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Abstract Mixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based on
the three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotation
fields, both strain and stress resultant fields are treated as independent. The elements are derived in the frame-
work of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells.
The novelty of the developed elements stems from the fact that the measures of assumed strains and stress
resultants are asymmetric. The original interpolation of drilling and bending components of strains and stress
resultants is proposed. In the formulation of newmixed elements, two variants of the interpolation ofmembrane
components are used and interpolation of the independent fields is defined in the natural or skew coordinates.
Accuracy and efficiency of the developed elements are tested in several linear and nonlinear numerical exam-
ples. It is shown that smaller number of independent parameters in the interpolation of membrane components
gives more accurate results. The proposed mixed 4-node elements enable the use of large load steps in non-
linear computations. Moreover, they require significantly less equilibrium iterations than other shell elements
formulated in the 6-parameter shell theory.

Keywords Shell · Finite element · Mixed element · Cosserat · Asymmetric strains · Drilling rotation

1 Introduction

Thin-walled shell structures are widely used in different branches of industry, e.g. aircraft, automotive, civil
engineering.However, these structures are very sensitive to loss of stability and local damage, like delamination,
cracking, etc. The detailed and comprehensive nonlinear analysis (postbuckling, damage, plasticity) requires
an appropriately refined finite element discretization. Hence, accuracy and efficiency of the shell element
formulation play both essential roles in fast and correct design process of thin-walled shell structures.Moreover,
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the shape and topology optimization of shell structures lead to the shells with more complex geometry. The
shell finite element is a crucial tool in accurate analysis of such structures that is still a demanding task.

Four-node shell finite elements are commonly used among engineers nowadays. The majority of commer-
cial FEM systems offer such elements as a default tool in analysis of different mechanical problems. As it is
well known, the classical pure displacement formulation with fully integrated matrices gives usually too stiff
deformation for general shell problems due to shear and membrane locking. In commercial FEM codes, finite
elements rely on reduced (or selective reduced) integration scheme to avoid locking phenomena. However, the
problem of non-physical deformations of analysed structures appears in solutions obtained by the elements
with reduced integration. Different techniques to mitigate spurious zero energy modes were proposed in the
literature [1–3], but they only limit this effect. An alternative approach to deal with the locking phenomena
is application of mixed hybrid finite elements. These elements are based on multifield variational principles
and besides displacement field, stress field and/or strain field are treated as independent. The mixed hybrid
elements are characterized by high accuracy and robustness and reduce substantially the locking effect; see, for
instance, the review work [4]. For the first time, hybrid finite element with assumed stress field was introduced
in the paper [5]. The element formulation was based on the complementary energy principle. In further works,
see for instance [6], the Hellinger–Reissner variational principle was used in the formulation of hybrid stress
elements. Pian and Sumihara [7] proposed 4-node plane stress element less sensitive to geometric distortion
and providing accurate stress results.

The mixed shell elements were extensively developed in 1980s and 1990s. The approach of assumed
stress resultants for membrane and bending components and the assumed natural strain (ANS) concept [8]
for transverse shear components was used in formulation of mixed shell element in papers [9,10]. The mixed
hybrid plate and shell elements with assumed strains based on the modified Hellinger–Reissner functional
were described in [11,12]. The concept of enhanced assumed strains (EAS) defined on the element level was
proposed in [13] and then developed in [14,15]. The works on the mixed hybrid shell elements were continued
in twenty-first century. Wagner and Gruttmann presented robust 4-node shell elements based on three-field
Hu–Washizu functional in papers [16,17]. The proposedmixed hybrid elements allow for very large increments
(e.g. load steps) in elasto-plastic analysis and require significantly less equilibrium iterations in comparison
with other shell elements. The effective shell elements with interpolation of assumed stress resultants and
strains defined in skew coordinates were proposed in [18]. In these mixed Hu–Washizu elements, the drilling
rotation was included in the formulation through the drilling rotation constraint equation. Four-node hybrid
shell element based on the modified complementary energy functional almost insensitive to mesh distortions
was described in [19]. Different methods of incorporating the drilling degree of freedom (DOF) in formulation
of the EAS shell elements were compared in [20]. Mixed shell elements with the drilling DOF using the
co-rotational kinematics concept were presented in [21–23]. Recently, some new shell and plate elements have
been described in [24–29].

The mixed hybrid elements discussed here are developed in the framework of nonlinear 6-parameter
shell theory, see for instance [30,31]. A characteristic feature of the nonlinear 6-parameter shell theory is
the lack of symmetry of strain and stress resultant measures. The sixth parameter is the drilling rotation that
is included in the formulation in the natural way. The theory is especially dedicated to analysis of irregular
shell structures, containing, for instance, orthogonal self-intersections. From the theoretical viewpoint, the
approach is statically and geometrically exact, since the preliminary postulates and simplifying assumptions
are not needed. A kinematic model of the shell reference surface is formally equivalent to the Cosserat surface
[32,33] with three rigidly rotating directors. The only assumptions are made during formulation of constitutive
equations. Some of the recent results in this respect can be found in [34–38].

For the first time, hybrid plane stress elements with the assumed asymmetric stress field were proposed in
papers [39,40]. However, these elements formulated based on the complementary energy principle yielded too
stiff response in numerical tests, because of too rich assumed interpolation. Three new variants of interpolation
of membrane stresses were described in [41]. However, only the variant with constant interpolation of the
membrane shear components was used in the formulation of further two-dimensional assumed stress hybrid
elements [42,43]. Sansour and Bednarczyk [44] proposed 4- and 9-nodemixed shell elements with asymmetric
assumed stress resultants. These elements were defined on the Cosserat surface and based on the two-field
Hellinger–Reissner principle. Themixed hybrid shell elements with non-symmetrical interpolation of assumed
strains and enhanced assumed strains were formulated in [45].

In the framework of the present shell theory, mixed and semi-mixed elements based on two-field vari-
ational principles were proposed in [31,46] and reformulated using the EAS concept in [47,48]. In [48],
the ANS approach was applied for transverse shear components. In the shell elements mentioned above
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[44,45,47,48], only the membrane and transverse shear components were treated as independent on the ele-
ment level. Moreover, interpolation of assumed strain and stress resultant fields was defined only in the natural
coordinates. The present paper introduces new approach to the idea of mixed shell elements within the frame-
work of considered shell theory. The essential features and original aspects of the proposed shell elements
are:

• For the first time, the mixed hybrid elements with asymmetric independent strain and stress resultant
fields are formulated. The elements are based on the three-field Hu–Washizu functional, and here for the
simplicity of considerations a linear elastic material model is used. The first part of strain interpolation is
the same as for the stress resultants, while the second part is assumed orthogonal to the stress resultant
shape functions, like in the enhanced strain formulation. The stress resultant and strain parameters are
effectively eliminated on the element level.

• In this paper, the interpolation of asymmetric strains and stress resultants is defined in the natural and skew
coordinates. The original interpolationmatrices for drilling and bending components are proposed. The sec-
ond part of strain field approximation from paper [17] is modified and generalized to the 6-parameter shell
theory. The proper selection of interpolation functions for independent stress and strain fields plays crucial
role in the element formulation. Here, two variants of interpolation matrices for asymmetric membrane
components are tested.

• The accuracy of the proposed mixed shell elements is verified in several shell benchmark problems. The
special attention is paid to examples with irregular mesh. The performed analyses show that the developed
elements are robustness in nonlinear computations. They allow for large load steps and require significantly
less equilibrium iterations than other elements formulated in the 6-parameter shell theory.

The family of mixed hybrid shell elements in the 6-parameter shell theory was introduced in doctoral thesis
[49]. The preliminary results for two initial variants of mixed elements were presented in the conference
proceedings [50]. Here, enhanced assumed strain approach is used only for membrane components, and new
interpolation variant of drilling components is proposed. Moreover, detailed description of formulation of the
mixed hybrid elements and the results for several numerical examples are presented.

2 Hu–Washizu functional in the nonlinear 6-parameter shell theory

The general nonlinear 6-parameter shell theory is developed in themixed approach that is neither purely derived
nor direct and was described, for example, in [51,52]. The theory accommodates naturally finite displacements
and finite rotations and has the same kinematical structure as Cosserat rods, see [53]. The strong ellipticity
condition and its weak form known as Hadamard inequality were discussed for the nonlinear 6-parameter
shell theory in [54]. The formulation, implementation and computational aspects of the present shell theory
have been extensively studied in [30,31,46,48,55–57] and references given there. Therefore, in this section
only some aspects of the theory necessary to formulate the mixed hybrid elements are discussed. The special
emphasis is placed on the Hu–Washizu principle serving as the basis for the weak statement of the developed
elements.

The shell reference surface of Cosserat type is denoted by M in the undeformed configuration (Fig. 1).
The shell boundary ∂M consists of the part ∂M f with prescribed boundary tractions n∗ and couples m∗, and
the part ∂Md with imposed boundary displacements. Typical point on the shell base surface M is described
by the position vector x and the structure tensor T0 ∈ SO(3). The orthonormal basis

{
t0i
}
is defined by the

tensor T0, as a result of the orthogonal transformation of some global fixed basis {ei }
t0i (x) = T0(x)ei , i = 1, 2, 3, (1)

t0β = x,β , β = 1, 2, (.),β = ∂(.)

∂ζ β
, t0 ≡ t03 = t01 × t02, (2)

where ζ β are arc-length coordinates associated with the unit vectors t0i . The deformation of the shell reference
surface u = (u,Q) is described by the translation vector u(x) and the proper orthogonal tensor Q(x) ∈ SO(3)
specifying independent rotations of the vectors t0i . Hence, the position vector y(x) and the structure tensor
T(x) ∈ SO(3) at the current base surface of shell are computed in the following way (see [30,31,46])

y(x) = x + u(x), T(x) = Q(x)T0(x). (3)
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Fig. 1 The shell kinematics in the nonlinear 6-parameter theory

During deformation, the directors t0i rotate to its current position

ti (x) = Q(x)t0i = Q(x)T0(x)ei = T(x)ei . (4)

We assume that the surface M (excluding intersection edges) is smooth enough to perform necessary mathe-
matical operations, such as computation of the metric and curvature tensors. Correspondingly to the field of
generalized displacements u = (u,Q), there exists the field of virtual displacements w = (v,w). The vector
fields v andwmay be interpreted as the kinematically admissible virtual translations and rotations, respectively,
such that v = w = 0 on ∂Md . They are defined as (see, e.g. [58])

v ≡ δy, w ≡ ax
(
δQQT) , (5)

where δ is the symbol of virtual change (variation) and ax(W) is the axial vector of the skew tensorW . In order
to parametrize the rotations, the canonical parametrization [59] is used for the tensor Q(x) ∈ SO(3) and the
vector w is used in the spatial representation.

The natural strainmeasures on the Cosserat surface characteristic for the nonlinear 6-parameter shell theory
[30,31,46] are defined as

εβ = y,β −tβ = u,β +(1 − Q)t0β, (6)

κβ = ax(Q,β QT). (7)

The stretching vector εβ and the bending vector κβ in symbolic notation form together a column vector ε(u)
of the compatible shell strains computed from the generalized displacement field u

ε(u) =
{

εβ

κβ

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε1(u)

ε2(u)

κ1(u)

κ2(u)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u,1 +(1 − Q)t01
u,2 +(1 − Q)t02
ax(Q,1QT)

ax(Q,2 QT)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (8)

The virtual measures of the compatible strains (6), (7) are calculated as (see [30,31,46])

δεβ = v,β −w × y,β = v,β +(tβ + εβ) × w, δκβ = w,β . (9)

They are equal to the co-rotational variations of the strain measures [31,46,60]

dεβ ≡ Q(δ(QTεβ)), dκβ ≡ Q(δ(QTκβ)). (10)
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For convenience, equations (9) are put into the symbolic matrix notation

δε(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δε1(u)

δε2(u)

δκ1(u)

δκ2(u)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v,1 +(t1 + ε1) × w

v,2 +(t2 + ε2) × w

w,1

w,2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= Bw = B
{
v
w

}
, B =

⎡

⎢⎢⎢
⎣

1(.),1 (t1 + ε1) × (.)

1(.),2 (t2 + ε2) × (.)

0 1(.),1

0 1(.),2

⎤

⎥⎥⎥
⎦

,

(11)

where thematrix operatorB describes the relation between the virtual strains and the virtual displacements. For
the proposed mixed elements beside the vector of compatible strains ε(u) also a column vector of independent
strains ε is defined on the element level. The following formal decompositions of the strain vector and the
strain-displacement operator are introduced

ε = {ε11 ε22 ε12 ε21| ε1 ε2 ‖κ11 κ22 κ12 κ21|κ1 κ2 }T = {εm | εs ‖εb|εd }T , (12)

B
12×2

=
{

B
4×2m

∣∣∣∣ B
2×2 s

∥∥∥∥ B
4×2 b

∣∣∣∣ B
2×2 d

}T

, (13)

where subscriptsm, s, b, d denote themembrane (in-plane), transverse shear, bending and drilling components,
respectively. Characteristic features of Cosserat-type theories [61] are: asymmetricmembrane shear strains ε12,
ε21, asymmetric bending strains κ12, κ21 and the presence of drilling strains κ1, κ2. The vector of independent
stress resultants and couples, that is energy conjugated with the strain vector ε, is assumed in the form

s = {
N 11 N 22 N 12 N 21

∣∣Q1 Q2
∥∥M11M22M12M21|M1M2 }T = { sm | ss ‖sb|sd }T . (14)

The vectors of external loads in the matrix notation read

p =
{
f
c

}
, s∗=

{
n∗

m∗

}
, (15)

where f (x) and c(x) are the external resultant force vector and resultant couple vector, respectively (see Fig. 1).
To simplify presentation and interpretation of further derivations of formulae, the existence of a 2D strain energy
density Φ(ε) = 1

2ε
TCε on the reference surface is postulated. Under this assumption, the constitutive relation

reads

s(ε) = ∂εΦ = Cε, ∂εεΦ = C. (16)

The formulation of the proposed mixed hybrid shell elements is based on the three-field Hu–Washizu
principle [62]

W (u, ε, s) =
∫∫

M

(
Φ(ε) + sT(ε(u) − ε)

)
da + V (u), (17)

where V (u) is the assumed potential of the external loads (15) given by formula

V (u) = −
∫∫

M
uTpda −

∫

∂M f

uTs∗dl. (18)

The weak form of the boundary value problem may be posed as follows: find kinematically admissible field u
and independent fields ε, s, such that W (u, ε, s) → stationary. In order to simplify notation, the following
vectors of element variables are introduced θ = [u, ε, s]T, δθ = [w, δε, δs]T and 	θ = [	u, 	ε, 	s]T. Then,
the first variation of the Hu–Washizu functional (17) may be written in the form

δW (θ, δθ) =
∫∫

M

(
δεT∂εΦ + sTδε(u) + δsT(ε(u) − ε) − δεTs

)
da + δV [u, w]. (19)

Linearization of (19) gives the second variation of the Hu–Washizu functional (17)

δ2W (θ, δθ, 	θ) =
∫ ∫

M

[
δεT∂2εεΦ	ε + sT	δε(u) + 	sTδε(u) +δsT	ε(u) − δsT	ε − δεT	s

]
da (20)
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Fig. 2 The image of the standard element π(e) into shell element Π(e) on the reference surface

In the above equation, the external loads are assumed as dead loads, i.e. δ2V [u, w, 	u] = 0, so the stiffness
matrix associated with loads does not appear.

In the reminder of paper, linear elastic constitutive equations, described for instance in [30,31,46–48], are
assumed, because a linear elastic material model was used in the majority of benchmark problems proposed
as the tests of shell element formulations.

3 Formulation of mixed hybrid elements

3.1 Approximation of the reference surface and the displacement field

Let Π(e) be a typical 4-node shell finite element defined as a smooth image of the standard element π(e) =
[−1, +1]×[−1,+1] from the parent (natural) domain ξ = (ξ1, ξ2), see Fig. 2. On the element level, the vector
field variables x(ξ ), y(ξ ), u(ξ ), v(ξ ) are interpolated by generic formula z(ξ ) = ∑4

a=1 La(ξ )za where La(ξ)
are the standard isoparametric shape functions.

The interpolation scheme described above assures the required C0 continuity of the displacement field
between elements; therefore, the shell reference surface may be spatially approximated as a sum of the finite
elements

M ≈ Mh =
Ne∑

e=1

Π(e), (21)

where Ne is the total number of shell finite elements.
Relation between the parent (natural) coordinates ξ = (ξ1, ξ2) ∈ π(e) = [− 1,+1] × [− 1, +1] and the

arc-length coordinates ζ = (
ζ 1, ζ 2

)
is described by the Jacobian matrix J

J =
[
J11 J12
J21 J22

]
=
⎡

⎣
∂ζ 1

∂ξ1

∂ζ 1

∂ξ2

∂ζ 2

∂ξ1

∂ζ 2

∂ξ2

⎤

⎦ ,

⎡

⎣
∂ξ1
∂ζ 1

∂ξ2
∂ζ 1

∂ξ1
∂ζ 2

∂ξ2
∂ζ 2

⎤

⎦ = J−T = 1

det J

[
J22 − J21

− J12 J11

]
. (22)

Matrix J can be interpreted as the transformation matrix between the basis vectors t0α given by (2) and the
basis vectors gα of the parent coordinate system ξ , see Fig. 2

[
g1
g2

]
= JT

[
t01
t02

]

,

[
t01
t02

]

= J−T
[
g1
g2

]
. (23)

Derivatives of the shape functions La(ξ) with respect to the arc-length coordinates are computed considering
(22) as follows

(La) ,β = ∂La(ξ)

∂ζ β
= ∂La(ξ)

∂ξ1

∂ξ1

∂ζβ
+ ∂La(ξ)

∂ξ2

∂ξ2

∂ζβ
. (24)
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The finite element area A(e) is defined in the coordinates ζ as

A(e) =
∫ ∫

Π(e)

da =
∫ ∫

Π(e)

dζ 1dζ 2 =
∫ +1

−1

∫ +1

−1
j (ξ)dξ1dξ2, (25)

where j (ξ) is a determinant of the Jacobian matrix J and can be expanded as follows

j (ξ) = j0 + j1ξ1 + j2ξ2. (26)

Finally, the element area may be computed based on the value of the Jacobian determinant j0 in the element
centre A(e) = 4 j0.

For SO(3)-valued variables, the interpolation scheme described above cannot be used. Hence, in the paper
these values are interpolated using themultistep approach, described for instance in [46,47]. The virtual rotation
vector w ∈ so(3) is interpolated directly in the global fixed basis {ei }. Using the transformation T : ei → ti ,
the vector w is written in the form

w(ξ) = wi (ξ)t i (ξ) = w̄ j (ξ)e j = w̄ j (ξ)TT(ξ)t j (ξ). (27)

Then, the interpolation of w is performed as follows

w̃(ξ) =

⎧
⎪⎨

⎪⎩

w̃1(ξ)

w̃2(ξ)

w̃3(ξ)

⎫
⎪⎬

⎪⎭
= T(ξ)

4∑

a=1

La(ξ)

⎧
⎪⎨

⎪⎩

w̄1a(ξ)

w̄2a(ξ)

w̄3a(ξ)

⎫
⎪⎬

⎪⎭
, (28)

where T(ξ) is a transformation matrix corresponding to the tensor T (3).
To minimize shear locking effect, the ANS concept [8] is employed for the transverse shear part εs(u) of

the compatible strains. At selected points A(0,1), B(−1,0), C(0, −1), D(1,0) defined in the standard element
(Fig. 2), the following sets of values are computed, cf. (12), (13)

{εs |DIP }, {Bs |DIP }, P = A, B, C, D. (29)

The label DI indicates the direct interpolation, i.e. the compatible strains. Then, these values are transformed to
the parent element space {ξ , t0}, i.e. {εs |DIP } → {ε̄s |DIP } and {Bs |DIP } → {B̄s |DIP }. In the next step, interpolation
is performed using the ANS approach

¯̄ε1(ξ) = 1

2
(1 + ξ2) ε̄1|DIA + 1

2
(1 − ξ2) ε̄1|DIC , ¯̄ε2(ξ) = 1

2
(1 + ξ1) ε̄2|DID + 1

2
(1 − ξ1) ε̄2|DIB , (30)

¯̄Bε1(ξ) = 1

2
(1 + ξ2) B̄ε1

∣∣DI
A + 1

2
(1 − ξ2) B̄ε1

∣∣DI
C , ¯̄Bε2(ξ) = 1

2
(1 + ξ1) B̄ε2

∣∣DI
D + 1

2
(1 − ξ1) B̄ε2

∣∣DI
B . (31)

Finally, the resulting values are transformed back to the current basis ti in the spatial representation, and
appropriate terms in Eqs. (8) and (11) are substituted by the new values.

3.2 Skew coordinates

The use of an appropriate coordinate system during approximation at the element level is one of a key aspect
in the formulation of a robust 4-node mixed element. Specific modification of the natural coordinates may
improve the accuracy of the mixed elements of irregular shape, see for instance results of numerical tests in
[63,64].

The skewcoordinateswere proposed in [65] and then applied in the formulation of differentmixed elements,
see, e.g. [18,63,66]. These coordinates are defined in the fixed basis at the element’s centre {gc1, gc2}

gc1 = g1(ξ1 = 0, ξ2 = 0) = 1

4

4∑

a=1

ξa1 xa, gc2 = g2(ξ1 = 0, ξ2 = 0) = 1

4

4∑

a=1

ξa2 xa . (32)
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In the above formulae, the label a denotes the node and x is the position vector expressed in the Cartesian
basis. The position vector x̄ computed relative to the element’s centre xc may be written using the arc-length
coordinates ζ 1, ζ 2 and the skew coordinates xs , ys as

x̄ = x − xc = ζ̄ 1t01 + ζ̄ 2 t02 = (
ζ 1 − ζ 1

c

)
t01 + (

ζ 2 − ζ 2
c

)
t02 = xs gc1 + ys gc2. (33)

The relation between the arc-length coordinates and the skew coordinates can be expressed as
[
xs
ys

]
= J−1

0

[
ζ̄ 1

ζ̄ 2

]

, (34)

where J0(ξ1 = 0, ξ2 = 0) is the Jacobian matrix (22) calculated at the element’s centre. After some
further transformations, see, for example, [18,63], the skew coordinates are expressed in terms of the natural
coordinates as follows

xs = ξ1 + j2
j0

ξ1ξ2, ys = ξ2 + j1
j0

ξ1ξ2. (35)

The coefficients j0, j1, j2 appearing in Eqs. (26) and (35) are computed as

j0 = a1b2 − a2b1, j1 = a1b3 − a3b1, j2 = a3b2 − a2b3, (36)

where ai and bi are calculated based on the arc-length coordinates of the element nodes. The coefficients ai ,
bi appear also in the Jacobian matrix (22) written in the following way

J =
[
J11 J12
J21 J22

]
=
[
a1 + a3ξ2 a2 + a3ξ1
b1 + b3ξ2 b2 + b3ξ1

]
. (37)

The natural and skew coordinates will be applied in interpolation of the assumed strain and stress resultant
fields defined in the subsequent paragraphs. In order to simplify the notation, we introduce common symbols
ξ∗
1 , ξ

∗
2 for these two types of coordinates. For finite elements in the shape of parallelogram j1 = 0 and j2 = 0,

thus the natural and skew coordinates are equal for such elements. Consequently, the influence of choice of
coordinates on the results will be analysed only in the numerical examples with irregular, distorted mesh.

3.3 Interpolation of the stress resultants

The independent stress resultants (14) are approximated by the relations

s = Sα(e), 	s = S	α(e), δs = Sδα(e), (38)

S = [112×12, S̃] =
⎡

⎢
⎣

14×4 0 0 0 Smi 0 0 0
0 12×2 0 0 0 Ss 0 0
0 0 14×4 0 0 0 Sb 0
0 0 0 12×2 0 0 0 Sd

⎤

⎥
⎦ , (39)

where vector α(e) contains 12 real parameters for the constant part and 7 or 9 real parameters for the varying
parts of the stress resultant field, depending on the variant of mixed element. Here 2 options of the membrane
components interpolation matrix Smi are analysed

Sm2 = T0
σ

⎡

⎢⎢
⎣

ξ∗
2 0

0 ξ∗
1

0 0
0 0

⎤

⎥⎥
⎦ , Sm4 = T0

σ

⎡

⎢⎢⎢
⎣

ξ∗
2 0 0 0

0 ξ∗
1 0 0

0 0 ξ∗
2 0

0 0 0 ξ∗
1

⎤

⎥⎥⎥
⎦

. (40)

Similar interpolation scheme defined in the natural coordinates was proposed in [41]. The varying parts of the
transverse shear forces and the bending moments are defined by the following interpolation matrices

Ss = T̃
0
σ

[
ξ∗
2 0

0 ξ∗
1

]
, Sb = T0

σ

⎡

⎢⎢
⎣

ξ∗
2 0

0 ξ∗
1

0 0
0 0

⎤

⎥⎥
⎦ . (41)
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Matrix Sb is an extension of the interpolation method of the bending stress resultants from [16,17] on the
nonlinear 6-parameter shell theory.

In case of the drilling stress resultants, 4-parameter interpolation variant was introduced in [50]. However,
authors’ own analyses show that the application of 3-parameter interpolation variant allows us to obtain the
results with the same precision. Hence, here to reduce the number of the independent parameters the following
interpolation matrix Sd is proposed

Sd = T̃0
σ

[
ξ∗
2

ξ∗
1

]
. (42)

In Eqs. (40)–(42), the transformation matrices are used

T0
σ =

⎡

⎢⎢⎢⎢
⎣

J 011 J
0
11 J 012 J

0
12 J 012 J

0
11 J 011 J

0
12

J 021 J
0
21 J 022 J

0
22 J 022 J

0
21 J 021 J

0
22

J 021 J
0
11 J 022 J

0
12 J 022 J

0
11 J 021 J

0
12

J 011 J
0
21 J 012 J

0
22 J 012 J

0
21 J 011 J

0
22

⎤

⎥⎥⎥⎥
⎦

, T̃0
σ =

[
J 011 J 012
J 021 J 022

]

, (43)

where J 0αβ = Jαβ(ξ = 0, η = 0) are the components of the Jacobian matrix (22) computed at the element’s

centre. The matrices T0
σ , T̃0

σ describe the transformation of the contravariant stress resultant components to
the physical coordinate system t0i at the element’s centre.

3.4 Interpolation of the independent shell strains

Similarly as in [17,67], we assume that the interpolation of the independent strains (12) consists of two parts

ε = Pβ(e) =
[

P1

P2

]T [β1(e)

β2(e)

]

, 	ε = P	β(e), δε = Pδβ(e), β(e) ∈ R, (44)

where R is the set of real numbers. The approach discussed above for the stress resultants is used also in the
first part of interpolation of the assumed strain field

P1 = [112×12, P̃1] =
⎡

⎢
⎣

14×4 0 0 0 Pmi 0 0 0
0 12×2 0 0 0 Ps 0 0
0 0 14×4 0 0 0 Pb 0
0 0 0 12×2 0 0 0 Pd

⎤

⎥
⎦ , (45)

where

Pm2 = T0
ε

⎡

⎢⎢
⎣

ξ∗
2 0

0 ξ∗
1

0 0
0 0

⎤

⎥⎥
⎦ , Pm4 = T0

ε

⎡

⎢
⎣

ξ∗
2 0 0 0
0 ξ∗

1 0 0
0 0 ξ∗

2 0
0 0 0 ξ∗

1

⎤

⎥
⎦ , (46)

Ps = T̃
0
ε

[
ξ∗
2 0

0 ξ∗
1

]
, Pb = T0

ε

⎡

⎢⎢
⎣

ξ∗
2 0

0 ξ∗
1

0 0
0 0

⎤

⎥⎥
⎦ . (47)

Taking into consideration the results from paper [68] obtained for the Hu–Washizu mixed elements, the
contravariant transformation rule is used also in the interpolation of the first part of the independent strain field

T0
ε = T0

σ , T̃0
ε = T̃0

σ . (48)

As a consequence of assumption (48), the matrices given by (46) and (47) have the same form as the matrices
specified in (40) and (41). The covariant transformation rule is used only in interpolation of the assumed
drilling strains
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Pd =
(

T̃0
ε

)−T
[

ξ∗
2

ξ∗
1

]
, (49)

that allows to satisfy the following linearized compatibility condition, see [49,69]

κ1,2 − κ2,1 = 0. (50)

The second part of the independent strain field approximation (44) is assumed L2 orthogonal to the stress
resultant field. In this context, the interpolation scheme corresponds to the EAS formulation [13,48] and
mixed-enhanced methods [70,71]. The following form of the interpolation matrix P2 is assumed

P2 = [
P2m 0 0 0

]T
, (51)

P2m = j0
j

(
T0

σ

)−T
N2, N2 =

⎡

⎢
⎣

ξ 0
0 η
0 0
0 0

⎤

⎥
⎦ . (52)

In comparison with the previous papers [17,49,50,67], the nonzero interpolation scheme is used only for the
membrane components. This approach reduces the number of β2(e) parameters. The second part of the strains

interpolation is defined only in the natural coordinates to assure fulfilment of the following L2 orthogonality
condition

∫ 1

−1

∫ 1

−1
PT
2 Sdξ1dξ2 = 0, (53)

also for the constant stress resultants. We propose the matrix N2 (52) as the generalization of the matrix M2
from paper [17] to the theory with asymmetric measures of strains. The analysis performed in [49] indicates
that variants of matrix Ni with greater number of parameters β2(e) give almost the same results as the matrix
N2.

3.5 Linearized variational formulation

In the present shell theory, the vector of nodal degrees of freedom defined in the global coordinate system {ei }
at single node a takes the following form

δqa = {
vi w̄i

}T =
{
v1 v2 v3 w̄1 w̄2 w̄3

}T
, (54)

where vi are virtual translations and w̄i are virtual parameters of rotations (28). The vectors δqa are collected
into the displacement vector of a 4-node element

δq(e) = {
δq1 δq2 δq3 δq4

}T
. (55)

In the finite element, the subsequent interpolation scheme for the vector of virtual displacements w and the
vector of displacement increments 	u is used

w(ξ) =
{
v(ξ)

w(ξ)

}
= L̄(ξ)δq(e), 	u(ξ) = L̄(ξ)	q(e), (56)

where L̄ is an element matrix of the shape functions La(ξ)

L̄(ξ) = [
L̄1(ξ) L̄2(ξ) L̄3(ξ) L̄4(ξ)

]
, L̄a(ξ) = Y(ξ)La(ξ), Y(ξ) =

[
13 0

0 T(ξ)

]
. (57)

The vectors of virtual compatible strains δε(u) and strain increments 	ε(u) after taking into account relations
(11), (56), (57) are written as follows

δε(u) = Bw = B̄δq(e), 	ε(u) = B	u = B̄	q(e), B̄ = BL̄. (58)
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The linearized stationary condition for the Hu–Washizu principle (17) may be written as

J (θ, δθ, 	θ) =
Ne∑

j=1

(
δW (e)(θ, δθ) + δ2W (e)(θ, δθ, 	θ)

)
= 0, (59)

where the first and the second variation of the Hu–Washizu functional are given by (19) and (20), respectively.
The substitution of Eqs. (38), (44), (58) describing interpolation of the stress resultant, strain and displacement
fields into the stationary condition (59), and given the arbitrariness of the virtual fields, yields the finite element
approximation

J (θh, δθh, 	θh) =
Ne∑

j=1

⎡

⎢
⎣

δq(e)

δβ(e)

δα(e)

⎤

⎥
⎦

T
⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

K(e)
G 0 K(e)

qα

0 K(e)
ββ −K(e)

βα

K(e)
αq −K(e)

αβ 0

⎤

⎥⎥
⎦

⎡

⎢
⎣

	q(e)

	β(e)

	α(e)

⎤

⎥
⎦ +

⎡

⎢⎢
⎣

r(e)
d − p(e)

r(e)
β

r(e)
α

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
= 0. (60)

In the set of Eq. (60), the following element matrices and vectors are defined

K(e)
G =

∫∫

Π(e)

D̄TGD̄ da, D̄ = DL̄,

K(e)
αq =

∫∫

Π(e)

STB̄ da, K(e)
qα =

(
K(e)

αq

)T
,

K(e)
βα =

∫∫

Π(e)

PTSda, K(e)
αβ =

(
K(e)

βα

)T
,

K(e)
ββ =

∫∫

Π(e)

PTCPda,

(61)

r(e)
d =

∫∫

Π(e)

B̄TSα(e)da = K(e)
qαα(e),

r(e)
β =

∫∫

Π(e)

PTCPβ(e)da −
∫ ∫

Π(e)

PTSα(e)da = K(e)
βββ(e) − K(e)

βαα(e),

r(e)
α =

∫∫

Π(e)

STε(u)da − K(e)
αββ(e).

(62)

Here K(e)
G is a geometric matrix described in more detail in “Appendix A”. The vector of element external

loads p(e) (15) is computed like in the standard displacement formulation.
After static condensation of the parameters β2(e), the set of Eq. (60) takes the form

⎧
⎪⎪⎨

⎪⎪⎩

K(e)
G 	q(e) + K(e)

qα	α(e) + r(e)
d = p(e)

K̄11
ββ	β1(e) − K1

βα	α(e) + r̄1β = 0

K(e)
αq	q(e) − K1

αβ	β1(e) + r1α = 0

, (63)

where the following new element matrices and vectors are introduced

K̄11
ββ = K11

ββ − K12
ββ

(
K22

ββ

)−1
K21

ββ, Kδλ
ββ =

∫∫

Π(e)

PT
δ CPλda, K1

αβ =
∫∫

Π(e)

STP1da, K1
βα =

(
K1

αβ

)T
,

(64)

r̄1β = K̄11
βββ1 − K1

βαα(e), r1α =
∫∫

Π(e)

STε(u)da − K1
αββ1. (65)

The integrals in (61), (62), (64) and (65) are computed numerically using the full (2 × 2) integration scheme.
In the next step, the independent parameters α(e) and β1(e) are eliminated on the element level, since the

assumed strains and stress resultants are approximated discontinuously between finite elements. The effective
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method of elimination of the strain and stress resultant parameters (described in Appendix D of paper [17])
is used, since equal number of parameters α(e) and β1(e) is assumed here. In this order, the vectors 	α(e) and

	β1(e) are computed from the second and third equation of system (63), respectively

	β1(e) =
(

K1
αβ

)−1 (
K(e)

αq	q(e) + r1α
)

, (66)

	α(e) =
(

K1
βα

)−1 (
K̄11

ββ	β1(e) + r̄1β
)

, (67)

and then substituted to the first equation of (63). Finally, the equilibrium equation for the mixed finite element
may be written in the standard form

J (θh, δθh, 	θh) =
Ne∑

j=1

δqT
(e)

(
K(e)

T 	q(e) − p(e) + r(e)
)

= 0, (68)

where tangent element stiffness matrix K(e)
T and element residual vector r(e) are introduced

K(e)
T = K(e)

G + K(e)
qα

(
K1

βα

)−1
K̄11

ββ

(
K1

αβ

)−1
K(e)

αq , (69)

r(e) = r(e)
d + K(e)

qα

[(
K1

βα

)−1
K̄11

ββ

(
K1

αβ

)−1
r1α +

(
K1

βα

)−1
r̄1β

]
. (70)

The global stiffness matrix KT and the global vectors p, r are obtained from the element matrices and vectors
in the standard aggregation procedure. Then, the global set of equations KT	q = p − r is solved using an
incremental-iterative scheme. The displacements u and the independent parameters 	α(e), 	β1(e) are updated
in each increment and iteration. On the global level, the translations u are updated additively, while the rotation
tensor Q is multiplicatively accumulated in the spatial representation, see for instance [46,47]

ui+1 = ui + 	u, Qi+1 = 	QQi . (71)

The independent strain and stress resultant parameters are updated on the element level

βi+1
1 = βi1 + 	β

(e)
1 , αi+1

(e) = αi
(e) + 	α(e), (72)

making use of Eqs. (66) and (67). Since in this study a linear elastic material is used, thus in each iteration it
holds r̄1β = 0. This facilitates the update process of the independent parameters

βi+1
1 = βi1 + 	β

(e)
1 , αi+1

(e) = Pαββi+1
1 , 	β

(e)
1 = Pβq	q(e) + p̄β, (73)

where the following matrices and vector are introduced

Pβq =
(

K1
αβ

)−1
K(e)

αq , Pαβ =
(

K1
βα

)−1
K̄11

ββ, p̄β =
(

K1
αβ

)−1
r1α. (74)

Taking into account (73) and (74) for linear elasticity problems, only the matrices Pβq , Pαβ and the vectors
β1, p̄β have to be saved in the memory of the authors’ FEM code.

3.6 Proposed mixed hybrid shell elements

Taking into account two variants of the membrane components interpolation, two types of hybrid mixed shell
elements are proposed in Table 1. The element code is assigned based on the total number of the independent
strain and stress resultant parameters.

The 8-parameter (8p) interpolation of the membrane components means that 4 parameters for the constant
part and 4 parameters for the varying part are assumed.While in the 6-parameter interpolation only 2 parameters
for the varying part are used. The 8p interpolation is described by thematricesPm4, Sm4 and the 6p interpolation
by the matrices Pm2, Sm2, respectively. In the MIX40, MIX44 elements, the natural coordinates are used in the
interpolation of the assumed strain and stress resultants. The elements with interpolation defined in the skew
coordinates are denoted by letter ‘s’: MIX44s, MIX40s.
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Table 1 Number of the independent strain and stress resultant parameters for the proposed shell elements

Element code Assumed stress resultants α(e) Assumed strains β1(e) Enhanced
strains β2(e)

Nαβ Qα Mαβ Mα εαβ εα καβ κα

MIX44 8p 4p 6p 3p 8p 4p 6p 3p 2p
MIX40 6p 4p 6p 3p 6p 4p 6p 3p 2p

(a) (b)

Fig. 3 Eigenvalues of the tangent stiffness matrix, geometrical dimensions of a single finite element in the shape of square (a)
and deltoid (b)

4 Numerical examples

The linear elastic constitutive relations, described in detail in other papers [30,31,47,48], are used in numerical
examples. A characteristic for the nonlinear 6-parameter shell theory, the drilling couples Mβ are calculated
from the following constitutive equations

M1 = 1

2
αt D(1 − ν)κ1, M2 = 1

2
αt D(1 − ν)κ2, (75)

where D is the shell bending stiffness and αt is the drilling correction factor, that may be interpreted also as a
material parameter, see, e.g. [72]. Here, the following values (see [73]) of the shear correction factors αs = 5/6
and αt = 0.7 are assumed.

In this paper, results for the developedmixed hybrid element are comparedwith the solutions from literature,
especiallywith themixed 4-nodeHW47,HW29 elements [18] and the semi-EAS-ANS4-node EANS4 element
[48]. The authors’ results obtained with 16-node displacements-rotations-based elements CAMe16 [30] are
assumed as basic reference solutions, since they are almost free of the locking phenomena.

4.1 Eigenvalues of the tangent matrix

Prior to nonlinear calculations, the spectrum of the stiffnessmatrix is studied. The eigenvalues and eigenvectors
were computed for a single finite element without imposed boundary conditions to avoid masking of the
presence of zero eigenvalues. The finite elements of a square and of a deltoid shape are analysed, see Fig. 3.
Similarly as in [66], the following material properties E = 106, v = 0.3 and the shell thickness h0 = 0.1 are
assumed.

All developed mixed hybrid elements have a correct rank, since six zero eigenvalues, corresponding to
the rigid body motions, were obtained for each element. The nonzero eigenvalues of different mixed shell
elements of deltoid shape are compared in Fig. 4. A variant of the membrane components approximation has
significant influence on the eigenvalues (see the range 6–8 in Fig. 4), while the influence of type of coordinates
is relatively small. The minimally greater eigenvalues were determined for the elements with interpolation of
strains and stress resultants defined in the natural coordinates (MIX44,MIX40) for themajority of eigenmodes.
Moreover, all nonzero eigenvalues are positive.
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Fig. 4 Comparison of nonzero eigenvalues of the tangent matrix computed for the deltoid mixed hybrid shell elements

Fig. 5 Patch test: finite element mesh, geometry

4.2 Constant strain patch test

Following [74], the irregular mesh consisting of five finite elements is investigated, see Fig. 5. The material
data and the shell thickness are assumed as follows: E = 106, v = 0.25, h0 = 0.001. In the membrane patch
test, the values of selected displacements are prescribed at the external nodes (1–4) using formulae

u = 0.001(x + y/2), v = 0.001(y + x/2), ϕz = 0, (76)

which generate the constant strain field and the constant stress field in the shell plane. The proposed mixed
elements pass the membrane patch test, since the values of displacements computed at the internal nodes agree
with the values from Eq. (76).

In passing it is worthy to note that special variants of the membrane patch test for elements with the drilling
rotation were proposed in [66]. They verify the presence of additional nonphysical drilling rotation field. In
the most demanding variant of this test, the drilling rotations are free at the nodes 1–4. The proposed mixed
elements fulfil this test, as the values of the drilling rotation are zero at all nodes.

The constant strain field (κxx = κyy = 0.001, κxy = κyx = − 5 × 10−4) in the bending patch test is
induced by enforcement of the following deflection and rotation fields at the external nodes

w = 0.0005(x2 + xy + y2), ϕx = 0.0005(x + 2y), ϕy = − 0.0005(2x + y). (77)

Consequently, the state of the constant strains and bending moments was obtained in all developed elements.
Moreover, the values of deflections at the internal nodes (A, B, C, D)

wA = 1.400 × 10−6, wB = 1.935 × 10−5, wC = 2.24 × 10−5, wD = 9.600 × 10−6, (78)
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A 1 16

44

48

44

x,u
y,v

16

Fig. 6 Cook’s membrane: geometry, boundary conditions, 4 × 4 mesh

Table 2 Comparison of values of displacement vA and drilling rotation ϕA computed in node A of the Cook’s membrane (see
Fig. 6) for different meshes and finite elements

Element Mesh 2 × 2 Mesh 4 × 4 Mesh 32 × 32

vA ϕA vA ϕA vA ϕA

P–S [7] 21.13 – 23.02 – – –
QE2 [76] 21.35 – 23.04 – – –
HW29, HW47 21.317 0.925 – – 23.936 0.891
EANS4 20.420 0.950 22.703 0.800 23.898 0.891
MIX44 20.411 0.949 22.702 0.800 23.898 0.891
MIX44s 20.566 0.985 22.715 0.786 23.898 0.891
MIX40 21.112 0.842 23.010 0.817 23.920 0.889
MIX40s 21.309 0.854 23.024 0.817 23.920 0.889

are equal to the values computed from Eq. (77), so the mixed hybrid elements pass also the bending patch test.
The constant strain patch tests confirm correctness of the elements’ formulation and their implementation into
authors’ FEM code in the linear range.

4.3 Cook’s membrane

The example was proposed in [75] as a demanding test of 2D finite elements under in-plane shear loading.
Here, the Cook’s test is used to evaluate a quality of the developed shell elements in the in-plane bending. A
characteristic feature of this example is the skew and tapered shape of finite elements, see Fig. 6. The material
parameters are: E = 1, v = 1/3. The membrane of the thickness h0 = 1 is fixed on the left edge and uniformly
loaded on the right edge by the total force P = 1. A discretization 4 × 4 and geometrical dimensions are
presented in Fig. 6. The computations were performed also for a coarse mesh 2 × 2 and a fine mesh 32 × 32.

The values of the vertical displacement vA and the drilling rotation ϕA at the middle node A on the right
edge (see Fig. 6) computed by the authors’ mixed elements are presented in Table 2. The greatest value of vA
was determined for theMIX40s element. This value is in a very good agreement with the reference values from
papers [7,18,76]. Application of the skew coordinates in the interpolation of the assumed stress resultants and
strains gives more accurate results compared to the natural coordinates. A slight locking effect is observed
in the solutions obtained by the elements with the 8-parameter interpolation of the membrane components
(MIX44, MIX44s). The variant of interpolation of the membrane shear components has the greatest influence
on the value of ϕA. Table 2 shows that also the type of coordinates affects the drilling rotation value.
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x,u
z,wy,v

fixed end

P Pimpf

L

L

b

C
D

b
h0

Fig. 7 L-shaped frame: geometry, boundary conditions, (32+32)×4 discretization

Table 3 L-shaped frame, comparison of the nonlinear buckling forces Pcr computed for two variants of load, three FE meshes
and using different shell finite elements

Discretization (16+16)×2 (32+32)×4 (64+64)×8

Load variant A B A B A B

WG4 [16] 1.137 – 1.128 – 1.125 –
Simo et al. [78] 1.137 – 1.128* 0.742* – –
CAMe16 1.1261 0.7323 1.1226 0.7311 – –
EANS4 1.1391 0.7377 1.1292 0.7335 1.1248 0.7319
MIX44 1.1354 0.7363 1.1277 0.7329 1.1242 0.7317
MIX40 1.1354 0.7363 1.1276 0.7329 1.1242 0.7317

* the value for ‘converged solution’

4.4 L-shaped frame

The L-shaped frame is the first example analysed here in a geometrically nonlinear range. It was used originally
in [77] and then applied in many papers (e.g. [16,18,48,78]) as a test of the bending part of shell element
formulations. The following geometrical dimensions: L = 240, b = 30, h0 = 0.6 (see Fig. 7) and the material
parameters: E = 7.124 × 104, v = 0.31 are assumed. The frame is clamped at the left end and loaded by
in-plane force P at point C.

The introduction of the imperfection load Pimpf = P/1000 at point D (Fig. 7) allows to compute the
nonlinear buckling loads and the postbuckling paths. Three FE meshes: (16+16)×2 (16 FE in the leg axis, 2
FE on the width of leg), (32+32)×4 (Fig. 7) and (64+64)×8 are used in computations. Similarly as in [78],
two variants of load are investigated: variant A presented in Fig. 7 PA = P and variant B with the forces
PB = − P and PB

impf = − Pimpf acting in the opposite direction.
The critical buckling forces Pcr computed in nonlinear stability analyses using the developed mixed ele-

ments are presented in Table 3 for different FE meshes. The values of Pcr are almost the same for all authors’
mixed elements and are in a very good agreement with the reference values from papers [16,78]. Compared
to the basic reference solution (CAMe16), the critical loads for the mixed elements are slightly more accurate
than values for the EANS4 element. The nonlinear postbuckling paths computed for a (16+ 16) × 2 mesh are
presented in Fig. 8. The increment 	P = 1 is used in the first step and the arc-length method in the following
steps.

A lower number of large steps (see Fig. 8) than in papers [16,18] show the efficiency of the proposed
mixed elements. The computations performed with theMIX44 element needed 5 steps (17 iterations), whereas
the MIX40 element required only 4 steps (16 iterations). The developed mixed elements are more efficient in
comparison with the HW29, EANS4 elements that needed 67 and 73 equilibrium iterations, respectively.
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Fig. 8 L-shaped frame: comparison of nonlinear load-deflection curves PA(wC) computed for different shell finite elements,
(16+16)×2 mesh, load variant A

bA
y,v

Px

Lx,u

z,w
fixed end

Fig. 9 Twisted beam: geometry, boundary conditions, 4 × 24 mesh

4.5 Twisted beam

The example of the clamped beam twisted about 90o and loaded by concentrated force at the tip was originally
proposed in [74]. This test is used to evaluate the influence of warping on the performance of the proposed
mixed shell elements.We analyse the most demanding version of this test [18] with a very small shell thickness
h0 = 0.0032; hence, shell elements are more prone to the membrane locking. The other geometric dimensions
are as follows: L = 12, b = 1.1, see Fig. 9. The material properties: E = 2.9 × 107, v = 0.22 and a 4 × 24
finite element mesh (Fig. 9) are assumed in geometrically nonlinear analyses. Despite the warped shape of
finite elements, the authors’ analyses show that type of coordinates has almost no influence on results; thus,
only solutions for the natural coordinates are presented below.

The nonlinear equilibrium paths for the developed mixed elements are compared with the reference curves
in Fig. 10. Additionally, the computed values of translations uA, wA at point A are reported in Table 4 for the
three levels of load. Some discrepancies between the authors’ and the reference solutions (see Fig. 10, Table 4)
are caused by more than 16 times greater number of nodes in a 6 × 36 mesh of the CAMe16 elements. These
differences almost disappear after double mesh refinement, see curves for MIX40 (8 × 48 mesh) in Fig. 10.
The load-deflection paths Px (uA) (Fig. 10) show that the MIX40 element yields more accurate results than
the MIX44 element, which gives almost the same results as the EANS4 element.

Then, the convergence rate of the developed mixed elements is evaluated. The maximum load increment
	P (with accuracy 0.001) and the total number of iterations were determined in the nonlinear analysis up to the
force Px = 0.01. The values for different shell element formulations are compared in Table 5. The developed
mixed elements allowed to use significantly greater	P in comparison with the EANS4 and CAM16 elements.
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Fig. 10 Twisted beam: comparison of the nonlinear load-deflection curves Px (uA), Px (−wA) computed by the authors’ mixed
elements with the reference curves, 4 × 24 mesh

Table 4 Twisted beam: the values of translations uA, wA at point A computed for the three levels of force Px and different shell
element formulations

Element/translations Px = 0.01 Px = 0.02 Px = 0.1

uA −wA uA −wA uA −wA

MIX44 5.8707 5.6897 7.1125 4.9294 8.7456 3.0329
MIX40 6.0495 5.9042 7.3708 5.1133 9.1063 3.0292
EANS4 5.8693 5.6909 7.1110 4.9314 8.7451 3.0354
HW47 – 5.86 – 5.04 – 2.85
CAMe16 6.3547 5.8696 7.7881 4.8931 9.7465 2.5621

Table 5 Twisted beam: comparison of the maximum load increment 	P , number of steps and the total number of equilibrium
iterations for different shell element formulations

Element CAMe16 EANS4 HW47 MIX44 MIX40

Max 	P 4 × 10−4 8 × 10−5 0.005 0.005 0.005
No. of steps 250 1250 20 20 20
No. of iterations 807 5072 109 76 54

They require also meaningfully less equilibrium iterations than all reference elements. Table 5 shows that the
elements with 6-parameter interpolation of the membrane components are slightly more effective, because of
the lower number of iterations.

4.6 Pinched clamped cylinder

In this example proposed in [79], the influence of mesh distortion on the results is investigated for shell with
nonplanar geometry. In this order, regular and irregular 8 × 16, 16 × 32 (Fig. 11) meshes with two times
greater number of elements along cylinder axis than in radial direction were generated. The cylindrical shell is
loaded by two opposite forces P at free end and fixed on the other end. The double symmetry of the geometry,
boundary conditions and load is exploited in computations, see Fig. 11. The following material properties:
E = 2.0685 × 107, v = 0.3 and geometric dimensions R = 1.016, L = 3.048, h0 = 0.03 are assumed.

The values of deflection wA computed in the linear analysis (P = 1000) for different shell elements and
FE meshes are presented in Table 6. The type of coordinates has no influence on the value of wA for regular
mesh. In the case of irregular discretization (Fig. 11b), application of the MIX44 elements gives slightly more
accurate deformation than the MIX44s elements, while the closest value of wA to the reference solution for
8×16 discretization was obtained for the MIX40s element.
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L

A

x,u

z,w y,v
R

P

fixed
end

symmetry
plane

B

(a) (b)

symmetry
plane

Fig. 11 Pinched clamped cylinder: a geometry, boundary conditions, 16×32 regular mesh, b 16×32 distorted mesh

Table 6 Pinched clamped cylinder: the comparison of the values of deflection wA at point A for different shell element formu-
lations, linear analysis P = 1000

Mesh Type CAMe16 EANS4 MIX44 MIX44s MIX40 MIX40s

8 × 16 Regular −0.82856 −0.74711 −0.75547 −0.75547 −0.75709 −0.75709
Distorted −0.59524 −0.61031 −0.61018 −0.63699 −0.63740

16 × 32 Regular −0.83631 −0.80473 −0.80856 −0.80856 −0.80905 −0.80905
Distorted −0.73103 −0.73644 −0.73621 −0.74437 −0.74433

Fig. 12 Pinched clamped cylinder: comparison of the equilibrium paths λ(uB), λ(−wA) computed by the authors’mixed elements
with the reference curves, regular 8×16 mesh

Then nonlinear analyses were performed for concentrated load P = λPref (Pref = 500) using displacement
control method. The nonlinear equilibrium paths computed for regular 8×16 mesh are presented in Fig. 12.
Some discrepancies between the curves obtained for the developed mixed elements and the reference curves
almost disappear after double mesh refinement, see Fig. 13. The equilibrium paths λ(uB), λ(−wA) (Fig. 12)
show that the MIX40 element gives slightly more accurate deformation than the MIX44 and EANS4 elements.

The influence of mesh distortion on the values of load factor λ for chosen values of deflection wA is
presented in Table 7. The values computed by the proposed mixed elements for irregular discretizations 8×16
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Fig. 13 Pinched clamped cylinder: comparison of the equilibrium paths λ(uB), λ(−wA) computed by the authors’mixed elements
with the reference curves, regular 16×32 mesh

Table 7 Pinched clamped cylinder: the comparison of values of λ computed for chosen values of deflection wA, irregular mesh,
reference solution for regular 8×16 mesh of the CAMe16 elements

Reference Deflection Mesh EANS4 MIX44 MIX44s MIX40 MIX40s

0.1505 wA = − 0.1 8 × 16 0.2178 0.2117 0.2123 0.2037 0.2037
16 × 32 0.1747 0.1735 0.1737 0.1714 0.1714

0.5083 wA = − 0.5 8 × 16 0.9375 0.9220 0.9255 0.8788 0.8777
16 × 32 0.6692 0.6672 0.6687 0.6517 0.6520

0.7726 wA = − 1.1 8 × 16 2.0946 2.0621 2.0674 1.9173 1.9225
16 × 32 1.1580 1.1547 1.1582 1.1182 1.1196

2.2401 wA = − 1.75 16 × 32 2.8669 2.8499 2.8560 2.7536 2.7554

and 16×32 are compared with the reference values obtained for regular 8×16 mesh of the CAMe16 elements.
The locking effect and greater differences between values of λ for specific shell elements are observed for
irregular mesh compared to the regular mesh. The smallest values of λ, the closest to the reference solution,
are obtained for the MIX40 element, except value of λ computed for mesh 8 × 16 and wA = − 0.5. Table 7
shows that mixed elements MIX44 and MIX40 give slightly more precise solution for mesh 16×32 than the
corresponding elements with interpolation defined in the skew coordinates.

4.7 Pinched hemisphere with a 18◦ hole

The hemispherical shell with a 18◦ hole is analysed as well-known example (see, e.g. [16,18,44,47,48,78])
of doubly curved shell. The characteristic features of this benchmark test are large almost in-extensional
deformation, small strains and trapezoidal-shaped finite elements. Compared to the original version of this
example proposed byMacNeal and Harder [74], here a four times smaller shell thickness h0 = 0.01 is assumed
to make shell even more prone to the membrane locking. We analyse only the quarter of the hemisphere with a
radius R = 10 (see Fig. 14), due to the double symmetry of the task. The boundary conditions and the external
forces are presented in Fig. 14. The material data are as follows: E = 6.825 × 107, v = 0.3.

The values of displacement wA at point A computed in the linear analysis for force P = 1 are presented in
Table 8. The translations obtained for the developed mixed elements are compared with the reference values
for different meshes. The elements with the interpolation of the assumed stress resultants and strains defined
in the natural coordinates yield more accurate deformation for coarse meshes than the elements formulated in
the skew coordinates. Table 8 shows also that deformation computed by the MIX40 elements is almost not
corrupted by the locking effect, despite the very thin shell thickness.
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Fig. 14 Pinched hemisphere with a 18◦ hole: geometry, boundary conditions, mesh 16×16 FE

Table 8 Pinched hemisphere: the comparison of the values of translations wA, − uB for different shell element formulations and
FE meshes, linear analysis P = 1

Translation wA = − uB
Element/FE mesh 6×6 8×8 16×16 64 × 64

MIX44 4.8452 5.6357 5.8542 5.8903
MIX44s 3.7997 5.3253 5.8486 5.8903
MIX40 5.4561 5.7789 5.8568 5.8903
MIX40s 4.9499 5.6663 5.8549 5.8903
EANS4 4.7969 5.5987 5.8429 5.8894
HW47 – 5.3879 5.7679 5.8924
CAMe16 4.9810 5.6166 5.8723 –

Fig. 15 Pinched hemisphere: the influence of FE mesh density on the value of displacement wA computed in nonlinear analysis,
load P = 4

Then, the mesh convergence analysis is performed in a geometrically nonlinear range. The values of
translation wA computed for the total force P = 4 and different shell element formulations are compared
in Fig. 15. The developed mixed elements enable the faster convergence to the reference solution than the
CAMe16 element. The 16×16 FE mesh (see Fig. 14) is assumed in the further nonlinear analyses to compare
results with the reference solution from the literature and to expose differences between the proposed elements.

The equilibrium paths obtained for the authors’ mixed elements are compared with the reference solutions
in Fig. 16. The load-deflection curves for the MIX40, MIX40s elements are in a very good agreement with

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


K. Daszkiewicz et al.

Fig. 16 Pinched hemisphere: comparison of the nonlinear load-deflection curves P(wA), P(−uB) computed by the authors’
mixed elements with the reference curves, 16×16 mesh

Table 9 Pinched hemisphere: the values of translations wA, −uB computed for the three levels of force P and different shell
element formulations, nonlinear analysis

P = 0.8 P = 4.8 P = 8.8

Element/translation wA −uB wA −uB wA −uB

MIX44 2.4509 3.4899 3.8309 7.5337 4.0897 8.5755
MIX44s 2.4496 3.4875 3.8305 7.5324 4.0895 8.5747
MIX40 2.5207 3.5820 4.0595 8.2213 4.3361 9.3889
MIX40s 2.5206 3.5817 4.0595 8.2213 4.3361 9.3887
HW47 – 3.56 – 8.24 – –
EANS4 2.4493 3.4875 3.8294 7.5244 4.0883 8.5668
CAMe16 2.5556 3.6444 4.2292 8.8464 4.5106 10.1958

the curve for the mixed HW47 element. The mixed elements with 8-parameter interpolation of the membrane
components (MIX44s, MIX44) yield almost the same deformation as the EANS4 element. The values of
translationswA at point A and uB at point B computed in the nonlinear analysis for the different shell elements
and the three levels of load are reported in Table 9. The results of the linear and nonlinear analyses (Tables 8,
9) indicate that the elements with poorer interpolation of the membrane components (MIX40, MIX40s) give
more accurate results than other mixed elements. The differences between the solutions for the mixed elements
and the CAMe16 element are caused by the very low shell thickness, and they almost disappear for 32×32 FE
mesh, see curves for the MIX44 element in Fig. 16.

To evaluate the overall efficiency (robustness) of the proposed mixed elements, the radius and rate of
convergence of the Newton method is measured. Namely, the maximum load increment 	P1 in the first step
of nonlinear analysis is identified for each element with the accuracy of 0.05. The value of load increment
	P1 and number of iterations in the first step are compared with the values for the reference shell elements in
Table 10. The maximum load increment is observed for the MIX40, MIX40s elements. Then, the efficiency
of the mixed elements is tested in the nonlinear analysis for the total force P = 8.8. For each element, the
analysis is performed with minimal number of increments and the corresponding maximum step 	P. The
value of 	P and number of iterations in all increments are presented in Table 11. The values in Tables10
and 11 show that all developed elements allow for slightly greater step increments and require less Newton
iterations than the HW47 element. Moreover, the convergence rate of the proposed elements is significantly
better compared to the CAMe16 and EANS4 elements.
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Table 10 Pinched hemisphere: comparison of the maximum load increment 	P1 and number of iterations in the first increment
of nonlinear analysis for different shell element formulations

Element CAMe16 EANS4 HW47 MIX44 MIX44s MIX40, MIX40s

Max 	P1 0.25 0.07 0.80 0.90 0.90 0.95
No. of iterations 7 5 10 7 6 7

Table 11 Pinched hemisphere: the maximum load increment 	P , number of steps and the total number of equilibrium iterations
in the nonlinear analysis up to load P = 8.8

Element CAMe16 EANS4 HW47 MIX44, MIX44s MIX40, MIX40s

Max 	P 0.20 0.05 0.80 0.88 0.88
No. of steps 44 176 11 10 10
No. of iterations 158 723 62 41 40

Fig. 17 Channel section beam: a initial geometry, boundary conditions, regular (2+6+2)×36mesh; b distorted (2+6+2)×36
mesh, distortion parameter d

4.8 Channel section beam

The short-channel section cantilever beam is analysed as an example of the shell with orthogonal intersections
that was originally introduced in paper [30]. A characteristic feature of this benchmark is the issue of local
and global loss of stability and coupling of the membrane stress state with the bending and torsional stress
state. The beam is subjected to the concentrated force P = λPref (Pref = 100) at point A (see Fig. 17a) and
fully clamped at the other end. The following geometric dimensions: L = 36, b = 2, d = 6 (Fig. 17a) and
the shell thickness h0 = 0.05 are assumed. The material data for the channel section beam are as follows:
E = 107, v = 0.333. Figure 17a shows the assumed (2+ 6+ 2) × 36 FE mesh consisting of square elements
of size 1×1. The computations were performed also for irregular mesh generated by introduction of in-plane
distortion d = 0.25 in the case of internal nodes, see Fig. 17b.

The nonlinear load-deflection curves for the displacement uA at point A computed for regular mesh are
presented in Fig. 18. The equilibrium paths are shown only for the MIX40 and MIX44 elements, since the
results for the natural and skew coordinates are equivalent for square finite elements. The displacement control
analysis ceased to converge for translation uA = 4.4 in the case of MIX44 element and uA = 5.6 for the
MIX40 element. The solutions obtained for the mixed elements are slightly locked in comparison with the
reference curves for the HW47 and CAMe16 elements. On the other hand, they are minimally more accurate
than solution for the EANS4 element. A discrepancy between the results is the effect of the coarse mesh that
does not allow to model precisely local buckling form of deformation at the channel top flange, see Fig. 19. For
the same number of degrees of freedom, a very good agreement with the basic reference solution is obtained,
see curve obtained for the mesh (6 + 18 + 6) × 108 of the MIX40 elements in Fig. 18.

Extreme values λextr of the load factor and values of λ for given values of displacement uA are compared
in Table 12 for two types of discretization and different shell elements. In the initial phase of deformation
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Fig. 18 Channel section beam: comparison of the equilibrium paths λ(uA) computed by the authors’ mixed elements with the
paths for the reference elements, (2 + 6 + 2) × 36 mesh

Fig. 19 Channel section beam, deformed configuration for displacement uA = 5.0: a (2+6+2)×36 mesh, b (6+18+6)×108
mesh

Table 12 Channel section beam: load factors λ for four given values of deflection uAat point A, extreme values of load factor
λextr at the limit point of curve λ(uA), (2 + 6 + 2) × 36 mesh

Mesh Regular Distorted

Element CAMe16 EANS4 HW47 MIX44 MIX40 EANS4 MIX44 MIX44s MIX40 MIX40s

uA = 0.16 0.8970 0.9161 0.88 0.9161 0.9156 0.9348 0.9347 0.9327 0.9299 0.9279
λextr 1.147 1.192 1.14 1.184 1.183 1.227 1.216 1.214 1.211 1.209
uA = 1.0 0.9610 1.0478 0.97 1.0415 1.0342 1.0836 1.0739 1.0705 1.0580 1.0540
uA = 3.0 0.9937 1.1320 1.04 1.1259 1.1082 – 1.1970 1.1933 1.1586 1.1535
uA = 4.5 1.0609 1.2290 1.13 – 1.1797 – 1.3328 1.3292 1.2734 1.2667

(uA ≤ 1.0), the mesh distortion has relatively small impact on value of λ. In the postbuckling range, the
elements MIX44s and MIX40s yield slightly more accurate results compared to the MIX44 and MIX40
elements, respectively. This indicates that in this example the skew coordinates should be used when distorted
mesh is considered.
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5 Conclusions

In the paper, original mixed hybrid shell elements with the asymmetric assumed strains and stress resultants are
formulated based on the Hu–Washizu principle. The new elements extend the library of elements implemented
in the nonlinear 6-parameter shell theory. The accuracy and correctness of the proposed shell elements are
positively verified and tested in various numerical examples. The obtained results show that the MIX40s and
MIX40 elements are less prone to the membrane locking than the MIX44s and MIX44 elements. Moreover,
the MIX40s and MIX40 elements are more accurate than the EANS4 element and give comparable results
to the mixed HW47 element. The computations performed for irregular meshes show that the elements with
interpolation defined in the skew coordinates give more accurate results in the examples with planar geometry
(Cook’s test, channel section beam). The application of the natural coordinates is beneficial in the examples of
curved shells: pinched hemisphere and pinched clamped cylinder, but only for 16×32 mesh. However, the type
of coordinates has relatively small influence on the results, because the difference between solutions obtained
for the natural and skew coordinates is greater than 1% only in the pinched hemisphere test for coarse meshes
6×6, 8×8. The specific correction of the parent coordinates applied, for example, in [10,16,67] was not used
here, because for the proposed interpolation scheme of the assumed stress resultants and strains it gives the
same results as the natural coordinates. The high efficiency of the proposed mixed elements is presented in
the examples of twisted beam and pinched hemisphere. They allow for significantly larger load steps than the
previous EANS4 and CAMe16 elements formulated in the nonlinear 6-parameter shell theory. They require
also less equilibrium iterations than themixedHW47 element. The convergence rate of theMIX40s andMIX40
elements is slightly better than the MIX44s and MIX44 elements. Taking into account theirs high accuracy
and robustness, the shell elements MIX40, MIX40s are selected as the best performers from the developed
mixed hybrid elements. Theirs advantage is also the lowest number of the independent parameters which is
associated with the shortest time of a single iteration.

Appendix A: Geometric stiffness matrix

The geometric part of the second variation of the Hu–Washizu functional (20) may be written as follows

	σG = sT	δε(u) = δεTNT	ψ + wTN	ε + wTE	ψ + δκTMT	ψ

= δdTG	d = wTDTGD	u = wTkG	u, (A.1)

where the matrices D and G are introduced in the following form

δd =
⎧
⎨

⎩

δε

δκ
w

⎫
⎬

⎭
=
⎡

⎢
⎣

Bu B f
0(6×3) Bh

0(3×3) 13

⎤

⎥
⎦
{

v
w

}
= Dw, G =

⎡

⎢
⎣

0(6×6) 0(6×6) NT

0(6×6) 0(6×6) MT

N 0(3×6) E

⎤

⎥
⎦ . (A.2)

Equations (A.1), (A.2) allow to define the geometric matrix kG in the form

kG = DTGD =
[

0 BT
u N

T

NBu NB f + BT
f N

T + E + BT
hM

T

]

, (A.3)

where

N =
⎡

⎣
Q1 0 0 Q2 − N 11 − N 21

0 Q2 Q1 0 − N 12 − N 22

− N 12 N 21 N 11 − N 22 0 0

⎤

⎦ , (A.4)

M =
⎡

⎢
⎣

0 − M2 − M1 0 M12 M22

M1 0 0 M2 − M11 −M21

− M12 M21 M11 − M22 0 0

⎤

⎥
⎦ , (A.5)

E =
⎡

⎢
⎣

Nβ1(δβ1 + εβ1) + Qβεβ Nβ1(δβ2 + εβ2) −Qβ(δβ2 + εβ2)

Nβ2(δβ1 + εβ1) Nβ2(δβ2 + εβ2) + Qβεβ Qβ(δβ1 + εβ1)

−Nβ2εβ Nβ1εβ Nαβ(δαβ + εαβ)

⎤

⎥
⎦ . (A.6)
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The assumed stress resultants are used in Eqs. (A.4)–(A.6) in the formulation of the proposed mixed hybrid
elements. After interpolation in the element space described by the shape functions (57), the element geometric
stiffness matrix takes form

K(e)
G =

∫ ∫

Π(e)

L̄TkGL̄ da =
∫ ∫

Π(e)

L̄TDTGDL̄ da =
∫ ∫

Π(e)

D̄TGD̄ da, D̄ = DL̄. (A.7)

The matrix K(e)
G is not entirely symmetric; therefore, the symmetrization procedure is applied to asymmetric

terms. In contrast to [16,17], the ANS approach is not applied during calculation of the geometric matrix,
because such method yields slightly worse results in the considered shell theory.
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