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Abstract

Three-dimensional (3D) biomaterial manufacturing strategies show an
extraordinary driving force for the development of innovative solutions in
the biomedical sector, including drug delivery systems, disease modelling
and tissue and organ engineering. Due to its remarkable and promising
biological and structural properties, chitosan has been widely studied
for decades in several potential applications in the biomedical field.
However, tools in the form of 3D printers have created new possibilities
for the production of chitosan models, implants and scaffolds for cell
cultures that are much more precise than existing ones. The article presents
current achievements related to the possibility of using chitosan to create
new materials for 3D printing in the form of chitosan bioinks, filaments,
resins and powders dedicated for bioprinting, fused deposition modelling,
stereolithography/digital light processing and selective laser sintering
methods, respectively.
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1. Introduction

Three-dimensional printing (3DP) is one of the ways of producing objects through
controlled deposition of material layers until its final structure is obtained [1]. Due to
subsequent addition of layers of the material during printing, 3DP is also called additive
manufacturing (AM) [2]. This is the basic difference that distinguishes 3DP from
available manufacturing technologies that involve subtractive processing of a larger
amount of material in order to shape it properly, like drilling, milling, broaching, etc. [3].
Moreover, AM is efficient: it produces less waste and a large amount of energy. Hence, it
uses less energy-demanding machinery [4]. 3DP technology and its unused potential is
a gateway to the new era of printing self-organizing objects after leaving the printer as
a result of exposure to the fourth dimension — time. The stimuli acting in an additional
dimension may be a change in the water content, pH or pressure in the vicinity of the
object, energy supply, e.g. in the form of heat, or chemical reactions occurring in
the environment in which the printed object is located [5]. While the manufacturing and
printing advancements are state-of-the-art technologies with a great scope in various
fields such as automobiles, medical implants, electronics, aerospace and robotics, the
biomedical sector is the one in which the use of AM technology is extremely hopeful
[6, 7]. Many researchers are involved in using 3D printers for various applications such
as drug delivery, disease modelling and tissue and organ engineering [8, 9]. Until
recently, 3D printers were mostly used for prototyping devices for design and
manufacture. More recently, 3D bioprinting has been expanded for applications such as
cell and tissue printing with great hope for a quick transition from research and testing
models to surgical planning, device manufacturing and tissue or organ replacement [10].

In line with the current focus on the sustainable economy, the exploration of natural-
derived and renewable biopolymers, instead of fossil-fuel-based plastics, for various
products’ fabrication has received tremendous attention. Biomass from marine, woody
and agricultural residuals, the most abundant renewable feedstocks on earth, has shown
a promising potential as alternatives to fossil resources [11-13]. Development
of biomass-based materials instead of fossil oil-based plastics for different 3DP
technologies provides an opportunity to realize a truly sustainable and recycling
economy [14]. In general, the material property requirements for 3DP applications in
medicine and pharmacy include, but are not limited to, printability, biocompatibility,
degradability (safe degradation by-products and good degradation kinetics), tissue
biomimicry and appropriate mechanical properties [15, 16].

From a technical point of view, materials should have adequate processability due to
the utilized 3DP technique, e.g. the ability for thermoplastic processing in the fused
deposition modelling technique (FDM) or shear thinning behaviour and zero shear
viscosity, enabling accurate and easy 3DP of high-resolution structures, high shape
accuracy and structural stability in the stereolithography technique (SLA) [17, 18]. From
the point of view of the biomedical application, biocompatibility should be assessed in
terms of cell and tissue compatibility of the ink components, the printed structure, any
washable products or degradation by-products from the printed structure or material
[19]. Normal biocompatibility tests include in vitro tests for DNA damage, cytotoxicity,
cell proliferation and quantification of specific proteins, as well as necessary in vivo tests
according to the categorization of the medical device according to tissue contact and
duration of contact [20]. For scaffolds that are not intended for permanent implants,
printed structures should break down into biocompatible by-products in a controlled
manner, enabling cells to produce their own extracellular matrix or allowing embedded
components to achieve desired release profiles [21]. Tissue biomimetics place demands
on printed constructs to imitate the natural shape of organs and tissues and represent
their complex, heterogeneous nature, including the desired biological functionality,
sufficient strength and rigidity to maintain structural integrity and macro- and micro-porous

38  Progress on Chemistry and Application of Chitin and its Derivatives, Volume XXV, 2020
DOI: 10.15259/PCACD.25.003


http://mostwiedzy.pl

A\ MOST

REVIEW OF CURRENT RESEARCH ON CHITOSAN AS A RAW MATERIAL
IN THREE-DIMENSIONAL PRINTING TECHNOLOGY IN BIOMEDICAL APPLICATIONS

architecture. The attempt to present these characteristics is becoming a key challenge for
biopolymers for 3DP for biomedical applications, especially in tissue engineering [22].
More specific requirements for 3DP materials or printed structures should be considered
for the specific end use and its printing approach. Today’s most promising 3DP
techniques in terms of creating three-dimensional objects for biomedical issues and
involving the use of natural polymers are described below. The principle of operation
of these techniques is shown in Fig. 1.
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Figure 1. The principle of operation of the major commercial three-dimensional printing
methods in which the usage of natural polymers and their derivatives is currently being
investigated: (a) fused deposition modelling, (b) bioprinting, (c) stereolithography,
(d) digital light processing and (e) selective laser sintering; (f) the printed model.
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o  Fused deposition modelling (FDM) is currently the most common method in
which thermoplastics are used in printing. Objects are created by applying
successive layers of semi-fluid material extruded from a heated nozzle. This
material has the form of a line with a constant diameter of 1.75 or 2.85 mm wound
on a spool. FDM uses various types of thermoplastic materials that differ in
strength and melting point: Acrylonitrile-Butadiene-Styrene copolymer (ABS),
polycarbonates, polyphenyl sulphides and waxes (Fig. 1A) [23].

e  Bioprinting (BP) is the utilization of 3DP-like techniques to combine cells, growth
factors, and biomaterials to fabricate biomedical parts that maximally imitate
natural tissue characteristics. BP generally utilizes the layer-by-layer method to
deposit material known as bioink to create tissue-like structures that are later used
in medical and tissue engineering fields (Fig. 1B) [24].

o SLA and digital light processing (DLP) are photopolymerization techniques,
which in general refers to the curing of photo-reactive polymers by using a laser,
visible or ultraviolet (UV) light [25]. The example of 3DP technologies that employ
photopolymerization are SLA (Fig. 1C) and DLP (Fig. 1D). DLP is similar to SLA
in that they both work with photopolymers, But the light source is different. DLP
uses a more conventional light source, such as an arc lamp with a liquid crystal
display panel. It can act on the whole surface of the work area (build platform)
while a single layer photopolymerization of resin. DLP is usually faster than SLA,
in which reaction takes place only at the one point of irradiation of the laser beam
[26].

e  Selective laser sintering (SLS) uses either an electron beam or laser to melt or fuse
the material powder together. The example of the materials used in this process are
metals, ceramics, polymers or their composites or hybrids (Fig. 1E) [27].

Liu and co-workers [28] listed the most important biopolymers that have so far
been successfully adopted in the above-mentioned 3DP methods (Fig. 1). These
include cellulose, sodium alginate, starch, poly(lactic acid) (PLA), agar and their
modified derivatives and composites. Chitosan is another natural polymer in which one
can see the application potential. Chitosan is the N-deacetylated derivative of chitin,
a linear and semi-crystalline polysaccharide composed of glucosamine and N-acetyl
glucosamine units linked by B-(1—4) glycosidic bonds [29]. Chitosan is a natural,
biodegradable, nontoxic and biocompatible hydrophilic polymer with antimicrobial
properties, which due to its excellent properties can prove itself in 3DP technology
dedicated for biomedical applications. The commercial exploitation of chitosan faces
significant barriers because there are difficulties in preparing homogeneously
reproducible chitosan in large quantities from various marine organisms around the
world. Derivatization of chitosan further increases the overall price and possible
differences in character uniformity. These limitations can be overcome thanks to
research and technological progress that will give impetus to the growing applications
and demand of chitosan and its derivatives. Although a number of examples
of chitosan derivatives have been used in biomedical areas, only a few, including
carboxymethylated chitosan, trimethylated chitosan and polyethylene glycol (PEG)
ylated chitosan, have achieved a well-established and potentially characterized
application profile [30]. Therefore, much research still needs to be done to fully exploit
the benefits of chitosan and its derivatives in biomedical applications via 3D printers.
This review presents the latest achievements related to the use of chitosan and their
derivatives in the most commonly used 3DP techniques.
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2. Chitosan Filaments for FDM

The main raw materials used in the production of filaments dedicated for FDM
printing are biodegradable aliphatic polyesters, such as polyhydroxybutyrate and its
copolymer polyhydroxybutyrate-co-valerate, PLA, poly(glycolic acid), poly-
caprolactone and their copolymers. The ester bonds in these synthetic polymers
hydrolyse to nontoxic natural metabolites [31]. Chitosan has proven to be the right raw
material for creating bioconstructions due to their properties, so the idea of adding it to
thermoplastics dedicated to FDM printers is fully justified. However, the major issue was
combining two raw materials with such extremely different properties while maintaining
thermoplasticity.

The easiest way seemed to be physically mixing polymers and subjecting them to co-
extrusion. We conducted such preliminary tests by extrusion PLA pellets with chitosan
powder to assess the possibility of obtaining filaments with antimicrobial activity. The
results have shown that chitosan increased porosity and decreased the density of the
obtained PLA/chitosan filaments. PLA and chitosan formed only a physical mixture after
extrusion. Chitosan caused deterioration of the mechanical properties of filaments,
especially elongation at break and Young’s modulus, but improved their ability to
crystallize. It provided at most the antibacterial properties against Escherichia coli and
Staphylococcus aureus at a 3% mass addition in the filament. The 10% share of chitosan
in the filament completely reduced its printability [32]. Therefore, to create
homogeneous and thermoprocessable (printable) filaments with chitosan, it is crucial to
ensure adequate raw grinding and the use of auxiliary compounds capable of reacting
with functional groups of both extruded polymers.

Wu et al. [33] used PLA and chitosan to create a PLA/chitosan composite. Chitosan
was first made into powder by grinding; it was then mixed into PLA and finally grafted
by maleic anhydride (MA) into PLA-g-MA/chitosan to increase interfacial adhesion
of the blend and enhance the mechanical properties of the PLA/CS composite in
reference to the neat PLA (Fig. 2). This process produced morphologically consistent
composites with a chemical structure different from the structure of raw materials and
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Figure 2. Fabrication of (C) three-dimensional printable filament strips from (A) maleic
anhydride (MA)-grafted polylactide (PLA-g-MA) and chitosan (CS) composite [33].
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increased tensile strength and water resistance. The 10% share of chitosan in PLA-g-
MA/chitosan membranes provided them antibacterial activity.

Another way to increase the compatibility of chitosan with aliphatic polyesters is to
convert it into a so-called thermoplastic form; this endeavour involves combining
chitosan powder with the addition of acid and polyol such as sorbitol, glycerol, etc. [34].
Grande et al. [35] described a method for effectively producing thermoplastic poly(vinyl
alcohol)/chitosan blends that can be melted and dispersed by extrusion without the
negative effects of acetic acid residues into a polyester matrix such as PLA. PLA/
chitosan blends were obtained by solution processing, which involved conventional oven
drying and using new approaches such as freeze- and spray drying. However, browning
of chitosan-containing materials has not been completely eliminated [35].

Georgios et al. [36] used the findings from the above-mentioned studies for the
production of film based on PVA (film-forming activity), xylitol (plasticizer) and
chitosan (improvement of mucoadhesiveness) for buccal delivery of a model hydrophilic
drug (diclofenac sodium) [36]. The manufactured products exhibited acceptable structural
features and dose uniformity. The solid-state characterization indicated effective
plasticization of the polymer, complete blending of the integrated components and
amorphization of the drug. The presence of chitosan affected the ex vivo performance
of formulated films, demonstrating enhanced mucoadhesion and permeation properties.

Research from the last few years has focused mainly on exploring aliphatic polyester/
hydroxyapatite/chitosan systems, in which the content of chitosan in printable filaments
does not exceed 5%, with 10% hydroxyapatite [37-39]. Filaments containing up to 20%
chitosan were developed by Thuaksuban and colleagues [40]. Their main ingredient is
polycaprolactone (PCL). Chitosan and PCL are milled separately using a freezer-mill
machine, then sieved through a 75 pum sieve, mixed together in an 80:20 ratio
of PCL:chitosan by weight and melted in an extruding machine to obtain filament, from
which scaffolds were printed using the melt stretching and multilayer deposition
technique. In this study, the ability of obtained scaffolds for bone regeneration was
evaluated within a rabbit’s calvarial defects. The results confirmed that a chitosan
scaffold can provide small amounts of new bone regeneration that is insufficient for
reconstructing larger bone defects in terms of inducing some specific inflammatory cells.
However, the concept of melt stretching and multilayer deposition (MSMD) scaffold is
still valuable and proves that the barrier of combining hydrophilic chitosan with
thermoplastic materials has been overcome.

3. Chitosan Inks for BP

Bioink can be defined as a mixture of cells, biomaterials and bioactive molecules,
which are applied layer by layer using additive manufacturing to create biocompatible
3D objects. Therefore, the dispersion medium in which cells, growth factors or drugs are
suspended are most often natural polymer solutions, including chitosan solutions. This
polymer possess the ability to form a gel itself by neutralizing the amino groups. It can
also form an ionic crosslinked hydrogel in the presence of anionic components under
relatively mild gelation conditions. Covalently crosslinked chitosan hydrogels can be
prepared by treating chitosan with various chemical reagents, such as glyoxal,
glutaraldehyde and genipin [41]. Chitosan is widely used in wound care, cartilage repair
and drug delivery. When present in dressings, it facilitates the haemostatic process by
interacting with red blood cells with a negatively charged membrane due to its cationic
nature [42]. Chitosan-based hydrogels are often used in bio-applications, but there has
been little research on printing chitosan using BP methods. Gelation and fabrication time
are the two essential parameters leading to suitable hydrogel cell retaining ability, and
they rely on hydrogel rheological behaviour. Pisani and co-authors proposed bioink
meeting most of the requirements for biomedical applications using chitosan/poly
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Figure 3. Pictures of three-dimensional-bioprinted layers using chitosan (CS) bioink:
(a) 6% CS 2% poly(gamma-glutamic acid) (y-PGA) solutions, 90% infill; (b) 4.5%
CS/2% vy-PGA solutions, 70% infill; and (c) 6% CS/2% y-PGA solutions, 70% infill [43].

(gamma-glutamic acid) (y-PGA) [43]. The principle of the method is based on the use
of a commercial INKREDIBLE + 3D bioprinter equipped with two dosing heads, and
the electrostatic interaction between amino groups of chitosan and carboxylic groups
of y-PGA.

The number of reactive functional groups from both polymers determines the quality
of the printed polyelectrolyte hydrogel (IPECs). The aim of the study was to find the
optimal composition of both polymer solutions in terms of the quality of printouts and
evaluate the survival of human fibroblast cells that were suspended in chitosan solution
during printing. The results showed that IPECs formed between 4.5% or 6% chitosan
and 2% y-PGA 2% were stable in a grid shape up to about 37 Pa (370 dyne/cm?) shear
stress (Fig. 3), much higher pressure than those present in most human arteries. Cell
survival in the bioink and after 3D BP was excellent.

To create another bioink, Lee and colleagues proposed the use of catechol-conjugated
chitosan (Chi-C), which in the first stage is produced by chemical coupling of both
substrates using 1-ethyl-3-(3-dimethylamino propyl) carbodiimide (EDC) [44]. To 2%
Chi-C derivative solution in culture medium, vanadium oxide sulfate hydrate is added. The
vanadyl ion accelerates gelation by quickly generating a catechol radical and forming
oxygen complexes with hydroxyl groups present in the catechol aromatic ring (Fig. 4).

Chi-C can interact with blood components to form self-sealing membranes. The
phenomenon was observed in blood, so a similar type of rapid complexation with foetal
bovine serum was tested. The measured viability of L929 (mouse fibroblast) cells
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Figure 4. Schematic illustration for preparation of the vanadyl ion-catechol-conjugated
chitosan (V-Chi-C) bioink [44].
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encapsulated in the printed scaffolds was almost 90 + 5%. These results show the
unexplored potential of vanadyl ion-Chi-CS for in situ printability in serum containing
media by rapid complexation between Chi-C and serum proteins without any extrinsic
physical factors such as UV light. The small amount of vanadyl ion (1 mM) showed
nearly no cytotoxicity. Moreover, the cell viability was 89 = 8 % even after a 5-day
incubation.

4. Chitosan Resins for SLA/DLP

Many studies have described the possibility of using chitosan derivatives in the field
of biomaterials, such as soft tissue reconstruction [45], cartilage tissue engineering [46],
cartilage regeneration [47] and drug release [48]. However, the procedure for these
methods has so far been complex, the cost was high and during the process a toxic
segment was introduced that changes the properties of the chitosan derivative. Research
works from the last decade have clearly indicated the superiority of the Michael reaction
in constructing chitosan photocured resins. The Michael reaction is a well-known
process of adding various amines to o, B-unsaturated carbonyl compounds. Many studies
have reported chemical modification of chitosan with a double bond monomer in the
Michael reaction under mild reaction conditions [49, 50].

Ma and colleagues [51] presented a method of producing photopolymerizable
chitosan derivative prepared by the Michael reaction of chitosan and poly(ethylene
glycol) diacrylate (PEGDA). They reacted a 1% solution of chitosan in 1% acetic acid
with PEGDA in a 1:14 mass ratio of polymers at 40°C for 24 h. Then, the reaction
mixture was concentrated to a yellow viscous liquid. By using a 2% addition of Irgacure
2959 photoinitiator, they confirmed the ability to photopolymerize the solution after
15 min of UV irradiation (30 mV/cm?), but printability was not checked using a 3D
printer. The obtained N-alkylated photopolymerizable chitosan derivative (PEGDA-CS)
exhibited good solubility in water, an amorphous structure, lower thermal stability than
chitosan and antimicrobial properties against E. coli, but lower than the chitosan used for
modification.

Cheng and Chen [52] presented a way to implement chitosan in PCL-DA/PEG-DA
resin in order to harness its many biological benefits and evaluate the effects of chitosan
on structure wettability, cell adhesion and cell proliferation. The first stage consisted
of PCL diol end-capping reaction with acrylate groups to form a crosslinkable and
polymerizable PCL-DA macromer. In the second step, PEGDA was added to pre-
dissolved 6% chitosan solution in 1% acetic acid heated to 40°C and finally mixed with
PCL-DA/TPO (photoinitiator)/acetone solution for 10 h. Samples containing 5%, 10%
and 15% chitosan in resin were used in the tests with a DLP 3D printer. All obtained 3D
constructs had a melting temperature well above body temperature of 37°C and thus can
be considered thermally stable for implantation. The increase in chitosan content
increased the hydrophilicity of resulting resin in a possible acceleration of the
bioabsorption rate and provided a surface favourable to L929 mouse fibroblast adhesion.
At the same time, the crosslinking structure of printed scaffolds, especially above 10%
chitosan addition, was weakened. Studies have also confirmed that the addition
of chitosan reduces the crystallinity of the resin and its shrinkage after photocuring, what
1s an advantage from a technical point of view.

Cebe et al. [53] presented another example of using chitosan scaffolds created
by photocuring to increase cell growth. Their work demonstrated a method of obtaining
methacrylic derivatives of chitosan (MAC) and gelatin (MAG) via the Michael reaction.
Dialysis-purified derivatives are lyophilized and then dissolved at a concentration
of 10% in a culture medium dedicated to the cell line with 0.8% addition of Irgacure
2959 photoinitiator and 4% addition of sucrose and laponite nanosilicate. Scaffolds were
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Figure 5. (a) Three-dimensional model and (b) scaffold fabricated by two-photon-
induced micro-stereolithography [55].

printed using UV light (1040 mW/cm?). The results confirmed that the use of chitosan
and laponite nanosilicate in scaffolds obtained by 3DP can enhance the formation
of biomineral in osteoprogenitor cells during osteogenic differentiation due to the
increased affinity of chitosan to enhance MC3T3 cell growth, elevation phosphate to
amide formation, and forming the Ca—P biomineral nodules on the surface of the scaffold
in a relatively short time frame as compared with gelatin-based scaffolds. However, this
method is multi-stage and complicated, which rather excludes it in industrial use. Shen
and colleagues [54] very recently proposed an easier way to use the same raw materials.

Bardakowa and co-workers [55] proposed a less complicated way for implementation
of chitosan in production of biodegradable scaffolds for spinal cord regeneration by 3DP.
They first obtained the chitosan-g-oligo (L, L-lactide) copolymer by reactive blending
of chitosan powder and oligo (L, L-lactide) at 55°C using the twin-screw extruder. An
amount of the obtained copolymer (4.9%) was dissolved in a 3% acetic acid solution.
After separation of the insoluble fraction, the solution was mixed with PEGDA and
a biocompatible Irgacure 2959 initiator in the mass ratio of components 5:5:1 in the final
resin, respectively. This method developed a 3D model for treating spinal cord injuries
(Fig. 5). It is a truncated cylinder that is 1000 um long and 600 um high. There is an
array of holes 30 um in diameter on the convex side of the scaffold. The device provided
a high survival rate of cortical neurons and the formation of neural networks and thus
could be considered biocompatible and suitable for neuroregeneration [55].

The Liu team investigated the problem of SLA printout shrinkage. One way to
prevent this phenomenon is using inert fillers as an additive in resins [56]. They decided
to use calcium sulphate whiskers (CSW), due to the many advantages like thermal
stability, chemical resistance, high strength and whole surfaces. CSW were coated with
chitosan by immersion in its solution and formed polyelectrolyte complexes (CS@
CSW). The derivative obtained in this way was dispersed in N,N-dimethyl- acetamide
(DMAC) with an excess amount of acryloyl chloride and triethylamine related to
chitosan polymer and the mixture was stirred at room temperature for 24 h. The obtained
m-CS@CSW was mixed with oligomer epoxy acrylate and tripropylene glycol
diacrylate (TPGDA) and TPO photoinitiator and photocured. Fourier transform infrared
spectroscopy, water contact angle (WCA) and thermogravimetric analysis showed that
the modification was succesful and the printed models showed high accuracy and
resolution. Tests of viscosity and volumetric shrinkage showed that CSW modified with
chitosan has little effect on viscosity and leads to a significant reduction in volumetric
shrinkage of the printout. The use of CSW modification in a 5% chitosan solution
increases tensile strength and impact strength of cured samples by 19.4% and
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6.6% compared to cured pure resin, respectively. It is simultaneously one of the
alternative method of introducing chitosan to the final resin.

5. Chitosan powder for SLS

The idea of using chitosan in SLS seems to be interesting because of the unique,
functional properties of chitosan, which determine the possibility of using this polymer
for biomedical applications. The second reason is the ability to use the raw material in
the form of a powder, so the use of classic solvents to obtain a polymer solution is

unnecessary. The printing process, however, requires large amounts of energy that allow
point bonding of the powder layer by layer in accordance with the information contained
in the file of the printed object.

Brysch and others [57] showed that chitosan degradation starts above 220°C but can
also occur at lower temperatures (180°C) at longer sintering times (12 h). Shorter
sintering times seem to favour the strength of the chitosan. Those conditions resulted in
accelerated polymer breakdown, as evidenced by the characteristic exothermic reaction or
by the appearance of ash [57]. The intra- and intermolecular hydrogen bonds, which
generate a stable and rigid semi-crystalline structure of chitosan, also make it degradable
before melting because of the high melt viscosity, which is typical for polysaccharides with
extensive hydrogen bonding. Hence, the use of chitosan in the printing method by sintering
its powder is a difficult task. There is information in the literature on the creation of, for
example, tissue engineering scaffolds using SLS simultaneously containing chitosan.
However, these are mainly at least two-stage methods, in which a porous scaffold is first
made, e.g. from polycaprolactone powder or a titanium composite, which is then subjected
to postprocessing by immersion in a solution of chitosan or chitosan with hydroxyapatite to
improve the biocompatibility and cell proliferation activity [58, 59].

The latest work in which chitosan had been directly subjected to sintering in SLS
is from Sun and colleagues [60]. They presented a method of using chitosan for the
production of composite membrane for adsorption and catalysis, with the base
thermoplastic polyurethane (TPU). Membranes were obtained by simple physical mixing
both powders in a 1:1 mass ratio and treated by a carbon dioxide (CO,) laser. The results
showed that sintering temperature caused by laser power and scanning speed was an
important factor affecting the formation of chitosan/TPU composite membrane during
sintering. Under suitable laser power and scanning speed, the TPU melts and wets the
CS to promote its formation of a membrane structure. Due to the existence of chitosan,
the membrane has super-hydrophilic properties and can effectively adsorb copper and
lead metal ions in water. In addition, a palladium-laden chitosan/TPU membrane can be
used as a catalyst for p-nitrophenol reduction with sodium borohydride (conversion rate
could reach 96% in 20 min), and has the advantages of excellent stability, repeatability
and ease of separation from the reaction system.

6. Conclusions

Research in recent years has shown significant progress in the use of 3DP technology
in biomedical applications. Medical materials used in 3DP consist of metals, polymers
and ceramics, with many materials usually integrated to achieve complex functions in
printed components. Further methods of combining raw materials, including chitosan, to
improve the mechanical behaviour of personalized scaffolds, to ensure their appropriate
porosity, as well as biodegradation time are currently being described. Much remains to
be done before printed bioactive tissues and organs are routinely used in the clinic, and
these tasks include searching for high-performance materials compatible with various
commercial 3D printers, mastering precise 3D production using them, creating uniform
standards for printed objects and conducting clinical tests.
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