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Abstract Arithmetic operations can be defined in various ways, even if one assumes commutativity and associa-
tivity of addition and multiplication, and distributivity of multiplication with respect to addition. In consequence,
whenever one encounters ‘plus’ or ‘times’ one has certain freedom of interpreting this operation. This leads to some
freedom in definitions of derivatives, integrals and, thus, practically all equations occurring in natural sciences. A
change of realization of arithmetic, without altering the remaining structures of a given equation, plays the same
role as a symmetry transformation. An appropriate construction of arithmetic turns out to be particularly important
for dynamical systems in fractal space-times. Simple examples from classical and quantum, relativistic and nonrel-
ativistic physics are discussed, including the eigenvalue problem for a quantum harmonic oscillator. It is explained
why the change of arithmetic is not equivalent to the usual change of variables.

Keywords Arithmetic · Fractals · Symmetry

1 Introduction

Symmetries of physical systems can be rather obvious or very abstract. Lorentz transformations, discovered as a
formal symmetry ofMaxwell’s equations, seemed abstract until their physical meaning was understood by Einstein.
Theory of group representations, the cornerstone of quantummechanics and field theory, had its roots in Lie’s studies
of abstract symmetries of differential equations. It has taught us that differences in mathematical realizations of a
symmetry may directly reflect physical differences.

Einstein’s relativity, gauge invariance, Noether’s theorems, Darboux–Bäcklund transformations, or supersym-
metry are prominent examples of symmetry principles in physics. In the paper, we discuss a new type of principle,
occurring in any physical theory: The symmetry of mathematical equations under modifications of arithmetic oper-
ations, the induced modifications of derivatives and integrals included. Similarly to other physical symmetries, the
symmetry maintains the form of relevant equations, but may possess different mathematical realizations.
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124 M. Czachor

The approach developed in this paper is not in any sense close to those generalizations of physics that involve p-
adic mathematics [1,2], although the context of fractals and the Cantor set might create such an impression. Another
formalism that can be easily confused with what we do is based on ‘arithmetic dynamics’ [3] which involves the
so-called linear conjugates Ff = f −1 ◦ F ◦ f (which indeed will play a role here), but where the calculus is defined
in the standard way.

Our formalism is a by-product of attempts of understanding the dynamics of fractals, but turned out to have more
general consequences. In particular, it opens some new perspectives on quantum mechanics of processes occurring
in sets of Lebesgue measure zero, invisible from the point of view of standard quantum mechanics, leading to
phenomena analogous to dark energy, ‘coming out of nowhere’.

In a wider context, what we do is closest to the works of Burgin [4] on non-Diophantine arithmetic, and Benioff
on physical consequences of rescaled multiplication [5,6]. However, neither Burgin nor Benioff made the essential
step of formulating a non-Diophantine calculus.

2 From arithmetic to calculus

To begin with, let us consider a bijection f : X → Y ⊂ R, where X is some set. The map f allows us to define
addition, multiplication, subtraction, and division in X ,

x ⊕ y = f −1( f (x) + f (y)
)
,

x � y = f −1( f (x) − f (y)
)
,

x � y = f −1( f (x) f (y)
)
,

x � y = f −1( f (x)/ f (y)
)
.

One easily verifies the standard properties. Detailed proofs can be found in the preprint version of the paper, see
arXiv:1412.8583v2 [math-ph]: (1) associativity (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), (x � y) � z = x � (y � z), (2)
commutativity x ⊕ y = y ⊕ x , x � y = y � x , (3) distributivity (x ⊕ y) � z = (x � z) ⊕ (y � z). In fact, this
is precisely an example of a non-Diophantine arithmetic in the sense of [4]. The rescaled-multiplication formalism
of Benioff [5] corresponds to f (x) = px , p 	= 0, and in its generalized versions [6] to bundles of functions fX (x)
where X is a space-time point. Our f (x)may be also regarded as an example of Benioff’s value function, associating
a number x with its value f (x).

Elements 0, 1 ∈ X are defined by 0 ⊕ x = x , 1 � x = x , which implies f (0) = 0, f (1) = 1. One further
finds x � x = 0, x � x = 1, as expected. Keeping the same symbols for 0, 1 ∈ X and 0, 1 ∈ R will not lead
to ambiguities. However, in the approach of Benioff [5,6], where f (x) = px , p 	= 0, one finds f −1(1) = 1/p
and thus 1/p = 1p is the unit element of multiplication. So here one has to carefully distinguish between 1p ∈ X
and 1 ∈ Y . In general, it is better to define subtraction independently of addition since it may happen that f (−x)
is undefined. An important nontrivial example of f is provided by the Cantor function [7], or more precisely the
Cantor-line function defined below, where X is the Cantor subset of [0, 1] and Y = [0, 1]. If 0 � x exists, one can
denote it by �x .

Practically the only difference between ⊕, �, �, � and +, −, ·, and / is that in general multiplication is not just
a repeated addition: typically x ⊕ x 	= 2 � x . Multiplication and addition are now truly independent.

Having all these arithmetic operations one can define a derivative of a function A : X → X ,
d f A(x)

d f x
= lim

h→0

(
A(x ⊕ h) � A(x)

)
� h, (1)

satisfying
d f A(x) � B(x)

d f x
= d f A(x)

d f x
� B(x) ⊕ A(x) � d f B(x)

d f x
,

d f A(x) ⊕ B(x)

d f x
= d f A(x)

d f x
⊕ d f B(x)

d f x
,
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Relativity of arithmetic as a fundamental symmetry of physics 125

d f A[B(x)]
d f x

= d f A[B(x)]
d f B(x)

� d f B(x)

d f x
.

Now consider functions F : Y → Y and Ff : X → X related by

Ff (x) = f −1 (
F

(
f (x)

))
. (2)

Employing (1) and the fact that f (0) = 0 one finds

d f F f (x)

d f x
= f −1(F ′ ( f (x))

)
, (3)

where F ′(y) = dF/dy is the usual derivative in Y , defined in terms of +, −, ·, and /. It is extremely important to
note that (3) has been derived with no need of differentiability of f . f (0) = 0 is enough to obtain a well defined
derivative. (3) is not the standard formula known for composite functions since no derivatives of f occur. To
appreciate the difference between d/dx and d f /d f x take f (x) = x3 and let sin f x = f −1

(
sin f (x)

) = 3
√
sin(x3).

Then

d f sin f x

d f x
= 3

√
cos(x3) = cos f x,

d sin f x

dx
= x2 cos(x3)

sin
2
3 (x3)

.

The formalism from [3] employs functions of the form Ff (x) = f −1 (F f (x)) but the derivatives are given by d/dx
and not by d f /d f x . A consistent application of generalized arithmetic leads to a simpler formalism.

An integral is defined so that the fundamental laws of calculus,
∫ b

a

d f A(x)

d f x
� d f x = A(b) � A(a),

and
d f

d f x

∫ x

a
A(x ′) � d f x

′ = A(x), (4)

hold true. The explicit form reads
∫ b

a
F f (x) � d f x = f −1

(∫ f (b)

f (a)

F(y)dy

)

, (5)

where
∫
F(y)dy is the standard (say, Lebesgue) integral in R.

3 Correspondence principle

Let us consider the two plots of the same function f (x) shown in Fig. 1. The right one is practically indistinguishable
from f (x) = x , which means that numbers that are sufficiently large will satisfy an effectively Diophantine
arithmetic and calculus, with x ⊕ y ≈ x + y, x � y ≈ xy, d f /d f x ≈ d/dx , etc. Functions f that lead to such a
correspondence principle can be characterized by

lim
λ→∞

f (λx)

λ
= x . (6)

Anticipating results of the next section let us show, in Fig. 2, the exponential function resulting from the solution
of (7) and with arithmetic defined by f (x) from Fig. 1. As one can see, the resulting exponent involves two standard
exponential regimes separated by a ‘non-exponential’ part. Still, one has to keep in mind that this awkward looking
function does nevertheless satisfy the fundamental property (9), so this is just the exponential function corresponding
to the non-Diophantine arithmetic and calculus implied by this concrete f . The exponent exp f from Fig. 2 has
striking similarity to the expansion factor occurring in the�CDM standard model of cosmology. The two ‘standard’
exponential regimes thus can be termed the inflationary and dark-energy parts of exp f x .
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Fig. 1 Diophantine correspondence principle. Left f (x) that interpolates between f (x) = x (for x ≤ 1) and f (x) = x − 20/3 (for
x ≥ 10). In the transition region f (x) = (−16 + 108x − 18x2 + x3)/75. f : R → R is bijective and satisfies f (0) = 0, f (1) = 1.
Arithmetic defined in terms of f is non-Diophantine, but is well approximated by the standard Diophantine case f (x) = x if x is large
enough. Right the same f (x) but plotted in a different scale. Here, f (x) is practically indistinguishable from f (x) = x and thus the
resulting arithmetic is effectively Diophantine

Fig. 2 Ordinary ex (dotted)
versus exp f x defined in
terms of f from Fig. 1. Note
the ‘inflation’ and ‘dark
energy’ parts of exp f x
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4 Examples

4.1 Exponential function

To understand why functions of the form (2) are so essential let us solve the differential equation

d f A(x)

d f x
= A(x), A(0) = 1 (7)

by assuming that A(x) = ⊕∞
n=0an � x�n , where x�n = x � · · · � x (n times). Then, comparing term by term, one

finds the unique solution

A(x) = f −1
(
e f (x)

)
= exp f x, (8)

fulfilling

exp f (x ⊕ y) = exp f x � exp f y. (9)

Its inverse is ln f x = f −1
(
ln f (x)

)
, ln f (x � y) = ln f x ⊕ ln f y.

An instructive exercise is to take f (x) = x3, f −1(x) = 3
√
x . Then x � y = xy, x ⊕ y = 3

√
x3 + y3, and

exp f x = ex
3/3 solves (7). Transformation f (x) = x → f (x) = x3, in spite of its nonlinearity, keeps (7)

unchanged. Accordingly, this is a symmetry of (7), a fact explaining the title of the paper.
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Relativity of arithmetic as a fundamental symmetry of physics 127

Fig. 3 Phase-space
trajectories of the harmonic
oscillator with ω = 1 and
f (x) = x (black),
f (x) = x3 (red),
f (x) = x5 (blue). Taking
f (x) = xn with sufficiently
large n, we would find a
dynamics looking like a
motion along a square. Note
that the oscillator is
described by the standard
linear equation, even if we
take a highly nonlinear
function such as f (x) = xn .
This shows that a change of
f is more than a change of
variables. The case of
Cantor-line function f (x) is
shown in Fig. 4 (color figure
online)

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

4.2 Classical harmonic oscillator: trigonometric functions

As our next example consider a classical harmonic oscillator

d2f x(t)

d f t2
= d f

d f t

d f x(t)

d f t
= �ω�2 � x(t),

where ω�2 = ω � ω. Setting x(t) = ⊕∞
n=0an � t�n, one obtains

x(t) = C1 � sin f (ω � t) ⊕ C2 � cos f (ω � t),

where

sin f x = f −1( sin f (x)
)
, cos f x = f −1( cos f (x)

)
,

and C1, C2 are constants.
An instructive exercise is to plot phase-space trajectories of the harmonic oscillator corresponding to various

choices of f . Figure 3 shows the trajectories for the Cantor-line function, defined below, and f (x) = xn , with
n = 1, 3, 5. All these trajectories represent a classical harmonic oscillator that satisfies the usual law of ‘force
oppositely proportional to displacement’, with conserved energy ‘ẋ2 +ω2x2’, but with different meanings of ‘plus’
and ‘times’. The resulting trigonometric functions are essentially the chirp signals [8] known from signal analysis.

4.3 Fractals: Cantor set

If one still has impression that what we do is just standard physics in nonstandard coordinates, consider the problem
of a fractal Universe of dimension 4− ε, analogous to the one arising in causal dynamical triangulation theory [9].
Our physical equations have to be formulated in terms of notions that are intrinsic to the Universe, but what should
be meant by a velocity, say? We have to subtract positions and divide by time, but we have to do it in a way that
is intrinsic to the Universe we live in. Moreover, from our perspective positions and flow of time seem continuous
even if they would appear discontinuous from an exactly 4-dimensional perspective. We should not make the usual
step and turn to fractional derivatives [10], since for inhabitants of (4− ε)-dimensional Universe the velocity is just
the first derivative of position with respect to time, and not some derivative of order 0 < α < 1.
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128 M. Czachor

As usual, Cantor-like sets and Cantor-type functions provide a rich source of highly nontrivial examples [11,12].
A simple model of (4 − ε)-dimensional space-time is the Cartesian product of four Cantor dusts, appropriately
extended to the whole of R. Cantor dusts are easy to work with and possess certain mathematical universality [13],
but can be defined in different ways. Here we need a precisely constructed fractal X and a bijection f : X → Y .
Let us start with the right-open interval [0, 1) ⊂ R, and let the (countable) set Y2 ⊂ [0, 1) consist of those
numbers that have two different binary representations. Denote by 0.t1t2 . . . a ternary representation of some
x ∈ [0, 1). If y ∈ Y1 = [0, 1) \ Y2 then y has a unique binary representation, say y = 0.b1b2 . . .. One then
sets f −1(y) = 0.t1t2 . . ., t j = 2b j . Let y = 0.b1b2 . . . = 0.b′

1b
′
2 . . . be the two representations of y ∈ Y2.

We define f −1(y) = min{0.t1t2 . . . , 0.t ′1t ′2 . . .}, where t j = 2b j , t ′j = 2b′
j . We have therefore constructed an

injective map f −1 : [0, 1) → [0, 1). The triadic Cantor-like set is defined as the image C[0,1) = f −1
([0, 1)),

and f : C[0,1) → [0, 1), f = ( f −1)−1, is the required bijection between C[0,1) and the interval. For example,
1/2 ∈ Y2 since 1/2 = 0.12 = 0.0(1)2. We find f −1(1/2) = min{0.23 = 2/3, 0.0(2)3 = 1/3} = 1/3.Accordingly,
1/3 ∈ C[0,1) while 2/3 /∈ C[0,1). C[0,1) is not exactly the standard Cantor set, but all irrational elements of the
Cantor set belong to C[0,1) (an irrational number has a unique binary form), together with some rational numbers
such as 1/3. Note further that 0 ∈ C[0,1), with f (0) = 0. We could proceed analogously with 1 /∈ [0, 1), since
1 = 1.(0)2 = 0.(1)2 possesses two binary representations with min{2.(0)3, 0.(2)3} = min{2, 1} = 1. However,
instead of including 1 in C[0,1), let us shift C[0,1) to the right by 1, thus obtaining C[1,2). Proceeding in this way we
construct a fractal C = ∪k∈ZC[k,k+1), and the bijection f : C → R. Explicitly, if x ∈ C[0,1), then x + k ∈ C[k,k+1),
and f (x + k) = f (x) + k by definition. Let us call C the Cantor line, and f the Cantor-line function.

The integral we have defined is not equivalent to the fractal measure. Indeed, the fractal measure of the Cantor
set embedded in an interval of length L is LD , where D = log3 2. Thus, for L = 1/3 one finds LD = 1/2. Since
segments [0, 1/3] and [2/3, 1] both have L = 1/3 they both have the same D-dimensional volume equal 1/2.
Taking Ff (x) = 1 we find
∫ b

a
d f x =

∫ b

a

d f x

d f x
� d f x = f −1( f (b) − f (a)

)
,

and
∫ 1/3
0 d f x = 1/3,

∫ 1
1/3 d f x = 1/3,

∫ 1
0 d f x = (1/3) ⊕ (1/3) = 1.

The fundamental theorems of calculus, linking derivatives and integrals, are automatically satisfied in our fractal-
arithmetic formalism. Non-triviality of this result can be appreciated if one compares it with the more standard
approaches to calculus on fractals (cf. the recent discussion in [16]).

4.4 Rotations in fractal plane

Now let us switch to higher-dimensional examples. First consider the plane, i.e., the Cartesian product of two lines.
One checks that sin�2

f x ⊕ cos�2
f x = 1, cosh�2

f x � sinh�2
f x = 1. It is an appropriate place to stress that our

approach does not seem to be related to exponential, trigonometric, and hyperbolic functions defined (in various
ways) in the context of time-scales dynamics [17–19], or in nonextensive thermodynamics [20,21], but there are
links to Kolmogorov–Nagumo averages employed in Rényi information theory [21,24] (see below). Functions sin f ,
cos f , sinh f , cosh f , satisfy the basic standard formulas such as

sin f (a ⊕ b) = sin f a � cos f b ⊕ cos f a � sin f b

and the like, so

x ′ = x � cos f α ⊕ y � sin f α,

y′ = y � cos f α � x � sin f α,

defines a rotation. The rotation satisfies the usual group composition rule, a fact immediately implying that one can
work with generalized-arithmetic matrix equations.
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Relativity of arithmetic as a fundamental symmetry of physics 129

4.5 Fractal Minkowski space

In an analogous way one arrives at Lorentz transformations in Cantorian Minkowski space, the Cartesian product
of four Cantor lines with the invariant form

xμ � xμ = x�2
0 � x�2

1 � x�2
2 � x�2

3 .

Such Lorentz transformations are unrelated to those occurring in exactly 4-dimensional fractal space-time of scale
relativity [14]. In 1 + 1 dimensions, employing,

x ′0 = x0 � cosh f α � x1 � sinh f α,

x ′1 = �x0 � sinh f α ⊕ x1 � cosh f α,

and x ′1 = 0, one finds

β = x1 � x0 = tanh f α.

In consequence, the fact that f (1) = 1 sets the limit |β| ≤ 1 for maximal velocity independently of the choice of
f . In principle, problems such as clock synchronization, composition of velocities, or the twin paradox, may lead
to direct experimental tests of f and some insights into a putative fractal structure of space-time.

4.6 Harmonic oscillator and quantum mechanics

Arithmetic of complex numbers requires some care. One should not just take f : C → C due to the typical
multi-valuedness of f −1 and the resulting ill-definiteness of ⊕ and �. Definition of i as a π/2 rotation also does
not properly work since one cannot guarantee a correct behavior of i�n for a general f . The correct solution is the
simplest one: one should treat complex numbers as pairs of reals satisfying the following arithmetic

(x, y) ⊕ (x ′, y′) = (x ⊕ x ′, y ⊕ y′),
(x, y) � (x ′, y′) = (x � x ′ � y � y′, y � x ′ ⊕ x � y′),

i = (0, 1),

supplemented by conjugation (x, y)∗ = (x,�y). The modulus reads

|z|�2 = (x, y) � (x,�y) = (x�2 ⊕ y�2, 0). (10)

As stressed in [15], the resulting complex structure is just the standard one, but no mysterious ‘imaginary number’
is employed.

In this way we have arrived at quantum mechanics. The most obvious example is the eigenvalue problem for a
1-dimensional harmonic oscillator. Consider

Ĥ f ψ f (x) = �α�2 � d2f ψ f (x)

d2f x
⊕ β�2 � x�2 � ψ f (x)

= E f � ψ f (x), (11)

where α, β are parameters. Since ψ f (x) = f −1
(
ψ

(
f (x)

))
, then acting with f on both sides of (11) one finds

f (E f )ψ(y) = − f (α)2ψ ′′(y) + f (β)2y2ψ(y), (12)

where y = f (x). This is the standard harmonic oscillator equation with eigenvalues f (En, f ) = f (α) f (β)(2n+1),
and thus

En, f = f −1( f (α) f (β)(2n + 1)
)
. (13)
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The eigenvalues of the quantum harmonic oscillator explicitly depend on the choice of arithmetic. The normalized
ground state is

ψ0 f (x) = f −1
((

f (β)

π f (α)

)1/4

e− f (β) f (x)2

2 f (α)

)
,

with E0, f = α � β. The normalization means that
∫ ∞

−∞
d f x � |ψ0 f (x)|�2 = 1. (14)

The excited states can be derived in the usual way.
There are two peculiarities of the resulting quantum mechanics one should be aware of. First of all, if f is a

Cantor-like function representing a fractal whose dimension is less than 1, then the real-line Lebesgue measure
of the fractal is zero. Keeping in mind that states in quantum mechanics are represented by equivalence classes
of wave functions that are identical up to sets of measure zero, we can remove the Cantor line from R without
altering standard quantum mechanics. Having removed the Cantor line C from R we still can do ordinary quantum
mechanics on R \ C , whereas C itself can become a universe for its own, Cantorian theory. Removing C from
R does not mean that we impose some fractal-like boundary conditions or consider a Schrödinger equation with
a delta-peaked potential of Cantor-set support [25]. We just use the freedom to modify wave functions on sets of
measure zero. So we can keep the standard Gaussian f (x) = x ground state on R \ C , and employ the Cantorian
ψ0 f (x) on C . According to quantum mechanics the resulting wave function belongs to the same equivalence class
as the usual Gaussian, and thus represents the same state. However, now the energy is h̄ω/2 + α � β, with α � β

‘appearing from nowhere’. The analogy to dark energy is evident. The additional energy is a real number so it can be
added to h̄ω/2, similarly to many other energies that occur in physics and are additive in spite of unrelated origins.

The second subtlety concerns physical dimensions of various quantities occurring in f -generalized arithmetic.
Even the simple case of ω � t may imply a necessity of dimensionless ω and t if f is sufficiently nontrivial.
Functions of the form f (x) = xq , q ∈ R+, are in this respect exceptional since then x � y = xy, and one can work
with dimensional quantities. For example, the harmonic oscillator for f (x) = xq has energy levels

En, f = h̄ω

2
(2n + 1)

1
q . (15)

In the formalism of Benioff [5,6], which employs a linear f (x) = px , one obtains

En, f = ph̄ω(n + 1/2). (16)

In general, for example in a fractal space-time, we have to work with dimensionless variables x in order to make
f (x) meaningful. It is thus simplest to begin with reformulating all the ‘standard’ theories in dimensionless forms,
similarly to c = 1 and h̄ = 1 conventions often employed in relativity and quantum theory.

4.7 Probability and entropy

Quantum mechanics has brought us to the issue of probability. An appropriate normalization is ⊕k pk = 1 which,
in virtue of f (1) = 1, implies

∑
k f (pk) = ∑

k Pk = 1. We automatically obtain two coexisting but inequivalent
sets of probabilities, in close analogy to probabilities Pk and escort probabilities pk = Pq

k occurring in generalized
statistics and multifractal theory [20,21]. Averages

〈a〉 f = ⊕k pk � ak = f −1

(
∑

k

Pk f (ak)

)

,

have the form of Kolmogorov–Nagumo averages [21–23], which implies the usual bounds amin ≤ 〈a〉 f ≤ amax.
As a by-product of the construction, we have arrived at an entirely new interpretation of the Kolmogorov–Nagumo
averaging: these are just the ordinary averages, but evaluated in a non-Diophantine arithmetic.
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From the point of view of modified arithmetic the constraints one should impose on escort probabilities and
Kolmogorov–Nagumo averages are, though, completely different from those employed in nonextensive statistics
and Rényi’s information theory [24], provided instead of additivity one has ⊕-additivity in mind. Rényi’s

f (x) = 2(1−q)x − 1

21−q − 1

can be replaced by a much wider class of f s. In consequence, instead of Rényi’s entropy one finds a general class
of entropies parametrized by f ,

S f = ⊕k pk � ln f (1 � pk) = f −1

(

−
∑

k

Pk ln Pk

)

,

where Pk = f (pk).

5 Remarks

The modified calculus is as simple as the one one knows from undergraduate education. What may be nontrivial is
to find f if X is a sufficiently ‘strange’ object. The case of the Cantor line was relatively obvious, but the choice of
f may be much less evident if X is a multifractal or a higher-dimensional fractal. Such more complicated examples
are explicitly discussed in the sequel to the present paper [26].

In order to conclude, let us return to Figs. 3 and 4. All the phase-space trajectories represent the same physical
system: A harmonic oscillator satisfying the Newton equation d2x/dt2 = −ω2x , with the same physical parameters
for each of the trajectories. So how come the trajectories are different? The answer is: Because the very form of
Newton’s equation does not tell us what should be meant by ‘plus’ or ‘times’. This observation extends to any
theory that employs arithmetic of real numbers. It would not be very surprising if some alternative arithmetic proved
essential for Planck-scale physics, where fractal space-time is expected [27–30], or to biological modeling where
fractal structures are ubiquitous. Links of f -generalized trigonometric functions to chirps suggest that f s evenmuch
more ‘ordinary’ than fractal functions may also lead to nontrivial applications. Spectrum of the harmonic oscillator
is explicitly f -dependent, a fact showing that different versions of arithmetic lead to non-equivalent descriptions of
physics.

Fig. 4 A new type of
rotational symmetry. Circles
in Cantorian plane C2 for
ten different radii. The
rotational symmetry is
hidden in the sense that in
order to reveal it one has to
control the arithmetic
intrinsic to the fractal set C .
The circles are
simultaneously phase-space
trajectories of the harmonic
oscillator from Fig. 3, but
now with Cantor line f (x)
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Equation (7) and its solution (8) illustrate another important difference between the change of arithmetic and the
usual change of variables, in spite of the misleading similarity of some formulas. Namely, note that a change of f
from, say, f (x) = x to an arbitrary f does not influence the linearity of (7), even for a nonlinear f . This should
be contrasted with nonlinear gauge transformations associated with Doebner–Goldin equations [31–35], that map a
linear Schrödinger equation into a nonlinear one. Such a preservation of form is typical of all differential equations
formulated within the generalized non-Diophantine paradigm. Another reason why one should not confuse the
transformation F → f −1 ◦ F ◦ f = Ff with a gauge transformation is the resulting rule for dF/dx → d f F f /d f x
which is completely different from what one finds in gauge theories. Modification of arithmetic is a symmetry
operation that works at a much more primitive level than a gauge transformation.
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