about the foundation midpoint. The loading is executed in

three different ways explained in Fig. 8, i.e. monotonic

loading, monotonic loading interrupted by one or four

small unloading–reloading loops. The aim is to inspect

differences in soil ground response in a similar manner like

in the element test presented in Sect. 5.1. The results are

shown in Fig. 9 by comparing the foundation load–

settlement curves. The effect of overshooting in the cal-

culations with the HSS model is much higher than that

observed in the analogous element test. It is due to the fact

that in practical geotechnical problems concerning the pre-

failure range (serviceability limit states), the small strain

stiffness is of the highest importance. The settlements

obtained with the HSS model for the monotonic loading

interrupted by small reversals are significantly smaller

when compared with the monotonic loading, i.e. one

reversal results in ca. 40%, whereas four reversals result in

70% settlement reduction. The results obtained with the

HS-Brick model display no influence of the monotonic

loading interruptions. The response of both models due to

monotonic loading is practically the same as expected.

Fig. 7 Shakedown drained triaxial test with seven loading cycles starting after monotonic compression up to reversal point 1 (ra ¼ 180 kPa).

Axial stress amplitude is subsequently decreased after each loading reversal by 10 kPa. In seventh loading cycle, the sample is reloaded to the

axial stress of reversal 1. In the desired hysteretic behaviour, the reloading passes through old reversals, i.e. after reversal 14 it should pass old

reversals 13, 11, 9, 7, 5, 3 reaching finally reversal 1. This is achieved in the HS-Brick model only. In the HSS model, the point 15 is reached

instead. In the bottom graphs, the reloading path is magnified
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The small unloading–reloading loops applied in the

current examples may seem artificial in the real calcula-

tions; however, it allows us to present the influence of the

overshooting clearly. In practice, the situation may be

worse—the reset of the material memory may occur in any

staged construction FE geotechnical modelling without

notice, e.g. during replacement of materials, partial exca-

vations, dewatering, installation of anchors, etc.

6.2 Unloading case—excavation

An interesting effect of the overshooting may be observed

in the numerical simulations of excavation with the

simultaneous consolidation. This is available in the fully

coupled deformation and flow analysis. The FE model of

the exemplary excavation problem is shown in Fig. 10. The

excavation of 4.0 m depth is supported by 8.0 m long

sheetpile wall (beam elements with interfaces,

EI ¼ 461250 kNm2, EA ¼ 6:15� 107 kN, m ¼ 0:15). Dur-

ing the initial Dt ¼ 1:5 days, the sheetpile wall elements

with interfaces are activated in the model. After the first

phase of excavating the fill material layer, the struts are

introduced by fixing the horizontal displacement compo-

nent of the beam node at the depth of �1:0m. Then, the

rest of the excavation is continued by removal of the ele-

ments in the standard stage construction procedure. During

the elements removal, the pore water pressure monotoni-

cally decreases due to excess pore water suction in the soil

area around the excavation that is subject to swelling. The

permeabilities of the glacial till are kx ¼ ky ¼ 1�
10�5 m/day. The staged construction procedure is per-

formed in two unloading schemes. First, the four stages of

excavation are simulated one by one without any delays

(Dt ¼ 4� 0:5 ¼ 2:0days). In the second scheme, after each

of the first three excavation stages, short (Dt ¼ 0:1day)

consolidation breaks are allowed. During the consolidation

breaks, the pore water pressure starts to increase slightly.

However, the breaks are short and followed by further

excavation phases, where excess pore water suction starts

to increase again. Taking into account the effective stress

state changes, a small unloading–reloading loop is induced

because of consolidation breaks. Hence, in some parts of

the soil ground, the material memory in the HSS model

may be reset to the high initial stiffness. This possible

situation is analysed in the current example by comparing

the results for two time sequences and both small strain

models.

The results presented in Fig. 11 concern the deformation

of the excavation bottom. Calculated heave–time curves

are compared for all analysed cases. The main differences

occur during the excavation. Further consolidation does not

change relations between results obtained at the end of

excavation. The response to the monotonic excavation is

very similar using both models. The heave is slightly

smaller when calculated with the HHS model, and it may

be related to the reset of material memory in a small soil

domain after installation of the struts. The main differences

related to the overshooting in the HSS model are observed

when comparing heave–time curves of monotonic exca-

vation and excavation interrupted by small consolidation

breaks. The material memory reset and regain of high

initial stiffness during the breaks result in smaller heave

(ca. 30% reduction comparing to the monotonic excava-

tion). In the HS-Brick model, the heave calculated at the

end of excavation is equal regardless the applied time

sequences of monotonic or interrupted excavation.

Fig. 8 Geometry and FE model used in the analysis of shallow strip foundation in plane strain conditions. Standard fixities are applied: vertical

sliders on sides and full fixities at the bottom. The foundation is loaded by inclined nodal force (jFy=Fxj ¼ 10=1) located 0.3 m left from the

midpoint of the top foundation face. The response to the monotonic loading up to Fy ¼ �200kN;Fx ¼ 20kN is compared with the response

where loading is interrupted by small unloading–reloading loops DFy ¼ 	0:1kN;DFx ¼ 
0:01kN

Acta Geotechnica

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The overshooting influences not only the heave of the

excavation bottom but consequently also horizontal

deformation of the sheet pile wall. It is presented by

comparison of calculated bending moments in Fig. 12. It is

evident that due to overshooting, the bending moments are

underestimated in the case of the HSS model and excava-

tion interrupted by small consolidation breaks. It should be

noted that presented example is simple and excavation is

relatively shallow. In more complicated real excavations,

interrupted by various technological phases, the differences

may be more significant.

6.3 Dynamic case—earthquake induced
shearing of a soil layer

In this section, a dynamic time history analysis of a sand

layer, discretized using twelve Q4 EAS elements, subject

to the San Fernando earthquake is analysed (see Fig. 13).

The base nodes of the mesh are fixed, while motion of the

remaining ones is constrained by tying all nodal kinematic

degrees of freedom on the left and the right walls of the

model (shaking table approach). The San Fernando record

(09.02.1971 ES Castaic Station) is shown in Fig. 13. After

baseline correction and 10 Hz low pass Butterworth fil-

tering, the San Fernando record is applied as a global

acceleration to the FE model with two scale factors 0.5 and

1.0. These scale factors are used to study the HSS and HS-

Fig. 9 Calculated load–settlement curves of the foundation base midpoint. In the bottom graphs, the situation involving unloading–reloading

loop at Fy ¼ �100kN is magnified for both analysed soil models. In the case of HSS model, the influence of overshooting is clearly visible and

even one small unloading–reloading loop results in ca. 40% settlement reduction when compared with the response due to monotonic loading.

The difference between settlements obtained from both models in monotonic loading is negligible
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Brick models behaviour, when different level of plasticity

is induced due to shaking. The HHT [17] integration

scheme (a ¼ �0:3) is used with the time step Dt ¼ 0:005 s.

The hysteretic properties of the HSS and HS-Brick models

are the only source of material damping in this test. The

initial stress profile corresponds to the K0 ¼ KNC
0 ¼ 0:5,

while the minimum preconsolidation stress is bound by 50

kPa. The complete set of sand parameters used in this test

is as follows:

Eref
50 ¼ 25000 kPa;Eref

oed ¼ 25000 kPa;Eref
ur ¼ 80000 kPa;

mur ¼ 0:20;m ¼ 0:5; pref ¼ 100 kPa;

c ¼ 1 kPa;/ ¼ 34�;w ¼ 4�;

c0:7 ¼ 2:0� 10�4;Gref
0 ¼ 100000 kPa

ðEref
0 ¼ 240000 kPaÞ;

Rf ¼ 0:9;KNC
0 ¼ 0:5;OCR ¼ 1:0; c ¼ cD ¼ 15:9KN/m3:

ð45Þ

The resulting horizontal displacement time histories uxðtÞ
of a nodal point located on the top of the sand layer are

compared in Fig. 14 for two different acceleration scale

factors. In both cases, the HSS and HS-Brick models yield

different results, but their disparity for the scaled acceler-

ation record (0:5axðtÞ) is significant. The source of these

differences can easily be identified by analysing cxy � rxy
records in the middle of element selected at the depth of

6.875 m shown in Fig. 15. It is well visible that for the

unscaled acceleration record plastic straining is significant,

yielding widely opened stress–strain loops, at least in the

initial stage of shaking. In the case of scaled record, plastic

straining is rather limited and stress–strain loops generated

by the HS-Brick model are very regular without spurious

ratcheting effect. The HSS model is unable to reproduce

such regular loops. It is also worth noting that the residual

horizontal displacement, corresponding to the scaled

acceleration record, generated by the HSS model, is about

ten times larger than the one generated by the HS-Brick.

Fig. 10 Geometry and FE model used in the analysis of symmetric

excavation in plane strain conditions. Standard fixities are applied.

The 4.0 m deep excavation is simulated by monotonic deactivation of

respective elements in four 1.0 m phases with parallel dewatering. All

phases involve fully coupled deformation and flow calculations. After

initial excavation phase in the granular fill, the horizontal struts are

installed. Two different time sequences of the excavation are applied:

monotonic removal of soil layers phase by phase

(Dt ¼ 4� 0:5 ¼ 2:0days) and monotonic removal of soil layers

where first three phases are followed by short (Dt ¼ 0:1day)
consolidation breaks (Dt ¼ 4� 0:5þ 3� 0:1 ¼ 2:3days). After fin-

ishing the excavation, the soil is allowed to consolidate up to

t ¼ 100days

Fig. 11 Calculated vertical heave of the point located in the middle of the excavation bottom. Left: heave during excavation and consolidation up

to t ¼ 100 days. Right: magnification of the heave changes during the excavation simulation with two applied time sequences. In the case of the

HS-Brick model, the small consolidation breaks only shift the parts of heave–time curve, whereas in calculations with the HSS model

additionally inclination changes of the heave–time curve are observed, leading to smaller deformation when compared with monotonic

excavation
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7 Conclusions

A new refinement of the basic HS model within the small

strain range is proposed in the article. The new extended

model is called HS-Brick. It inherits the main assumptions

and parameter set of the HSS model. The most important

improvement of the HS-Brick model, which supersedes the

HSS formulation, is the elimination of a serious fault of

overshooting reported in details in [31]. The motivation to

this work was not to formulate a new sophisticated con-

stitutive model but the repair of the model, which

according to the literature evidence is widespread and

useful in both routine engineering and research computa-

tions. The small strain BRICK type [38] extension incorpo-

rated into the elastic region of the basic HS model exhibits

superior behaviour in all considered element tests as well

as static and transient boundary value problems. The new

Fig. 12 Bending moments in the sheet pile wall calculated with the

HSS and HS-Brick models at the end of excavation phase. Due to the

small consolidation breaks, the higher initial stiffness is reset in the

HSS model. This results in lower bending moments when compared

with those obtained in monotonic excavation. In the HS-Brick model,

the bending moments are the same in both applied time sequences

Fig. 13 FE mesh in the analysis of shear layer problem. San Fernando

acceleration record cut to first 30 s (09.02.1971 ES Castaic Station) is

applied as seismic loading with two scale factors (0.5 and 1.0) via the

rigid base model

Fig. 14 Calculated oscillations of the horizontal displacement com-

ponent of the point located on the top of the shear layer. Time

histories are shown during the first 10 s. The responses calculated

with the HSS and HS-Brick models are compared for two applied

acceleration scale factors
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HS-Brick model is not sensitive to insignificant stress

reversals that may occur due to complex loading pro-

gramme but also to some numerical artefacts caused by the

round-off errors. The original HSS model does not posses

such property and may yield significant and uncontrolled

errors. As there exist several implementations of the HSS

model in the popular FE codes, we have included its short

overview and described all details concerning the efficient

implementation of the BRICK type extension. The further

development of the HS-Brick model is considered, and it

will concern the incorporation of stiffness anisotropy [2],

viscosity and accumulation effects due to cyclic loading.
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15. Gu X, Yang S (2018) Why the OCR may reduce the small strain

shear stiffness of granular materials? Acta Geotech

13(6):1467–1472

16. Hardin BO, Drnevich VP (1972) Shear modulus and damping in

soils: design equations and curves. J Soil Mech Found Div ASCE

98(SM7):667–692

17. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical

dissipation for time integration algorithms in structural dynamics.

Earthq Eng Struct Dyn 5:283–292

18. Hueckel T, Nova R (1979) On paraelastic hysteresis of soils and

rocks. Bull Pol Acad Sci 27(1):49–55

19. Katsigiannis G (2017) Modern geotechnical codes of practice and

new design challenges using numerical methods for supported

excavations. Ph.D. thesis, University College London

20. Kim S, Finno RJ (2019) Inverse analysis of a supported exca-

vation in Chicago. J Geotech Geoenviron Eng ASCE. https://doi.

org/10.1061/(ASCE)GT.1943-5606.0002120

21. Knittel L, Wichtmann T, Niemunis A, Huber G, Espino E, Tri-

antafyllidis T (2020) Pure elastic stiffness of sand represented by

response envelopes derived from cyclic triaxial tests with local

strain measurements. Acta Geotech. https://doi.org/10.1007/

s11440-019-00893-9

22. Ladesma A, Alonso E (2017) Protecting sensitive constructions

from tunnelling: the case of world heritage buildings in barce-
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