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Abstract The study presents a probabilistic stability

analysis of a Baltic cliff in Jastrzębia Góra, Poland.

Progressive slope erosion is a threat to adjacent

buildings, so safety assessment of the slope is essen-

tial. The cliff shows a compound, multi-layered

geological structure, which makes the analysis of its

reliability a complex multivariate problem. A simple,

straightforward computational procedure was pro-

posed, incorporating the Response Surface Method

(RSM) linked with the standard Monte Carlo (MC)

simulation method and the Point Estimate Method

(PEM). PEM samples make it possible to analyse the

sensitivity of the cliff’s stability to variation in subsoil

parameters and to reduce the number of random

variables of the problem. The proposed methods were

tested in two cases: a high failure probability

(undrained state) and a moderate failure probability

(drained case). The so-called combined Response

Surface Method (CRSM) proposed here may be

successfully applied in geotechnical computations

characterized by dispersion and uncertainty of soil

data as well as a relatively high damage probability.

Keywords Probabilistic sensitivity � Reliability �
Cliff stability � Monte Carlo method � Response

Surface Method � Point Estimate Method

1 Introduction

Since the interest in reliability-based slope stability

analysis began over 50 years ago, different methods

have been proposed to assess slope reliability, includ-

ing the correction factor methods, First-Order Second-

Moment (FOSM), Second-Order Second-Moment

(SOSM), First-Order Reliability Method (FORM),

Second-Order Reliability Method (SORM) and Monte

Carlo (MC) method (Wu and Kraft 1970; Cornell

1971; Alonso 1976; Tang et al. 1976; Vanmarcke

1977; Low et al. 1997; Chowdhury and Grivas 1982;

Chowdhury et al. 1987; Tobutt 1982; Christian et al.

1994; El-Ramly et al. 2002; Babu and Mukesh 2004).

A milestone in probabilistic analysis of slopes was

the application of the Finite Element Method (FEM) in

geotechnical problems. Various FEM-based proba-

bilistic methods have been proposed. Developments in

both hardware and software have made the MC

simulation dominant. The FEM-based MC application
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is usually called the Random Finite Element Method

(RFEM), which fully incorporate spatial correlation

and averaging (Griffiths and Fenton 2004). This

method has been applied to slope reliability (Griffiths

et al. 2009; Cho 2007; Huang et al. 2010, 2013; Wang

et al. 2011; Li et al. 2014; Farah et al. 2015; Liu et al.

2015). In the case of complicated slopes, the applica-

tion of RFEM involves extensive computational

effort. In order to improve the computational effi-

ciency of slope reliability assessment, research was

conducted to simplify the slope stability performance

function and to reduce the sample for Monte Carlo

simulations.

A method addressing slope stability problems is the

Response Surface Method (RSM) (see Wong 1985;

Cho 2010; Huang et al. 2010; Li et al. 2011, 2013; Tan

et al. 2013, 2016; Ji and Low 2012; Zhang et al.

2011, 2013; Jiang et al. 2014; Li et al. 2016; Zhou and

Huang 2018). RSM is usually applied to relatively

simple cases; it is difficult to find a literature example

of its application to multi-layered slopes with more

than a few uncertain soil parameters.

The Point Estimate Method (PEM) proposed by

Rosenblueth (1975) and its modified procedures have

also attracted interest in many engineering fields.

Various authors apply this method in probabilistic

slope design, e.g. Gibson (2011), Wang and Huang

(2012), Ahmadabadi and Poisel (2015).

Solving the same analytical problem by different

probabilistic approaches may often produce diverse

results. The differences are even clearer in non-linear

cases. On the other hand, confirming the results by at

least two methods is required to obtain a better insight

into the problem. An MC simulation is usually a

reference here. Moreover, random variable and ran-

dom field generation by the MC method is relatively

easy and widely used in great many engineering

applications. Thus it seems reasonable to combine

traditional MC sampling with other algorithms, such

as PEM or RSM, to accelerate computations and

verification of computational results.

The paper aims at a directed approach to RSM, the

so-called combined Response Surface Method

(CRSM), which is based on simple random methods

(MC, PEM and RSM) and combines their major

advantages. Note that CRSM is not universal; it is

dedicated to cases of high or moderate failure

probability. Thus, it is particularly suitable for anal-

yses of landslides and soils with a complex structure.

The applicability of CRSM is discussed here with

regard to a stability study of a Baltic cliff in Jastrzębia

Góra, Poland. The cliff has a complex multi-layered

geological structure with over a dozen uncertain soil

parameters. Complex investigations of the critical

section of the cliff (approximately 750 m long)

conducted over the years have been addressed in

numerous works and reports, e.g. Tejchman et al.

(1995a), Zabuski and Korzec (2017). Some works, e.g.

Tejchman et al. (1995b), have been presented at

conferences, and some include a probabilistic stability

analysis of the cliff, e.g. Tejchman et al. (1996). All

these publications provide a background for the in-

depth analysis presented here. It is also worth noting

that a damaged building is situated on the crest of the

cliff (in the landslide-prone zone), and numerous

attempts have recently been made to repair it and

restore it to use. The paper complements a feasibility

study of this project, and therefore the computations

regard both the present situation (the case of high

failure probability) and the hypothetical post-drainage

situation (the case of moderate failure probability).

2 Combined Response Surface Method (CRSM)

The proposed computational CRSM algorithm draws

on three popular reliability assessment methods:

Monte Carlo simulation (MC), Point Estimate Method

(PEM) and Response Surface Method (RSM).

The direct MC approach estimates the probability

of failure Pf in the entire domain of x by means of the

expression

Pf ffi
1

NS

XNS

i¼1

I0=1 LSðxÞ� 0ð Þ ð1Þ

applying the so-called indicator function I0=1

I0=1 LSðxÞ� 0ð Þ ¼ 1; if LSðxÞ� 0

0; if LSðxÞ[ 0

�
ð2Þ

where LSðxÞ is the limit state function, and NS denotes

the number of samples used in the approximation.

Cornell’s reliability index b (Cornell 1971) is

estimated in the form

b ¼ �U�1 Pf

� �
ð3Þ

in which Uð�Þ denotes the standard Gaussian cumula-

tive distribution function.
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The main idea behind the PEM is to properly

discretize the continuous random variable, see Rosen-

blueth (1975). In the case of n-dimensional random

vector x
s

¼ xif g; i ¼ 1; 2; 3; . . .; n, the structural

response function is given as

y � yðxÞ ¼ f ðx1; x2; x3; . . . ; xnÞ ð4Þ

where values of the response function yðxÞ are

computed at relevant combinations of PEM discretiza-

tion points.

For example, two combinations related to the

variable xi defined by the mean value li and standard

deviation ri take the form

½yðxÞ�2ði�1Þþ1 ¼ f ðlx1
; lx2

; . . .; lxi �rxi ; . . .; lxn�1
;lxnÞ

½yðxÞ�2ði�1Þþ2 ¼ f ðlx1
; lx2

; . . .; lxi þrxi ; . . .; lxn�1
;lxnÞ
ð5Þ

In turn, the mean value ly and the standard deviation

ry of the response function yðxÞ are defined as

ly ffi
1

2n

X2n

i¼1

y xð Þ½ �i ð6Þ

r2
y ffi

1

2n

X2n

i¼1

y xð Þ½ �i � l2
y ð7Þ

Hence, the reliability index b reads

b ¼ ly
�
ry ð8Þ

and the probability of failure Pf is obtained by

inversion of Eq. (3).

The aim of RSM is to determine a function to

approximate the actual structural response induced by

random variation of input parameters. The response

surface ŷðxÞ maps a set of discrete values of actual

response yðxÞ corresponding to a finite number of

discrete realizations of the random vector x:

ŷ � ŷðxÞ ¼ f ðx1; x2; x3; . . . ; xnÞ þ e ð9Þ

where x1; x2; x3; . . . ; xn are realizations of basic

random variables, and e is the assessment error of the

actual structural response.

If the response is approximated in a small subspace

only or its detected skewness is low, the first-order

response surface (RS) model may be applied. On the

other hand, cases of spacewise response mapping,

large curvature of the actual response or an inaccurate

first-order RS model approximation require higher-

order RS models, e.g. the second-order model, defined

as

ŷðxÞ ¼ b0 þ
Xn

i¼1

bixi þ
Xn

i¼1

biix
2
i þ

Xn

i\j

Xn

j¼2

bijxixj þ e

ð10Þ

In order to assess surface slope factors bð�Þ given in

Eq. (10), standard approximation techniques are com-

monly used, e.g. the least square method or the

ANOVA tabular variance reduction technique, see

Montgomery (1997). On the basis of the surface slope

factors determined in RSM-Win (Winkelmann and

Górski 2014), the reliability index b is estimated as the

shortest distance from the system origin to the so-

called design point x� on the failure surface in the

reduced (standardized) space (Hasofer and Lind

1974).

In general, MC results are usually used as reference

values, especially in non-linear and multidimensional

random variable cases. However, this method requires

multi-sample computations and may thus become

extremely inefficient. Computational effort, even in

multidimensional cases, is significantly reduced by

PEM. Unfortunately, due to the small number of

samples used in PEM, its accuracy is frequently

unsatisfactory, therefore it is recommended to verify

its results by other methods. On the other hand, PEM

samples may be successfully introduced in the sensi-

tivity assessment of structural response to variations in

input parameters.

The idea behind CRSM is to combine the advan-

tages of the three abovementioned methods: MC, PEM

and RSM. Samples generated by the MC method and

PEM may be directly used in surface approximation

by RSM. CRSM enables parallel comparison of the

MC, PEM and RSM results. Their convergence is

checked at every approximation step, so that CRSM

computations can be terminated as soon as the

required convergence level has been achieved. Thus,

a CRSM solution is obtained in a relatively short time.

MC computations in the course of CRSM are not

independent, since this would involve a high compu-

tational expenditure due to a large sample space. MC

samples are generated primarily to be used in the

approximation of further, higher-accuracy RSM func-

tions. However, MC-generated samples may be distant

from the limit state boundary, so surface

123

Geotech Geol Eng

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


approximation by RSM is not precise in this region.

Hence CRSM is dedicated to cases of moderate failure

probability. The introduction of MC samples imposes

limitations on the methodology, but this approach is

highly accessible, requiring neither a vast theoretical

background on probability, nor specialized, advanced

software. Such requirements are inherent to the target

sampling methods that iteratively search for the limit

state boundary. CRSM seems simple and straightfor-

ward to use in engineering applications, but its

simplicity does not exclude non-linear, multi-variable

unknown limit state functions.

CRSM is applied here to analyse the stability of a

Baltic cliff in a region where progressive erosion

threatens a building situated on the crest of the cliff.

3 The Cliff in Jastrzębia Góra

The Jastrzebia Góra cliff (Fig. 1) is a several-kilome-

tre-long section of the Polish Baltic cliff coast, which

extends over 100 km. The cross-section of the cliff,

descending steeply into the sea, rises 31 m above sea

level (Fig. 2). The complex structure of this cliff

stretch is dominated by fluvioglacial sediments prone

to active landslides. In this case, the initial layers of the

cliff, composed mainly of clays, induce the sliding of

the other beds.

Investigations of coastline movement started at the

end of the 19th century. They were initially carried out

using historical topographic maps, then with the use of

aerial photography and finally, in recent years, by

terrestrial laser scanning (TLS), capable of the most

accurate monitoring of movement. According to long-

term observations, the average landward movement of

the coastline between 1875 and 1976 was 0.3 m/year,

causing the cliff coastline to move 80 m landwards.

Later, in the years 1977–1990, the movement accel-

erated substantially to 0.94 m/year. Since 1991, the

average velocity of displacements has decreased to

0.5 m/year. This slowdown has been achieved by

erecting a gabion barrier at the base of the cliff, at the

sea level (Fig. 2). In spite of that, several small

landslides have developed. In 2006, one of the

landslides caused the collapse of a seaward wall of

the building (Fig. 1). Therefore, remedial works were

conducted to replace the colluvium with geogrid-

reinforced gravel and erect a shelf-like structure

between the building and the cliff’s edge (Fig. 2).

An extensive research programme was conducted

(Tejchman et al. 1995b) in the most active section of

the cliff. Based on deep borings in the crest of the cliff,

up to a depth of 30 m, three cross-sections were

identified in a 750 m range. All boreholes were also

used to install piezometers and inclinometers. Physical

and strength parameters of particular soils composing

Fig. 1 A general view of the cliff in Jastrzębia Góra. The aftermath of the 2002 landslide for adjacent buildings is clearly visible
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the cliff layers were determined on the basis of

laboratory tests of undisturbed soil samples (NNS)

taken from these sections. The majority of laboratory

tests were carried out with a simple shear apparatus,

although some additional complex tri-axial tests were

also performed. The primary objective was to estimate

the strength parameters of soils lying in the vicinity of

potential slip surfaces. The in situ investigations and

numerical computations revealed the dominant role of

clays in the stability analysis. The results are collected

in Fig. 2 and Table 1, which are complemented by

other data presented in this paper. Two formations

have been distinguished on this basis. The first one, up

to an altitude of 15 m a.s.l., is composed of relatively

strong impermeable soils, i.e. clays, loams and silts.

The second, upper formation is a complex of sand-

loam soils (Zabuski and Korzec 2017).

An urban project has recently been initiated to

restore the damaged building (Fig. 1). Thus, it was

necessary to verify the cliff’s stability in the vicinity of

the building. Due to the lack of data on the considered

cross-section, the arrangement of soil layers, water

conditions and geomechanical parameters of particu-

lar soils were assumed on the basis of the three nearest

cross-sections available, included the closest located

70 m from the building (Tejchman et al. 1995b).

Landslide processes in the Jastrzębia Góra cliff are

also triggered by unfavourable hydrogeological con-

ditions, mostly by temporary increases in the ground-

water level. Measurements of the ground water

table (GWT) by all piezometers proved that the

GWT was located between the permeable granular

soil layer and the impermeable clay layer (Tejchman

et al. 1996). Thus the same GWT location, i.e. at the

Table 1 Soil layers of the slope, their geotechnical parameters, the adopted random variables and their statistical characteristics (see

Fig. 2)

Layer Soil Bulk density qi g/cm3
� �

Cohesion ci kPa½ � Internal friction angle /i
	½ �

Symbol Mean value Stan. dev. Symbol Mean value Stan. dev.

L1 Silty loam 2.05 x1 c L1½ � l1 ¼ 40:0 r1 ¼ 12:0 x2 / L1½ � l2 ¼ 15:0 r2 ¼ 1:5

L2 Sandy loam 1.80 x3 c L2½ � l3 ¼ 15:0 r3 ¼ 4:5 x4 / L2½ � l4 ¼ 29:0 r4 ¼ 2:9

L3 Clay 2.05 x5 c L3½ � l5 ¼ 45:0 r5 ¼ 13:5 x6 / L3½ � l6 ¼ 10:0 r6 ¼ 1:0

L4a Fine sand 1.80 – 0 0 x7 / L4a½ � l7 ¼ 33:0 r7 ¼ 3:3

L4b Fine sand 1.80 – 0 0 x8 / L4b½ � l8 ¼ 35:0 r8 ¼ 3:5

L5 Silty loam 2.05 x9 c L5½ � l9 ¼ 58:0 r9 ¼ 17:4 x10 / L5½ � l10 ¼ 19:0 r10 ¼ 1:9

L6 Loamy sand 2.18 x11 c L6½ � l11 ¼ 21:8 r11 ¼ 6:54 x12 / L6½ � l12 ¼ 27:0 r12 ¼ 2:7

L7 Clay 2.15 x13 c L7½ � l13 ¼ 50:0 r13 ¼ 15:0 x14 / L7½ � l14 ¼ 17:0 r14 ¼ 1:7

Fig. 2 A cross-section of the Jastrzębia Góra cliff. A detailed description of the highlighted soil layers is presented in Table 1
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contact between layers L4 and L3, was assumed in the

section analysed, see Fig. 2. The continuous GWT is

relatively high and appears on the cliff face in the form

of seepage springs.

Summing up, it is reasonable to extrapolate the data

available for the nearest cross-sections to the section

analysed in the paper. Furthermore, a number of

redundant inquiries may be avoided this way.

4 Deterministic Stability Study of the Slope

Slope stability was investigated with the Itasca FLAC

(FLAC 4.0, 2000) commercial software in a two-

dimensional explicit model based on the Finite

Difference Method integrated with the strength reduc-

tion technique. The safety of the cliff is assessed on the

basis of the safety factor F, which is calculated using

the strength reduction technique fundamentals (Daw-

son et al. 1999). It is typically used to calibrate the

factor during a stepwise reduction in the material shear

strength in order to reach a state of limit equilibrium of

the slope. The method is applied with the Mohr–

Coulomb failure criterion. A simulation sequence is

performed using trial values of the F factor to modify

cohesion c, friction angle / and tensile strength rt. An

incremental reduction (or increase) in strength is

performed until a failure state is reached, and on this

basis the selected technique finds strength values to

match the final safety factor F. It is then normalized

appropriately, and the safe situation means that F[ 1.

Simulations performed to assess the safety factor F

of the cliff (Fig. 2) in its natural (undrained) state,

using strength parameters presented in Table 1, give

the safety factor Fundr ¼ 1:06055. The slip, expressed

by the maximum shear strain increments (SSI),

encompasses the entire slope (Zabuski and Korzec

2017). Hence, the safety margin is extremely low. The

potential landslide zone is shown in Fig. 3. The

building at the crest of the cliff is threatened by the

slip, as it is situated within the critical zone.

After drainage, which is one of the possible

stabilization methods, the safety factor of the cliff

increases significantly to Fdr ¼ 1:29492.

5 Probabilistic Analysis of the Slope

To properly take into account the variation in strength

parameters, the deterministic cliff analysis is extended

by a probabilistic approach. It is aimed at determining

both the safety margin F and slope reliability.

The basic random variables of the problem are

related to the parameters of the assumed soil layers

forming the slope, as shown in Fig. 2. Eight different

soil layers can be distinguished in the slope: six

cohesive and two non-cohesive layers. For cohesive

soils, both soil cohesion c and the internal friction

angle / are assumed random, while for non-cohesive

soils the internal friction angle / is the only variable.

Thus, a total of 14 random parameters are adopted

here. The volumetric weight of each layer is assumed

deterministic.

On the basis of several hundred tests classified into

several groups (Tejchman et al. 1995a), the coeffi-

cients of variation of cohesion mc and coefficients of

Fig. 3 Location of the potential slip zone of the cliff in its natural (undrained) state (Itasca FLAC 4.0, 2000)
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variation of the internal friction angle m/ were defined

for the soil of the highest impact on stability, i.e. clay:

mc was assumed to range from 0.20 to 0.27, and m/ was

assumed to fall within the interval from 0.05 to 0.11. In

the case of silts, these coefficients were mc ¼ 0:30 and

m/ ¼ 0:075 (Tejchman et al. 1996). Eventually, the

values of mc ¼ 0:30 and m/ ¼ 0:10 were adopted in the

subsequent probabilistic analysis. Identical coeffi-

cients of variation were applied to assess the strength

parameters of all geotechnical layers of the cliff,

consistently with remarks found in the literature, see

e.g. (Christian et al. 1994). All random parameters are

assumed Gaussian. Other random variable types are

applicable here as well, e.g. log-normal ones or more

advanced (Brejda and Moorman 2000; Fenton and

Griffiths 2003; Tobutt 1982), but the insufficient

database makes the Gaussian choice reasonable. The

statistical characteristics of the random variables

related to particular soil layers of the slope are

presented in Table 1. The high diversity in soil

cohesion ci and the internal friction angle /i is

intended to produce a high dispersion in cliff response

results. Moreover, a uniform variation of an entire

layer was assumed here, whereas a real slope may

display a random field-like character, see e.g. Griffiths

et al. (2009), Metya and Bhattacharya (2011), Liu et al.

(2014), Zhu et al. (2019). Neglecting the two-

dimensional parameter variation leads to an overesti-

mation of safety factor variance. Thus the simplifica-

tions concerning strata variability are justified from

the engineering viewpoint.

5.1 Analysis of the Slope in Its Present State

(Under Undrained Conditions)

5.1.1 Parameter Sensitivity Analysis

First of all, test computations were performed to

determine the sensitivity of the slope safety factor to

random variation in individual input parameters. For

each random variable, three computational cases were

considered: one in which the parameter is set to its

mean value (xi ¼ li) and two cases in which the

parameter is changed by a single standard deviation

(xi ¼ li 
 ri). The remaining random parameters

were all set to their respective expected values. This

approach is coincident with PEM (Ahmadabadi and

Poisel 2015). The results corresponding to these

samples were also adopted later in estimating the

slope reliability indices by CRSM. Figure 4 presents

safety factor values obtained in the preliminary

sensitivity analysis of the undrained slope.

Fig. 4 Variation of the safety factor of the slope in its undrained state (c cohesion, / internal friction angle)
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An overall safety factor variation d (given in [%]),

induced by random variation of a given parameter, is

estimated as follows

di ¼
1

2
� Fmax;i

F
� 1

����

����þ
Fmin;i

F
� 1

����

����
	 


� 100% ð11Þ

where F is the mean value of the safety factor F.

The impact of each random parameter on the safety

factor value expressed by Eq. (11) is given in Table 2

in the column ‘‘Present state’’.

In the cases considered, the extreme safety factors

were estimated at Fmax;undr ¼ 1:09180 ½�� due to the

increment in the cohesion c of layer L3 and at

Fmin;undr ¼ 0:99414 ½�� due to the decrement in the

cohesion c of layer L7 (see Table 1 and Fig. 2). While

the mean slope safety factor is �Fundr ¼ 1:06055 ½��, it

can also be concluded that the dispersion of the results

is not symmetric, and hence their distribution is

probably not Gaussian, which is a key issue in

subsequent computations.

Moreover, this variable yields a non-linear

response, which also needs to be considered in the

later choice of the approximation model. Thus, the

character of the structural response is shown to be

complex, and a higher-order approximation given in

Eq. (10) is expected to minimize the fit error of

response surface mapping.

The preliminary analysis presented above shows

that 7 out of 14 variables are decisive to the slope

response. The significance threshold was set to an

impact level of di ¼ 1:0%, and a large-gap criterion

was assumed (the difference between the least signif-

icant variable and the most irrelevant variable should

be greater than 25%). For example, the difference

between the impacts of the variable x14 (the least

significant one) and the variable x6 (the first irrelevant

one) is 1:11 � 0:74ð Þ=1:11½ � � 100% � 33%.

Since the above-mentioned criteria are subjective,

it is easy to choose a different number of variables (6, 8

or 11) if a different acceptance level of the sensitivity

significance criterion is adopted. Moreover, it should

be emphasized that variables assumed insignificant in

the preliminary sensitivity analysis should not be

treated as deterministic in the subsequent probabilistic

analysis. This validates a full-scale analysis involving

14 random variables, rather than a smaller number of

selected variables. In addition, this approach mini-

mizes extra errors triggered by reducing the range of

the random vector. On the other hand, in many cases,

an excessive number of variables substantially

increases the time of computations or even makes

them impracticable.

Table 2 The impact of each random parameter on the slope safety factor

Variable Symbol Parameter Present state Drained state

Impact (%) Significant? Impact (%) Significant?

x1 c L1 Cohesion of L1 silty loams 0.18 No 0.43 No

x2 / L1 Angle of friction of L1 silty loams 0.18 No 0.15 No

x3 c L2 Cohesion of L2 sandy loams 0.55 No 0.60 No

x4 / L2 Angle of friction of L2 sandy loams 0.55 No 0.75 No

x5 c L3 Cohesion of L3 clays 2.76 Yes 8.14 Yes

x6 / L3 Angle of friction of L3 clays 0.74 No 2.87 Yes

x7 / L4a Angle of friction of L4a fine sands 0.55 No 1.21 Yes

x8 / L4b Angle of friction of L4b fine sands 3.13 Yes 1.66 Yes

x9 c L5 Cohesion of L5 silty loams 2.03 Yes 0.15 No

x10 / L5 Angle of friction of L5 silty loams 0.37 No 0.00 No

x11 c L6 Cohesion of L6 loamy sands 2.58 Yes 0.15 No

x12 / L6 Angle of friction of L6 loamy sands 2.58 Yes 0.30 No

x13 c L7 Cohesion of L7 clays 3.13 Yes 2.11 Yes

x14 / L7 Angle of friction of L7 clays 1.11 Yes 0.15 No
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5.1.2 PEM and MC Approach

The MC approach employs 100 samples (NS ¼ 100)

to optimize the numerical quality of the analysis while

maintaining an acceptable computational time. All 14

parameters of the slope were assumed random vari-

able, and their parameters are presented in Table 1.

All 100 MC samples, i.e. the generated sets of cliff

soil parameters, are then introduced into distinct

numerical models computed by the FLAC software.

The software provides a safety factor value for each

sample along with a graphical presentation of the

response of the cliff.

First of all, estimators of the mean value �Fundr ¼
1:00131 and the standard deviation rFundr

¼ 0:08338

of the safety factor F were computed. Convergence of

these parameters is presented in Fig. 5.

With statistical distribution adopted in the form of

�F � Fð Þ
ffiffiffiffiffiffi
NS

p
=rF , the confidence interval was

assumed according to the safety factor F

�F � rFffiffiffiffiffiffi
NS

p ta=2;NS�1\F\ �F þ rFffiffiffiffiffiffi
NS

p ta=2;NS�1 ð12Þ

where ta=2;NS�1 is the Student’s t variable argument to

be exceeded with a probability of a=2.

Assuming a 99% confidence interval, correspond-

ing to a ¼ 0:01 and t0:005; 99 ¼ 2:5674, the result was

Fig. 5 The Monte Carlo simulation: the mean value and standard deviation estimators of the safety factor F

Fig. 6 Selected variants of the slip surface and the shape of the slipping mass
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0:9798\Fundr\1:0228. This interval matches the

engineering estimation of F based on 100 MC

samples.

Numerical output proves that the randomness of

layer parameters and layer-wise relations affect both

the stability of the building and the shape of the

slipping body, jointly expressed by the safety factor F.

In most cases, the cliff-top building is located within

the landslip zone (Fig. 6). Moreover, specific safety

factor F values are attributed to various slipping

surface modes.

The MC-based probability of failure Pf MC;undr ¼
0:44 was estimated by Eq. (1), and its corresponding

reliability index bMC;undr ¼ 0:15 was obtained from

Eq. (3). The estimated reliability indices correspond

to the anticipated high failure probability cases. In the

MC case, the reliability indices do not converge

sufficiently well (Fig. 7). However, the direct MC

variant is not a separate background procedure, but

only intended to support the major probabilistic

CRSM routine. It is necessary to point out that the

non-linear problem type involves the computation of

100 samples, which is time-consuming beyond the

limitations of a standard geotechnical design process.

CRSM is introduced to estimate the safety factor F

accurately enough using a smaller sample population.

Applying PEM to all 14 variables, 28 samples were

taken for computations, see Eq. (5). The estimated

reliability index of the slope is bPEM;undr ¼ 0:25

[Eqs. (6–8)]. Although MC results are more reliable,

PEM will not be further referenced for this random

problem. The PEM samples were already used in the

sensitivity analysis of parameters essential for cliff

stability. For this reason, they were also employed in

CRSM computations.

5.1.3 Analysis by Combined Response Surface

Method (CRSM)

The samples from the preliminary analysis were re-

used to create an approximate response surface of the

phenomena by means of CRSM with a combined

sample database.

The values of the slope’s probability of failure and

reliability index were estimated using all 129 samples

from direct calculations (one central sample as the

starting point of the analysis, 2 9 14 PEM samples

and 100 MC samples). Since a highly non-linear

response surface was expected here, the second-order

model was applied to assess the key values, see

Eq. (10). Figure 7 shows the convergence of reliabil-

ity indices checked by the direct MC method and

variants of RSM approximations based on the PEM

Fig. 7 Convergence of reliability indices computed by the direct MC method and RSM approximations (PEM, MC, CRSM) for the

slope in its initial state (undrained)
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points only, MC points only and combined samples

(CRSM).

The convergence of the results obtained by CRSM

and the MC method is an advantageous, decisive

feature. The CRSM procedure is halted if two criteria

are simultaneously met:

• The CRSM solution is assumed to converge if in 10

subsequent computational runs a difference of less

than 5% is detected between the computed b or Pf

value and its corresponding mean value based

exclusively on these 10 samples. The convergence

criterion in the undrained case is met after 40

software runs (69 samples, the first run uses 29

samples at once), see Fig. 7. Regarding the interval

between 30 and 40 runs, the traced differences

range from 2.1 to 4.9%;

• The MC results are assumed to exhibit satisfactory

proximity to convergent CRSM results when the

difference between the mean RSM-based value of

b or Pf in an interval of 10 subsequent samples and

10 direct MC solutions is not greater than 15%. As

shown in Fig. 7, the first 10 MC samples that fulfil

the proximity criterion after CRSM convergence

are samples 66–75 (in their case, the differences

range from 6.7 to 14.2%).

Thus, Fig. 7 suggests that an approximate number

of software runs to achieve a sufficient convergence of

the CRSM solution is 75. The obtained reliability

index is bCRSM;undr ¼ 0:15, so the probability of

stability loss is Pf CRSM;undr ¼ 0:44. These results

coincide with the case of 100 direct MC calculations

(bMC;undr ¼ 0:15). The relative error of the reliability

index b assessed by the MC method with respect to the

result obtained by CRSM was 0.64%.

Although CRSM re-uses MC samples, the failure

probability Pf is actually assessed by two different

methodologies. This comparison is possible only in

cases of a high Pf , when the direct MC method does

not require a large sample domain. In the case of a

small Pf , even several hundred MC samples may not

suffice for a proper reliability assessment, so the

proximity criterion may strongly limit the efficiency of

CRSM. In such cases, other methods are recom-

mended, e.g. the Targeted Random Sampling (TRS)

technique, see Shields and Sundar (2015), or the

subset simulation, see Jiang and Huang (2016).

The application of PEM samples along with MC

samples led to expected results. The initial outline of

the response surface curvature provided by PEM

points proves sufficient to map the problem domain

�ri;þrih i accurately, so that the introduction of only

a few strictly random computational points makes the

surface equation converge quickly. It is interesting to

compare the results from the two RSM variants (RSM

with MC samples and CRSM) (Fig. 7). It seems that

CRSM accurately identifies the initial curvature of the

approximated surface thanks to the application of the

PEM-based sample set, next, this curvature is further

refined using the MC sample set.

5.2 Analysis of the Slope Under Drained

Conditions

One possible method of stabilizing the cliff is to

permanently lower the groundwater table to the sea

level. It is worth noting that this solution is not merely

theoretical, since in dry weather the water table depth

was proven to coincide with the sea level. Neverthe-

less, a random re-computation of a more reliable

drained slope is a perfect opportunity to test the

proposed CRSM computational procedure and deter-

mine its limitations.

5.2.1 Sensitivity Analysis

Similarly to the previous analysis, test computations

were first conducted to determine the sensitivity of the

slope to random variation of individual input param-

eters. Extreme safety factor values were

Fmax;dr ¼ 1:35742½��, due to the increment in the

cohesion c of layer L3, and Fmin;dr ¼ 1:14648½��, due

to the decrement in the cohesion c of layer L3 (see

Fig. 2). This suggests a shift of the analytical focus to

marginal values of the key variable parameters of the

soil strata.

The impact of each random parameter on the safety

factor, defined by Eq. (11), is shown in Table 2. The

decisive variable contribution is 8.14%, which

becomes crucial to the structural response variability.

In this case, only 5 out of 14 variables affect the slope

response, fewer than in the undrained slope.

The layers with the biggest contribution to the

failure scenario considered here are generally different

from those affecting the stability of the undrained
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slope, see Table 2. As the L3 clays constitute the main

slip surface, the impact of the related variables on the

final cliff response is almost three times as large as that

of the rest. Thus, it is essential to ensure a high

cohesion of the third layer of the slope during and after

drainage procedures.

Referring to prior sensitivity analysis, conclusions

were drawn on the further conduct of investigations.

Due to the apparent diversity of the combined impact

of significant and insignificant variables, displayed in

Table 2, the number of variables may eventually be

reduced to 5. Moreover, in view of a possible

reduction in the number of random variables, the

efficiency of the proposed CRSM algorithm in a

relatively small random problem may be proven.

While the impact of most variables on the safety

factor in the range 
ri is linear, the key layer

parameters with the highest impact on the output

result are clearly non-linear, so it seems reasonable to

assume the second-order response surface model

(Eq. 10).

5.2.2 CRSM Analysis

The CRSM analysis is conducted in parallel by both

the direct MC approach and RSM approximations

based on 11 PEM samples (one central sample and

2 9 5 starting points) and MC samples. The MC

samples are subsequently added, and the CRSM

convergence check is performed with respect to the

cliff reliability index. The computations are termi-

nated once a satisfactory CRSM convergence has been

achieved. The course of convergence is shown in

Fig. 8.

The CRSM approach clearly stabilizes the approx-

imation process. According to Fig. 8, convergence is

achieved after about 40 runs (51 samples in total: 1

central sample, 10 PEM samples and 40 MC samples).

The CRSM convergence is reached after the 30th run

(differences traced for 10 calculated b values versus

the mean value range from 0.2 to 0.4%), whereas the

MC result proximity criterion is fulfilled for the

following 10 MC samples (samples 31–40; differences

traced for 10 MC-calculated b values versus the RSM-

based value on this integral range from 0.3 to 4.8%).

The CRSM variant results in bCRSM;dr ¼ 1:567

(Pf CRSM;dr ¼ 0:059), while the 40-sample MC variant

yields bMC;dr ¼ 1:645 (Pf MC;dr ¼ 0:05). The direct

MC results cannot serve as a reference level for CRSM

because of the small population, since the probability

of failure is relatively low here (about 6%). However,

the low Pf value obtained is evidence that drainage

significantly affects slope stability.

Fig. 8 Convergence of reliability indices computed by the direct MC method and RSM approximations (MC, CRSM) for the slope in

its drained state

123

Geotech Geol Eng

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The drained case reveals a moderate probability of

failure (Pf CRSM;dr ¼ 0:059), so CRSM converges

relatively fast, as some samples are still located in

the vicinity of the limit state function. If the antici-

pated probability of failure decreases, convergence is

expected to decrease too, resulting in reduced effi-

ciency of the CRSM approach.

6 Conclusions and Remarks

This paper proposes a combined response surface

approximation approach (CRSM). It is based on the

sum of specific PEM samples and random MC

samples. CRSM may be successfully employed in

cases of a moderate or high failure probability, i.e.

Pf [ 0:05, representing various tasks in geotechnics.

The main feature of CRSM is multiple use of the

same samples:

• The CRSM combines sensitivity analysis with the

probabilistic approach. Incorporation of PEM-like

sampling routines made it possible to perform a

basic sensitivity analysis in the course of identify-

ing the linear or non-linear curvature of the

structural response surface, which is essential for

assuming a proper order of the RS approximation

model. The sensitivity analysis highlights vari-

ables with a small impact on structural response in

order to consider them as deterministic in compu-

tations. Moreover, PEM-like samples contribute to

further reliability estimation, as they constitute the

initial run in the CRSM approximation of the

mechanical response of the slope.

• The CRSM-postulated joint use of MC simulations

with the widespread RSM software makes it

possible to perform independent, parallel compu-

tations re-using the same samples. After addition

of each MC sample, the solution convergence is

checked, and the computations are terminated

when CRSM both converges in its own right and

fulfils the criterion of MC result proximity. MC

sampling is merely auxiliary, so no computational

convergence is required due to this method alone.

• CRSM makes it possible to reduce the sample

population from several hundred to several dozen,

which greatly facilitates the use of probabilistic

analysis in standard real-life geotechnical

calculations when the value of Pf is relatively

large, e.g. Pf [ 0:05).

In both cases presented here (i.e. an undrained cliff

and a drained cliff), the parallel MC-RSM algorithm

works well, each time resulting in a reasonable

number of software runs. The time savings due to

the possibility of sample re-usage and parallel com-

puting is the greatest advantage of this novel approach.

The estimated reliability indices b and probabilities of

failure Pf result in randomization of a deterministi-

cally computed slope stability factor F. In the

undrained cliff, the factor was estimated at close to

1.0, but the CRSM results indicate its potential high

variability, and hence a high instability of the cliff.

Thus, the probabilistic computations confirm the

preliminary deterministic analysis and the subsequent

conclusion that the repair and operation of the building

at the cliff top will be possible only after reinforce-

ment of the cliff.

The CRSM computations prove that the proposed

drainage-based cliff stabilization is effective. The

probability of stability loss decreases from 44 to 6%.

However, the idea of overall drainage is merely

theoretical. On the other hand, the preliminary sensi-

tivity analysis performed by CRSM identifies strata

with the highest contribution to slope stability, so an

alternative solution, such as a partial drainage of the

key strata, may be proposed. This case needs to be re-

analysed, so the variability parameters of particular

soil layers should be verified to evaluate the repair

works performed.
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