
Response to David Steigmann’s
discussion of our paper

Mathematics and Mechanics of Solids
1–7
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10812865231224106
journals.sagepub.com/home/mms

Thang X Duong
Institute of Engineering Mechanics & Structural Analysis, University of the Bundeswehr Munich, Neubiberg,
Germany

Mikhail Itskov
Department of Continuum Mechanics, RWTH Aachen University, Aachen, Germany

Roger A Sauer
Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland;
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We thank Professor David Steigmann for his discussion, in particular his proof on the general validity of his
internal power expression (see equation (8) below) and his expression for the variation of the geodesic curvature.
His proof allows us to clarify two misleading statements in Duong et al. [1] and confirm that its formulation
is fully consistent with the formulation of Steigmann [2]. However, some of our original statements made in
Remark 4.9 are not wrong: the third term in equation (8) can lead to spurious constitutive models for in-plane
bending, which was our original concern.

The discussion below follows the notation in Duong et al. [1]. This translates to the notation in Steigmann’s
discussion as follows: cγ ≡ pγ , c0

γ ≡ Mγ , �α ≡ lα, c0 ≡M, c ≡ p, � ≡ l, κg ≡ ηl, and κ0
g ≡ ηL.

1. Concerning Steigmann’s discussion of Remark 4.8
We agree with Steigmann that our statement in Remark 4.8 is incorrect. This error stems from our incomplete
proof provided in Appendix 5 of Duong et al. [1], which is based on the incorrect assumption that the variation
of the fiber director, δcα, is not solely expressible through the variation of the metric, δaαβ . Instead,

δcγ = 1

2
cγ cαβ δaαβ , (1)

i.e., δcα is solely expressible through δaαβ . Equation (1) follows from the variations δJ = J aαβ δaαβ/2, δλ =
Lαβδaαβ/(2λ), the identity aαβ = �αβ + cαβ that follows from equation (8) in Duong et al. [1], and the relation

cγ = J λ−1 c0
γ , (2)
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given in Steigmann’s discussion. Here, cα := c · aα, J = dets F, λ = ‖FL‖, c0
α := c0 · Aα , cαβ := cαcβ ,

cα := c · aα , �αβ := �α�β , �α := � · aα, Lαβ := LαLβ , and Lα := L · Aα . We thank Steigmann for providing
relation (2). We were not aware of this relation in our derivation of Appendix 5 [1], since we had used

δcα = −�β
α c · δaβ + c · δaα (3)

(see equation (213) of [1]) instead of equation (1). We note here that equation (3) is not wrong. Instead, it is
equivalent to equation (1). This can be shown by applying the identities c · δaα = δβ

α c · δaβ and δβ
α = �β

α + cβ
α

(following from equation (8) in [1]) to equation (3) and using the symmetry of cαβ .
Relation (2) can also be used to show that the geodesic curvature given in equation (6) of Steigmann’s

discussion,
κg = J λ−3 Lαβ c0

γ Sγ

αβ − J λ−3 Lαβ c0
α;β , (4)

is identical to equation (51) in Duong et al. [1], i.e.,

κg = �αβ cγ Sγ

αβ + λ−1 cα �β Lα
;β . (5)

This follows from equation (2), Lα = λ �α and Lα c0
α;β = −c0

α Lα
;β (cf. equation (38) in [3]).

With variation (1), we can now continue the derivation in Appendix 5 of Duong et al. [1]: starting from
equation (5) and using equation (1) together with equations (208) and (210) in [1], we arrive at the expression

κ̇g = �αβ cγ Ṡγ

αβ +
1

2
κg (aαβ − 3 �αβ) ȧαβ , (6)

which is also found in Steigmann’s discussion. That is, the rate of geodesic curvature, κ̇g, is fully expressible in
terms of ȧαβ and Ṡγ

αβ . Since these are symmetric w.r.t. α and β, the stress symmetrization employed in the power
balance of Steigmann [2] is indeed general, contrary to what was written in Remark 4.8. We thank Professor
Steigmann for pointing out this error.

Equation (6) allows us to confirm that our internal power expression given in equation (107) of
Duong et al. [1],

Pint = 1

2

∫
R0

ταβ ȧαβ dA+
∫
R0

Mαβ

0 ḃαβ dA+
∫
R0

μ̄0 κ̇g dA , (7)

is equivalent to the internal power expression given in Steigmann [2] (cf. equation (63) there), which reads

Pint = 1

2

∫
R0

ταβ ȧαβ dA+
∫
R0

Mαβ

0 ḃαβ dA+
∫
R0

M̄αβ

0γ Ṡγ

αβ dA , (8)

in our notation. This follows from inserting equation (6) into equation (7) and redefining the stress as

ταβ ← ταβ + μ̄0 κg (aαβ − 3 �αβ). (9)

Equation (7) is also equivalent to

Pint = 1

2

∫
R0

ταβ ȧαβ dA+
∫
R0

Mαβ

0 ḃαβ dA+
∫
R0

M̄αβ

0
˙̄bαβ dA , (10)

the internal power expression proposed in Duong et al. [1] (see equation (113) there). Therefore, the internal
power expressions given by Steigmann [2] (i.e., equation (8)) and our expression in equation (10) are equivalent.
However, the last term in equation (8) can lead to spurious constitutive models for in-plane bending, as is shown
below.

2. Concerning Steigmann’s discussion of Remark 4.9
Steigmann’s discussion of Remark 4.9 concerns two points: the well-definedness of the in-plane bending power
term and its parametrization-dependence.
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We agree that the internal power of Steigmann (see equation (8)) is not wrong and does not miss any contri-
butions in the present context. This was shown above. Also it does not depend on the surface parameterization
(i.e., the choice of curvilinear coordinate system), as Steigmann rightly points out.

However, there is still an issue with the last term in equation (8). It can lead to constitutive models for
in-plane bending that are not well-defined for some deformations.

Steigmann’s expression (8) leads to the constitutive equations for the membrane and bending stresses

ταβ = 2
∂W

∂aαβ

, Mαβ

0 =
∂W

∂bαβ

, M̄αβ

0γ =
∂W

∂Sγ

αβ

, (11)

based on the stored energy function W = W
(
aαβ , bαβ , Sγ

αβ

)
. Our expression (10), on the other hand, leads to the

constitutive equations,

ταβ = 2
∂W

∂aαβ

, Mαβ

0 =
∂W

∂bαβ

, M̄αβ

0 =
∂W

∂ b̄αβ

, (12)

based on the stored energy function W = Ŵ
(
aαβ , bαβ , b̄αβ

)
.

In general, the in-plane bending behavior of fibers should be related to a change of their curvature κg. Thus,
the in-plane bending energy should be a function of κg. This means that in general the in-plane bending energy
cannot be a function of Sγ

αβ alone, as it does not fully describe κg according to equation (4). The problem with
the third terms in equations (8) and (11) is that they suggest precisely that. Indeed, such a function has been
proposed in Steigmann and Dell’Isola [3], cf. equation (60) and used in the computational model of Schulte
et al. [4], cf. equation (42). It can lead to spurious bending moments as is shown in the example below. In our
formulation, this problem does not appear, since κg is fully described by b̄αβ , i.e., κg = b̄αβ �αβ , cf. equation (50)
of Duong et al. [1].

The issue can be illustrated by the following example (see Figure 1). We consider a ring-shaped domain
described by the parameterization

X (r, φ) = r cos φ e1 + r sin φ e2 , 0 ≤ φ < 2π , r1 ≤ r ≤ r2 , (13)

with a circular fiber located at r = r0. The domain is deformed by applying the displacement field

u(r, φ) = a1

2

(
r2 − r2

0

)
e1 + a2

2

(
r2 − r2

0

)
e2 , (14)

where a1 and a2 are the parameters of u that have sufficiently small magnitude to avoid singularities in the
deformation x = X + u. For any admissible ai, displacement u is zero along the fiber, and hence does not
change its curvature, which remains equal to 1/r0. (The fiber is only stretched in lateral direction.) Without
curvature change, no fiber bending moment should appear. However, according to the model of Steigmann and
Dell’Isola [3], the third term in equation (11) generates the fiber bending moment (see Appendix 1)

m̄0 ∼ a1 cos φ + a2 sin φ , (15)

which increases with ai, see Figure 1(c). On the contrary, for the constitutive model proposed in Duong et al. [1],
no fiber bending moment appears. The reason for the spurious moment in equation (15) lies in the constitutive
model of Steigmann and Dell’Isola [3] that is based on Sγ

αβ alone. As seen in equation (4)—and illustrated by
the example in section 7.1 of Duong et al. [1]—Sγ

αβ yields an incomplete curvature description. The constitutive
model of Steigmann and Dell’Isola [3] is a natural choice following from equation (8). Therefore, equation (8),
which itself is correct, can suggest spurious bending models.

As the example shows, the last term in equation (11) can generate a fiber moment that depends inconsis-
tently on the deformation, seen here through the surface deformation parameters ai. However, the third term in
equation (8) does not depend on the surface parametrization, as was written imprecisely in Remark 4.9.

3. Concerning the remaining points raised by Steigmann
Steigmann claims that our “force and torque balance laws are postulated on the basis of free-body diagrams
without reference to the Principle of Virtual Power.” This is not true. Our formulation constructs the force
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(a) (b)

(c)

Figure 1. Deformation example of equations (13) and (14). (a) Initial configuration for r1 = 1, r0 = 2, and r2 = 3. (b) Deformed
configuration for a1 = 0.25 and a2 = 0. (c) Corresponding fiber bending moment m̄0 according to the constitutive models of
Steigmann and Dell’Isola [3] and Duong et al. [1]. The former predicts an increase of m̄0 with the deformation, even though the fiber
curvature does not change. Here, a := a1 cos φ + a2 sin φ.

and torque balance laws and the constitutive equations systematically from linear momentum balance, angular
momentum balance, and the mechanical power balance in sections 3.3, 3.4, and 3.5 of Duong et al. [1]. The
latter balance is mathematically equivalent to the principle of virtual power.

Steigmann further states that our formulation does “not make explicit the famous Kirchhoff boundary con-
ditions and corner forces established by Kirchhoff.” Such corner forces are fully contained in our formulation.
They appear when the boundary traction T is replaced by its effective counterpart and the domain boundary of
the shell surface is not smooth, which is shown in Appendix 2. The corner forces are part of the external virtual
work, and so the internal virtual work expression presented in Duong et al. [1] is unaffected.

Singular boundary fibers are indeed not studied in our work. But they do not affect the examples presented
in Duong et al. [1, 5].
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Appendix 1

Derivation of the bending moments in the example of Figure 1

Introducing c := cos φ and s := sin φ, the deformation defined by equations (13) and (14) has the tangent
vectors along parameters r and φ,

a1 = x,r = (c+ a1 r) e1 + (s+ a2 r) e2 , a2 = x,φ = (−s e1 + c e2) r , (16)

and their derivatives

a1,1 = a1 e1 + a2 e2 , a1,2 = −s e1 + c e2 , a2,2 = −(c e1 + s e2) r . (17)

From this follows

[aαβ ] =
[

(c+ a1 r)2 + (s+ a2 r)2 (a2 c− a1 s) r2

(a2 c− a1 s) r2 r2

]
, (18)

det[aαβ ] = g2 r2 , g := 1+ (a1 c+ a2 s) r, (19)

and [
aαβ

] = 1

g2 r2

[
r2 (a1 s− a2 c) r2

(a1 s− a2 c) r2 (c+ a1 r)2 + (s+ a2 r)2

]
, (20)

which leads to the dual tangent vectors

a1 = c e1 + s e2

g
, a2 = −(s+ a2 r) e1 + (c+ a1 r) e2

g r
. (21)

The Christoffel symbols thus become

[
�1

αβ

] = 1

g

[
a1 c+ a2 s 0

0 −r

]
,

[
�2

αβ

] = 1

g r

[
a2 c− a1 s g

g (a2 c− a1 s) r2

]
. (22)

The corresponding quantities for the reference configuration (Aα , Aα,β , Aαβ , Aαβ , Aα , and �̄
γ

αβ) follow from
this with a1 = a2 = 0 and g = 1. Thus,

[
S1

αβ

]
:= [

�1
αβ − �̄1

αβ

] = a1 c+ a2 s

g

[
1 0
0 r2

]
,

[
S2

αβ

]
:= [

�2
αβ − �̄2

αβ

] = a2 c− a1 s

g r

[
1 0
0 r2

]
,

(23)
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which is only zero for vanishing ai. Further J = √
det[aαβ ]/ det[Aαβ] = g.

For the fiber at r = r0, the fiber direction (before and after deformation) is

L = � = a2

‖a2‖ = −s e1 + c e2 , (24)

such that

L1 = �1 := � · a1 = 0 , L2 = �2 := � · a2 = 1

r0
. (25)

With this, the curvature invariant of Steigmann and Dell’Isola [3] follows as

gL := Lα Lβ Sγ

αβ aγ = a1 e1 + a2 e2 , (26)

such that fiber bending energy of Steigmann and Dell’Isola [3],

WSD := B

2
gL · gL =

B

2

(
a2

1 + a2
2

)
, (27)

increases with a1 and a2. Here, B is the material constant for in-plane bending.
The fiber director follows from � by a counterclockwise rotation of 90◦, i.e.,

c = −c e1 − s e2 . (28)

Thus,
c1 := c · a1 = g0 := g|r=r0 , c2 := c · a2 = 0 . (29)

With this and L,2 = −c e1 − s e2, the two contributions of the geodesic curvature in equation (4) become

κ�
g := �α �β Sγ

αβ cγ = −a1 c− a2 s , (30)

and

κL
g := λ−1 cα �β Aα · L,β = c1 �2 A1 · L,2 = 1

r0
+ a1 c+ a2 s , (31)

for the present case, where there is no fiber stretch (λ = 1). The full geodesic curvature thus is

κg = κ�
g + κL

g =
1

r0
, (32)

which is the expected value for the example. This is equal to the geodesic curvature in the reference configu-
ration (i.e., κ0

g = 1/r0). All the relative curvature measures of Duong et al. [1] are thus zero, and the in-plane
bending energy of Duong et al. [1],

W = B

2

(
κg − κ0

g

)2
, (33)

vanishes for all ai. In our formulation, the in-plane bending moment in the fiber is

m̄0 = ∂W

∂κg
, (34)

which gives m̄0 = B
(
κg − κ0

g

) = 0, here. Equation (34) follows from equations (82b), (108c), and (110c) of
Duong et al. [1] with ν = � and m̄0 = J m̄.

The corresponding (equivalent) bending moment according to formulation (8) is

m̄0 = M̄αβ

0 γ �α �β cγ . (35)

This follows from inserting equation (6) and μ̄0 = m̄0 into equation (7) and comparing corresponding terms
with equation (8). Here, �α�α = 1 and cαcα = 1 have been used. For the constitutive model of Steigmann and
Dell’Isola [3] follows

M̄αβ

0 γ = B Lαβ Lμη Sδ
μη aγ δ (36)
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from equations (11c) and (27). Equation (35) then yields

m̄SD
0 = B λ2 Sγ

αβ Lα Lβ cγ , (37)

for general fibers with Lα = λ �α . With equations (23), (25), and (29) and with λ = 1 of the present example,
this becomes m̄SD

0 = B (a1 c+ a2 s), leading directly to equation (15).

Appendix 2

Corner forces in our formulation

Corner forces appear when the external virtual work expression (here for a single fiber family)

Gext =
∫
S

δx · f da+
∫

∂S
δx · T ds+

∫
∂S

δn ·M ds+
∫

∂S
δc · M̄ ds, (38)

(cf. equation (135.3) in [1]) is rewritten following the procedure used in our previous work ([6], cf. section 6.3).
This starts with the balance of angular momentum

D

Dt

∫
R

ρ x × v da =
∫
R

x × f da +
∫

∂R
x × T ds+

∫
∂R

m̂ ds , (39)

(cf. equation (87) in [1]), where m̂ := mτ τ +mν ν + m̄ n is the complete boundary bending moment defined in
equation (66) in Duong et al. [1]. Using ν = τ × n, n = −τ × ν, and τ := ∂x/∂s = x′, the last two terms in
equation (39) can be rewritten as

x × T + m̂ = x × T + mν x′ × n − m̄ x′ × ν + mτ τ

= x × T + (mν x× n)′ − x× (mν n)′ − (m̄ x × ν)′ + x × (m̄ ν)′ + mτ τ

= x × T − (mν n)′ + (m̄ ν)′
]
+ mτ τ + (mν x × n)′ − (m̄ x× ν)′ .

(40)

The last expression shows that the moment components mν and m̄ contribute to the effective boundary
traction

t̂ := T − (mν n)′ + (m̄ ν)′ . (41)

With this, δx′ · n = −τ · δn and δx′ = τα δaα (following from τ · n = 0 and x′ = ταaα with τα := ∂ξα/∂s
being fixed), we can write

δx · T = δx · t̂ + δn · mν τ + δaα · m̄ τα ν + (mν δx · n)′ − (m̄ δx · ν)′. (42)

Inserting equation (42) into equation (38) and using M = mτ ν − mν τ (cf. equation (58) from [6]), M̄ =
−m̄ � and δc · � = −�αc · δaα (cf. equations (76c) and (212) from [1]) gives

Gext =
∫
S

δx · f da +
∫

∂S
δx · t̂ ds+

∫
∂S

δn · mτ ν ds+
∫

∂S
δaα · m̄

(
ταν + �α c

)
ds

+ δx · mν n
]
− δx · m̄ ν

]
,

(43)

where the last two terms are jump terms that appear at corners on ∂S due to the out-of-plane boundary moment
mν and the in-plane boundary moment m̄. Effectively, these moments act as point forces at those corners.
Contrary to mν , m̄ also contributes to another term in Gext—the fourth term in equation (43). This is also seen
in the formulation of Steigmann [2], cf. equation (87).
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