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Abstract 1 

In the broader context of modern society, the activity of the serotonergic system has been 2 

implicated in the etiology of various psychiatric conditions and mental disorders, with 3 

serotonergic drugs commonly used in their treatment. It has been documented that serotonin can 4 

modify neural pathways and synaptic connections, which are essential for cognitive functions 5 

and memory processing. Spatial memory has emerged as one of the valuable models for 6 

understanding general declarative memory functions. Hence, in this In Focus review, our 7 

attention is solely devoted to understanding how serotonin affects spatial memory and learning. 8 

We aim to identify and highlight the existing gaps in research, offering new insights into 9 

serotonin's function and plan for further research in both spatial navigation and the broader 10 

spectrum of declarative memory. 11 

Keywords: serotonin, 5-HT, spatial memory, behavior, theta rhythm, spatially tuned cells 12 

Key Facts: 13 

• Serotonin (5-hydroxytryptamine, 5-HT), an indolamine neurotransmitter, has been implicated 14 

in the etiology of various psychiatric conditions and mental disorders. 15 

• Spatial memory has become a model for exploring the functions of declarative memory. 16 

• The serotonergic system modulates spatial memory via diverse mechanisms, with 17 

effectiveness varying by manipulation type, experimental method, and data analysis approach. 18 

• Further progress in understanding the effects of serotonin on spatial memory at both 19 

behavioral and cellular levels requires the use of modern, high-resolution methods.  20 
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Remembering Space and Time 21 

Our self is constantly shaped by experiences as we encounter them across various physical 22 

spaces at different moments of our lives (Klein and Nichols, 2012). These events, typically 23 

intertwined with cues from sensory domains, become embedded in our preexisting neural 24 

networks (Buzsáki et al., 2022). This implies that space and time are fundamental elements for 25 

our declarative memory and, therefore, crucial building components of our self-identity (Buzsáki 26 

et al., 2022; Eichenbaum, 2017; Grilli and Verfaellie, 2015; Klein and Nichols, 2012; Martinelli 27 

et al., 2013). Losing the ability to encode and retain information about space and time can have 28 

dramatic outcomes on our ability to function in daily life. This is often observed in patients with 29 

severe dementia of various etiology. At some point in the disease, we may lose the ability to 30 

recognize our own home or loved ones (Jetten et al., 2010; Rose Addis and Tippett, 2004; 31 

Strikwerda-Brown et al., 2019). 32 

Mental maps 33 

Spatial memory has been proposed as one of the mnemonic mechanisms providing a general 34 

framework for the functioning of declarative memory (Bellmund et al., 2018; Bicanski and 35 

Burgess, 2018; Buzsáki et al., 2022; Buzsáki and Moser, 2013; Eichenbaum and Cohen, 2014; 36 

Tolman, 1948; Varga et al., 2024; Viganò and Piazza, 2020). Not only does this concept apply to 37 

environmental frames that physically exist and are experienced through the senses, but it is also 38 

proposed to involve the creation of abstract cognitive maps, or as some refer to them, mental 39 

maps (Aronov et al., 2017; Buzsáki and Moser, 2013; Constantinescu et al., 2016; Eichenbaum 40 

and Cohen, 2014; Guelton, 2023; Tolman, 1948). These putative mental maps would organize 41 

our memories, including events, episodes, solutions to problems, emotional states, and internal 42 

sensations, along with some generalizations and semantic facts, within abstract spatiotemporal 43 
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frameworks (Eichenbaum and Cohen, 2014; Guelton, 2023). Thus, we can travel mentally 44 

through abstract spaces of interconnected memories, further process all stored information, and 45 

produce new associations (Fragueiro et al., 2021). In this In Focus review, we will specifically 46 

focus on spatial memory as a framework to examine the impact of serotonin on this distinct 47 

category of memory. 48 

Why serotonin? 49 

Despite less than 0.1% of neurons in the mammalian brain having the ability to synthesize and 50 

release serotonin (5-hydroxytryptamine, 5-HT) (Okaty et al., 2019), much discussion has 51 

centered on how it can alter and potentially enhance our quality of life in a variety of mental 52 

health disorders. This includes moderating anxiety and stress, promoting patience and coping 53 

mechanisms, and opening the window for greater neural plasticity, depending on the type of 54 

receptors involved (Carhart-Harris and Nutt, 2017; Deakin, 2013; Miyazaki et al., 2012, 2014). 55 

Serotonergic drugs have been proposed and are widely used in treating a broad spectrum of 56 

mental health conditions, particularly mood disorders  (Hieronymus et al., 2016; Moncrieff et al., 57 

2023; Pourhamzeh et al., 2022). This is despite controversies regarding serotonin dysregulation 58 

being the major cause of these conditions (Kirsch, 2019; Moncrieff et al., 2023). Furthermore, 59 

serotonergic drugs are also found in the realms of recreational drug use, microdosing, and other 60 

recently emerging fields of self-prescribed neuro-enhancement, which aim to improve human 61 

mood, well-being, efficiency, creativity, and the balance between wakefulness and sleep 62 

(Cavanna et al., 2022; Cespuglio, 2018; Daubner et al., 2021; Gandotra et al., 2022; Jannini et 63 

al., 2022; Marazziti et al., 2021; Monti, 2011; Parrott, 2002; Sakakibara, 2020; Schmitt et al., 64 

2006). Reflecting on these widespread applications, substances acting on the brain's serotonin 65 

system have become prevalent across all age groups in our society (Giovannini et al., 2020; 66 
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Jannini et al., 2022). Given the extensive scope of serotonin research, particularly within 67 

pharmacology, this brief review will focus on selected topics that we believe would benefit from 68 

re-examination using more advanced approaches. 69 

Global changes in brain serotonin  – missing bits and pieces 70 

The serotonergic system has been identified as capable of modulating spatial memory through 71 

various mechanisms, although its effectiveness can vary depending on the type of manipulation 72 

applied, the experimental method, and the approach to data analysis (Fig. 1) (Coray and 73 

Quednow, 2022; Dale et al., 2016; Glikmann-Johnston et al., 2015). The majority of earlier 74 

studies investigating serotonin's role in spatial memory relied on simple behavioral tests, such as 75 

the Morris water maze, radial arm maze, Barnes maze, and similar assays. These studies often 76 

employed basic behavioral analyses, focusing on metrics such as the time required to locate a 77 

target location or the duration spent in the chosen area. Results were typically presented as 78 

average time in seconds. For instance, a global decrease in serotonin levels induced by acute 79 

tryptophan depletion (ATD) (Hood et al., 2005; Van Donkelaar et al., 2011; Young et al., 1989) 80 

did not significantly impact spatial memory in rats and mice across several studies  (Lieben et al., 81 

2004; Liu et al., 2013; Stancampiano et al., 1997; Uchida et al., 2007). Similarly, nonspecific 82 

neurotoxic lesions targeting serotonin neurons using 5,7-dihydroxytryptamine (5,7-DHT) did not 83 

significantly alter outcomes in those basic behavioral models (Lehmann et al., 2000; Majlessi et 84 

al., 2003; Nilsson et al., 1988). The serotonin depletion induced by inhibiting tryptophan 85 

hydroxylase with Para-chlorophenylalanine (PCPA) (Dringenberg et al., 1995; Miczek et al., 86 

1975) also did not affect significantly the learning performance of rats in water maze (Fig. 1) 87 

(Beiko et al., 1997; Dringenberg and Zalan, 1999; Harder et al., 1996; Jäkälä et al., 1993; 88 

Richter-Levin and Segal, 1989; Riekkinen et al., 1993, 1992) and active place avoidance, a 89 
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spatial task that requires allothetic mapping and cognitive coordination and is highly dependent 90 

on the hippocampus (Petrásek and Stuchlík, 2009). 91 

On the other hand, several studies have shown that global decrease in serotonin levels 92 

altered certain aspects of spatial memory (Fig. 1). In the Barnes maze, the performance of the 93 

serotonin transporter (5-HTT) knockout (-/-) mice was indistinguishable from that of 94 

heterozygous (+/-) and wild-type (+/+) mice. However, they performed worse in the Morris 95 

water maze. Nevertheless, over the course of repeated water maze trials, 5-HTT knockout (-/-) 96 

mice improved to reach the performance level of wild-type mice (Karabeg et al., 2013). The 97 

serotonin 1A receptor (5-HT1A) knockout animals exhibited deficits in hippocampal-dependent 98 

learning and memory tasks, including Morris water maze and a version of the Y maze (Sarnyai et 99 

al., 2000). In the other experiments, young adult 5-HT1A knockouts, but not aged ones, 100 

exhibited impaired learning and retention in the Morris water maze (Wolff et al., 2004).  101 

There is also evidence suggesting that global long-term increase in serotonin levels can 102 

improve particular aspects of spatial memory (Fig. 1). A daily injection of the serotonin 103 

precursor, 5-hydroxytryptophane (5-HTP), prior to training sessions, improved considerably the 104 

performance of the old rats in the water maze but had no effect on the behavior of the young rats 105 

(Levkovitz et al., 1994). Enhanced performance in radial maze was also observed in rats treated 106 

with tryptophan (Haider et al., 2006). Furthermore, various agonists and antagonists of the large 107 

family of serotonergic receptors had different effects on spatial memory in animal models using 108 

water maze and radial arm maze tests, and in human spatial memory tasks (Beaudet et al., 2015; 109 

Coray and Quednow, 2022; Dale et al., 2016; De Filippis et al., 2015; Wingen et al., 2007). 110 

Considering the data discussed above, it can be inferred that long-term changes in global 111 

serotonin levels are unlikely to affect spatial memory and learning. However, the majority of 112 
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these studies rely on coarse measures of behavior in simplistic tests, an approach that 113 

significantly reduces our capability to quantify the rich and dynamic nature of behaviors 114 

occurring at sub-second time scales. Recent high-resolution animal tracking methods, automated 115 

behavior recognition, data-driven and hierarchical approaches for behavioral data analysis, and 116 

other available resources could help to shed new light on the role of serotonin in spatial 117 

navigation that seems to be more complex and will require more sensitive analytical methods 118 

(Amir et al., 2020; Correia et al., 2024, 2017; Hu et al., 2023; Jankowski et al., 2023; Könings et 119 

al., 2019; Mathis et al., 2018; Pereira et al., 2020, 2019; Ryait et al., 2019; Storchi et al., 2020; 120 

Van Dam et al., 2023). 121 

Local changes in brain serotonin and their impact on hippocampal theta rhythm-related learning 122 

So far, attempts to change global serotonin levels have most frequently failed to produce 123 

significant effects. However, in some cases, they have either impaired or improved spatial 124 

memory and learning. When we examine experiments involving more targeted, localized 125 

changes in serotonin levels within specific brain structures, it appears to be a more effective 126 

approach (Fig. 2). Optogenetic activation of serotonergic terminals in the CA1 region of the 127 

hippocampus enhanced water maze memory formation, while inhibition of these terminals in the 128 

CA1 region impaired it (Fig. 2A) (Teixeira et al., 2018). Recent study by Gerdey and Masseck 129 

(2023) failed to reproduce these results possibly due to different genetically modified mouse 130 

models used in both studies. In Gerdey and Masseck (2023) study, manipulating median raphe 131 

serotonin input to the dorsal CA1 subfield, whether through activation or inhibition at CA1 fiber 132 

terminals, did not affect significantly object recognition, spatial memory, or anxiety behavior. 133 

However, activation of serotonergic fibers to the CA1 region altered strategies used in the Barnes 134 

Maze. Moreover, activation of 5-HT1A receptors, abundant in CA1's pyramidal neurons, 135 
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significantly enhanced spatial memory without impacting object recognition or avoidance 136 

behavior (Fig. 2A) (Gerdey and Masseck, 2023). 137 

 Following lesions in the fimbria, fornix, and cingulate bundle of adult rats with 5,7-DHT 138 

to deplete hippocampal serotonin, Gutiérrez-Guzmán et al. (2011) observed a facilitation of place 139 

learning. This effect was associated with dominant high-frequency theta activity (6.5-9.5Hz) 140 

(Gutiérrez-Guzmán et al., 2011). Similarly, serotonin depletion in the medial septum facilitated 141 

learning in Morris water maze and increased the frequency of the hippocampal theta activity 142 

during the first days of training to 8.5 Hz (Gutiérrez-Guzmán et al., 2017). The depletion of 143 

serotonin in the medial septum and Broca's diagonal band (MS/DBB) facilitated working 144 

memory also in the radial arm maze and again induced a higher expression of high-frequency 145 

(6.5–9.5 Hz) theta activity (López-Vázquez et al., 2014). On the other hand, depletion of 146 

serotonin in the supramammillary nucleus impaired learning in Morris water maze and altered 147 

the expression of hippocampal high-frequency theta activity (Fig. 2B) (Hernández-Pérez et al., 148 

2015).  149 

Serotonergic modulation of hippocampal theta rhythm has been described in several 150 

studies (Gordon et al., 2005; Kazmierska and Konopacki, 2015; Kudina et al., 2004; Olvera-151 

Cortés et al., 2013; Sörman et al., 2011; Vertes, 2010). Theta activity plays a critical role in 152 

spatial navigation, particularly in the hippocampus, where place cells coordinate their firing with 153 

network oscillations and neurons in other brain regions through processes such as phase 154 

precession, phase locking, and phase rolling (Buzsáki, 2002; Jones and Wilson, 2005; Siapas et 155 

al., 2005; Skaggs et al., 1996; Sloin et al., 2022). Theta activity at its core is generated by the 156 

synchronous activity of multiple single neurons in specific neural networks, such as those in the 157 

medial septum and hippocampus (Herreras, 2016; Nuñez and Buño, 2021). Therefore we 158 
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expected that we will find numerous papers concerning the effects of serotonin on cellular 159 

substrates of spatial memory such as place cells, grid cells, boundary cells, head direction, or 160 

object and object-trace cells (Grieves and Jeffery, 2017). Despite the availability of advanced 161 

methods for studying spatial navigation at the single-cell level and its relations with theta rhythm 162 

in both rodents and, increasingly, humans, we found it challenging to locate studies that detail 163 

such research. Our investigation uncovered research conducted by Zhang et al. (2017) 164 

demonstrating that the administration of the phenylalkylamine hallucinogen TCB-2, a selective 165 

agonist of 5-HT2A receptors (5-HT2ARs), increased the latency for trained mice to initiate goal-166 

directed swimming in the Morris water maze. This effect could be prevented by the 5-HT2AR 167 

antagonist MDL 11,939. TCB-2 did not affect previously established place fields of CA1 168 

neurons in mice exploring a familiar environment, nor did it impact the remapping of place cells 169 

in a novel environment. However, it did impair the long-term stability of place fields for the 170 

novel environment initially encoded under the influence of TCB-2, an effect that could also be 171 

prevented by 5-HT2AR antagonist MDL 11,939 (Zhang et al., 2017).  In a study by Sandoval et 172 

al. (2008), the serotonergic antagonist methiothepin altered the directional characteristics of head 173 

direction cells in the anterior dorsal thalamus only when combined with the muscarinic 174 

antagonist scopolamine. These studies suggest that manipulating serotoninergic activity holds 175 

potential for modulation of the cellular substrates of spatial memory and could be further 176 

investigated. 177 

Conclusions 178 

In summary, the serotonergic system has the potential to modulate spatial memory, though its 179 

effects are complex and require more advanced experimental and data analysis methods for 180 

thorough understanding. Current behavioral experiments often report no significant effects, 181 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


possibly due to the reliance on coarse measures. Meanwhile, the interplay between cellular 182 

substrates of spatial memory and serotonin remains poorly explored. Both domains offer 183 

promising avenues for research, which could be pursued concurrently with plenty of tools 184 

available at hand. 185 
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Figure 1. This figure summarizes research on how changes in global serotonin levels affect 498 

spatial memory in rodents across various tasks, such as the Morris water maze, radial arm maze, 499 

and Barnes maze. It depicts three main outcomes observed in previous studies: non-significant 500 

changes, decreased performance, and increased performance, marked by arrows in black, red, 501 

and green, respectively. Behavioral effects were produced through various experimental 502 

interventions. These included acute tryptophan depletion (ATD), neurotoxic lesions induced by 503 

5,7-dihydroxytryptamine (5,7-DHT), serotonin depletion caused by inhibiting tryptophan 504 

hydroxylase with Para-chlorophenylalanine (PCPA), genetic manipulations such as knockouts of 505 

the serotonin transporter (5-HTT) or serotonin 1A receptor (5-HT1A) genes, as well as 506 

administration of serotonin precursors like 5-hydroxytryptophan (5-HTP) and tryptophan (TRP). 507 

Key studies are cited for each outcome, providing an overview of the role of serotonin in spatial 508 

memory. 509 

Figure 2. Impact of targeted serotonergic system manipulations on spatial memory in the Morris 510 

water maze task: (A) Optogenetic activation of serotonergic terminals or 5-HT1A receptors in 511 

the hippocampal CA1 region of the hippocampus enhanced performance in water maze, while 512 

inhibition of serotonin terminals in the CA1 region impaired it. (B) Local neurotoxic lesions 513 

induced by 5,7-dihydroxytryptamine (5,7-DHT) in the medial septum (MS), diagonal band of 514 

Broca (DBB), fimbria (fi), fornix (fr), and cingulate bundle (Cb) improved rats performance in 515 

water maze, while lesion in supramammillary nucleus (SuM) decreased performance. 516 
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Effects of global serotonin level changes
on spatial memory tasks in rodents
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ATD: Lieben et al., 2004; Liu et al., 2013; Stancampiano 
et al., 1997; Uchida et al., 2007. 
5,7-DHT: Lehmann et al., 2000; Majlessi et al., 2003; 
Nilsson et al., 1988. 
PCPA: Beiko et al., 1997; Dringenberg and Zalan, 1999; 
Harder et al., 1996; Jäkälä et al., 1993; Richter-Levin 
and Segal, 1989; Riekkinen et al., 1993, 1992.

5-HTT knockout mice: Karabeg et al., 2013. 
5-HT1A knockout mice: Sarnyai et al., 2000; 
only young rats: Wolff et al., 2004.

5-HTP in old rats: Levkovitz et al., 1994

B
a

rn
e

s 
m

a
ze

5-HTT knockout mice: Karabeg et al., 2013

HO NH2

N
H

HO NH2

N
H

COOH

5-Hydroxytryptophan (5-HTP) Serotonin (5-HT)

R
a

d
ia

l a
rm

 m
a

ze

ATD: Stancampiano et al., 1997
5,7-DHT: Lehmann et al., 2000

Tryptophan: Haider et al., 2006

NH2

N
H

COOH

Tryptophan

HO NH2

N
H

Serotonin (5-HT)

HO NH2

N
H

COOH

5-Hydroxytryptophan (5-HTP)

improved performancedecreased performancenon-significant changes
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Serotonergic neuron
(Raphe nuclei)

Morris water maze

improved performance

decreased performance

Activation

Inhibition

(Teixeira et al., 2018)

Activation of 5-HT1A
(Gerdey and Masseck, 2023)

Optogenetic stimulation 
S
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ls

  

 Hippocampus CA1

A

SuM

Hip

Recording

DBB fr

Cb

MS

Increased high-frequency 
theta activity (6.5-9.5 Hz)

Local 5,7-DHT serotonergic lesions  

MS, DBB, fi, fr, Cb,

SuM

B

fi

(Gutiérrez-Guzmán et al., 2011, 2017; López-Vázquez et al., 2014)
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